Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 12.332
1.
Biofabrication ; 16(3)2024 May 17.
Article En | MEDLINE | ID: mdl-38701770

Ensuring the safety of parenteral drugs before injection into patients is of utmost importance. New regulations around the globe and the need to refrain from using animals however, have highlighted the need for new cell sources to be used in next-generation bioassays to detect the entire spectrum of possible contaminating pyrogens. Given the current drawbacks of the Monocyte-Activation-Test (MAT) with respect to the use of primary peripheral blood mono-nuclear cells or the use of monocytic cell lines, we here demonstrate the manufacturing of sensor monocytes/macrophages from human induced pluripotent stem cells (iMonoMac), which are fully defined and superior to current cell products. Using a modern and scalable manufacturing platform, iMonoMac showed typical macrophage-like morphology and stained positive for several Toll like receptor (TLRs) such as TLR-2, TLR-5, TLR-4. Furthermore, iMonoMac derived from the same donor were sensitive to endotoxins, non-endotoxins, and process related pyrogens at a high dynamic range and across different cellular densities. Of note, iMonoMac showed increased sensitivity and reactivity to a broad range of pyrogens, demonstrated by the detection of interleukin-6 at low concentrations of LPS and MALP-2 which could not be reached using the current MAT cell sources. To further advance the system, iMonoMac or genetically engineered iMonoMac with NF-κB-luciferase reporter cassette could reveal a specific activation response while correlating to the classical detection method employing enzyme-linked immunosorbent assay to measure cytokine secretion. Thus, we present a valuable cellular tool to assess parenteral drugs safety, facilitating the future acceptance and design of regulatory-approved bioassays.


Induced Pluripotent Stem Cells , Macrophages , Pyrogens , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Humans , Macrophages/metabolism , Macrophages/drug effects , Macrophages/cytology , Drug Contamination , Toll-Like Receptors/metabolism , Endotoxins , Interleukin-6/metabolism , Monocytes/cytology , Monocytes/metabolism , Monocytes/drug effects , Infusions, Parenteral
2.
PLoS One ; 19(5): e0303773, 2024.
Article En | MEDLINE | ID: mdl-38753829

The Burkholderia cepacia complex (Bcc) is the number one bacterial complex associated with contaminated Finished Pharmaceutical Products (FPPs). This has resulted in multiple healthcare related infection morbidity and mortality events in conjunction with significant FPP recalls globally. Current microbiological quality control of FPPs before release for distribution depends on lengthy, laborious, non-specific, traditional culture-dependent methods which lack sensitivity. Here, we present the development of a culture-independent Bcc Nucleic Acid Diagnostic (NAD) method for detecting Bcc contaminants associated with Over-The-Counter aqueous FPPs. The culture-independent Bcc NAD method was validated to be specific for detecting Bcc at different contamination levels from spiked aqueous FPPs. The accuracy in Bcc quantitative measurements was achieved by the high degree of Bcc recovery from aqueous FPPs. The low variation observed between several repeated Bcc quantitative measurements further demonstrated the precision of Bcc quantification in FPPs. The robustness of the culture-independent Bcc NAD method was determined when its accuracy and precision were not significantly affected during testing of numerous aqueous FPP types with different ingredient matrices, antimicrobial preservative components and routes of administration. The culture-independent Bcc NAD method showed an ability to detect Bcc in spiked aqueous FPPs at a concentration of 20 Bcc CFU/mL. The rapid (≤ 4 hours from sample in to result out), robust, culture-independent Bcc NAD method presented provides rigorous test specificity, accuracy, precision, and sensitivity. This method, validated with equivalence to ISO standard ISO/TS 12869:2019, can be a valuable diagnostic tool in supporting microbiological quality control procedures to aid the pharmaceutical industry in preventing Bcc contamination of aqueous FPPs for consumer safety.


Burkholderia cepacia complex , Drug Contamination , Burkholderia cepacia complex/isolation & purification , Burkholderia cepacia complex/genetics , Drug Contamination/prevention & control , Pharmaceutical Preparations/analysis
3.
Toxins (Basel) ; 16(5)2024 May 15.
Article En | MEDLINE | ID: mdl-38787081

Herbal medicines are widely used for clinical purposes worldwide. These herbs are susceptible to phytopathogenic fungal invasion during the culturing, harvesting, storage, and processing stages. The threat of fungal and mycotoxin contamination requires the evaluation of the health risks associated with these herbal medicines. In this study, we collected 138 samples of 23 commonly used herbs from 20 regions in China, from which we isolated a total of 200 phytopathogenic fungi. Through morphological observation and ITS sequencing, 173 fungal isolates were identified and classified into 24 genera, of which the predominant genera were Fusarium (27.74%) and Alternaria (20.81%), followed by Epicoccum (11.56%), Nigrospora (7.51%), and Trichocladium (6.84%). Quantitative analysis of the abundance of both Fusarium and Alternaria in herbal medicines via RT-qPCR revealed that the most abundant fungi were found on the herb Taraxacum mongolicum, reaching 300,000 copies/µL for Fusarium and 700 copies/µL for Alternaria. The in vitro mycotoxin productivities of the isolated Fusarium and Alternaria strains were evaluated by using liquid chromatography-tandem mass spectrometry (LC-MS/MS), and it was found that the Fusarium species mainly produced the acetyl forms of deoxynivalenol, while Alternaria species mainly produced altertoxins. These findings revealed widely distributed fungal contamination in herbal medicines and thus raise concerns for the sake of the quality and safety of herbal medicines.


Drug Contamination , Fungi , Mycotoxins , China , Fungi/isolation & purification , Fungi/genetics , Fungi/classification , Mycotoxins/analysis , Plants, Medicinal/microbiology , Fusarium/isolation & purification , Fusarium/genetics , Drugs, Chinese Herbal , Alternaria/isolation & purification , Alternaria/genetics , Tandem Mass Spectrometry
4.
Molecules ; 29(9)2024 May 01.
Article En | MEDLINE | ID: mdl-38731577

Recently, benchtop nuclear magnetic resonance (NMR) spectrometers utilizing permanent magnets have emerged as versatile tools with applications across various fields, including food and pharmaceuticals. Their efficacy is further enhanced when coupled with chemometric methods. This study presents an innovative approach to leveraging a compact benchtop NMR spectrometer coupled with chemometrics for screening honey-based food supplements adulterated with active pharmaceutical ingredients. Initially, fifty samples seized by French customs were analyzed using a 60 MHz benchtop spectrometer. The investigation unveiled the presence of tadalafil in 37 samples, sildenafil in 5 samples, and a combination of flibanserin with tadalafil in 1 sample. After conducting comprehensive qualitative and quantitative characterization of the samples, we propose a chemometric workflow to provide an efficient screening of honey samples using the NMR dataset. This pipeline, utilizing partial least squares discriminant analysis (PLS-DA) models, enables the classification of samples as either adulterated or non-adulterated, as well as the identification of the presence of tadalafil or sildenafil. Additionally, PLS regression models are employed to predict the quantitative content of these adulterants. Through blind analysis, this workflow allows for the detection and quantification of adulterants in these honey supplements.


Dietary Supplements , Honey , Magnetic Resonance Spectroscopy , Honey/analysis , Dietary Supplements/analysis , Magnetic Resonance Spectroscopy/methods , Sildenafil Citrate/analysis , Workflow , Chemometrics/methods , Tadalafil/analysis , Least-Squares Analysis , Drug Contamination/prevention & control , Discriminant Analysis
5.
Molecules ; 29(9)2024 May 06.
Article En | MEDLINE | ID: mdl-38731650

The present study investigates the chemical composition variances among Pinelliae Rhizoma, a widely used Chinese herbal medicine, and its common adulterants including Typhonium flagelliforme, Arisaema erubescens, and Pinellia pedatisecta. Utilizing the non-targeted metabolomics technique of employing UHPLC-Q-Orbitrap HRMS, this research aims to comprehensively delineate the metabolic profiles of Pinelliae Rhizoma and its adulterants. Multivariate statistical methods including PCA and OPLS-DA are employed for the identification of differential metabolites. Volcano plot analysis is utilized to discern upregulated and downregulated compounds. KEGG pathway analysis is conducted to elucidate the differences in metabolic pathways associated with these compounds, and significant pathway enrichment analysis is performed. A total of 769 compounds are identified through metabolomics analysis, with alkaloids being predominant, followed by lipids and lipid molecules. Significant differential metabolites were screened out based on VIP > 1 and p-value < 0.05 criteria, followed by KEGG enrichment analysis of these differential metabolites. Differential metabolites between Pinelliae Rhizoma and Typhonium flagelliforme, as well as between Pinelliae Rhizoma and Pinellia pedatisecta, are significantly enriched in the biosynthesis of amino acids and protein digestion and absorption pathways. Differential metabolites between Pinelliae Rhizoma and Arisaema erubescens are mainly enriched in tyrosine metabolism and phenylalanine metabolism pathways. These findings aim to provide valuable data support and theoretical references for further research on the pharmacological substances, resource development and utilization, and quality control of Pinelliae Rhizoma.


Metabolomics , Pinellia , Rhizome , Chromatography, High Pressure Liquid/methods , Metabolomics/methods , Pinellia/metabolism , Pinellia/chemistry , Rhizome/metabolism , Rhizome/chemistry , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/metabolism , Mass Spectrometry/methods , Drug Contamination , Metabolome , Metabolic Networks and Pathways
6.
Se Pu ; 42(5): 432-444, 2024 Apr 08.
Article Zh | MEDLINE | ID: mdl-38736386

Amphotericin B (AmB) is a polyene-macrolide antimicrobial drug with a broad antibacterial spectrum and remarkable efficacy against deep fungal infections. It binds to ergosterol on the fungal cell membrane and alters its permeability, thereby destroying the membrane. AmB is a multicomponent antimicrobial medication that contains a wide range of impurities, rendering quality analysis extremely difficult. In the current Chinese Pharmacopoeia (Edition 2020) and European Pharmacopoeia (EP10.3), high performance liquid chromatography (HPLC) is applied to examine related substances in AmB. However, this technique presents a number of issues. For instance, the mobile phases used in the HPLC method described in both references contain nonvolatile inorganic salts, which cannot be coupled with a mass spectrometry (MS) detector. In addition, because the mobile phases used have a low pH, the component/impurities of AmB drug can easily be degraded or interconverted during the analytical process, leading to reduced analytical accuracy. Therefore, the accuracy and sensitivity of this method must be improved. In this study, a method based on on-line two-dimensional high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (2D HPLC-Q TOF/MS) was developed to analyze the impurity profile of AmB in accordance with the Chinese Pharmacopoeia (Edition 2020) and European Pharmacopoeia (EP10.3). The method combines on-line dilution and a multiple-capture HPLC system to achieve the efficient separation of AmB component/impurities. It also resolves the issue of poor solvent compatibility in 2D HPLC, increases the analytical flux, enhances the automation capability, reduces the mutual conversion of AmB and its impurities during the analytical process, and increases the detection sensitivity of the method. MS was also used to determine the structural inference of unstable components and impurities. An XBridge Shield C18 column (250 mm×4.6 mm, 3 µm) was used for first-dimensional-liquid chromatography with gradient elution using methanol-acetonitrile-4.2 g/L citric acid monohydrate solution (10∶30∶60, v/v/v, pH 4.7) as mobile phase A and methanol-acetonitrile-4.2 g/L citric acid monohydrate solution (12∶68∶20, v/v/v, pH 3.9) as mobile phase B. An Xtimate C8 column (10 mm×2.1 mm, 5 µm) was used as the trap column, and trapping and desalting were performed using 10 mmol/L ammonium formate aqueous solution containing 0.1% formic acid-acetonitrile (95∶5, v/v). An Xtimate C8 column (250 mm×2.1 mm, 5 µm) was used for second-dimensional-liquid chromatography with gradient elution using 10 mmol/L ammonium formate aqueous solution containing 0.1% formic acid-acetonitrile (95∶5, v/v) and 10 mmol/L ammonium formate aqueous solution containing 0.1% formic acid-acetonitrile (5∶95, v/v) as mobile phases. The data were collected in positive-ion mode. In this study, the structures of six impurities in amphotericin B were inferred, according to the fragmentation, the MS and MS2 spectra of each impurity. The developed method can be used to quickly and sensitively analyze the impurity profile of AmB. Furthermore, the research results on impurity profiles can be applied to guide improvements in AmB production.


Amphotericin B , Drug Contamination , Mass Spectrometry , Chromatography, High Pressure Liquid/methods , Amphotericin B/analysis , Amphotericin B/chemistry , Mass Spectrometry/methods
7.
Se Pu ; 42(5): 481-486, 2024 Apr 08.
Article Zh | MEDLINE | ID: mdl-38736392

Ibandronate sodium, a third-generation diphosphate drug used worldwide to treat osteoporosis, has the advantages of convenient use, low toxicity, and significant therapeutic effects. However, the residual organic solvents in the synthesis process of sodium ibandronate not only have a negative impact on the efficacy of the drug, but also lead to a decrease in drug stability. Moreover, if the residual amounts of these solvents exceed safety standards, they may pose serious threats to human health. This study successfully established a convenient and efficient method based on headspace-gas chromatography (HS-GC) for the simultaneous determination of five residual solvents (methanol, acetone, benzene, toluene, 1-pentanol) in the raw materials of ibandronate sodium. The results indicated that satisfactory analytical performance can be achieved by using DB-624 capillary column (30 m×0.32 mm×1.8 µm) and a flame ionization detector in conjunction with headspace autosampling and a temperature program. The specific operating conditions included an initial temperature of 40 ℃, with a hold of 2 min, followed by a temperature ramp first to 200 ℃ at a rate of 5 ℃/min and then to 240 ℃ at a rate of 20 ℃/min, with a hold of 5 min. Nitrogen with a flow rate of 1 mL/min and split ratio of 14∶1 was used as the carrier gas. The headspace vial temperature was maintained at 80 ℃, and the sample equilibration time was 20 min. Under the established analytical conditions, good linear relationships were obtained between the mass concentrations of methanol (72-216 µg/mL), acetone (120-360 µg/mL), benzene (0.048-0.144 µg/mL), toluene (21.36-64.08 µg/mL), and 1-pentanol (120-360 µg/mL) and their corresponding peak areas, with correlation coefficients (r) greater than 0.990. The limits of detection for these solvents were 2.88, 0.011, 0.90, 0.24, and 0.024 ng/mL, respectively, with limits of quantification of 11.5, 0.043, 3.6, 0.96, and 0.096 ng/mL, respectively. Furthermore, the recoveries of these solvents ranged from 86.3% to 101.9%, with relative standard deviations (RSDs, n=3) of less than 2.49%. The proposed method is simple, accurate, reliable, and suitable for the rapid and simultaneous determination of five residual solvents in the raw materials of ibandronate sodium. This study has important practical significance in improving drug safety and ensuring public health.


Ibandronic Acid , Solvents , Chromatography, Gas/methods , Solvents/chemistry , Ibandronic Acid/analysis , Diphosphonates/analysis , Drug Contamination
8.
J Pharm Biomed Anal ; 245: 116200, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38723557

A high-performance liquid chromatography (HPLC) method was developed for the analysis of Allopurinol and its Ph.Eur. impurities using a porous graphitic carbon (PGC) stationary phase. Retention behavior of solutes was studied across a wide temperature range (30-90 °C) and various gradient times (5-20 min). Analysis of the data revealed distinct retention mechanisms between reversed-phase and PGC phases. However, it was proved that the retention of Allopurinol and its Ph.Eur. impurities on PGC stationary phase can be effectively modeled using the linear solvent strength (LSS) theory. This allows for the utilization of LSS-based method development software to optimize methods under these conditions. By using commercial chromatographic modeling software, separation of Allopurinol and Ph.Eur. impurities was optimized within a large design space. At the optimized operating conditions (pH = 2.0, tG = 6 min, T = 60 °C), all solutes were separated within 6 min with baseline resolution. Comparison between predicted and experimentally measured chromatograms further confirmed the applicability of LSS theory in developing analytical methods for PGC-based HPLC systems. The presented approach offers a general framework for method development on PGC phases.


Allopurinol , Graphite , Solvents , Chromatography, High Pressure Liquid/methods , Graphite/chemistry , Solvents/chemistry , Allopurinol/chemistry , Allopurinol/analysis , Porosity , Temperature , Drug Contamination/prevention & control , Hot Temperature
9.
Int J Pharm Compd ; 28(3): 229-240, 2024.
Article En | MEDLINE | ID: mdl-38768508

Sterilization methods to produce sterile preparations include heat, gas, radiation, and filtration. This article focuses on heat, gas, and radiation sterilization, plus a brief introduction to bright-light sterilization. Microbiology basics and microbial death kinetics, key to understanding why these sterilization methods work, will also be briefly discussed. Filtration sterilization will be covered in a separate article.


Drug Compounding , Sterilization , Sterilization/methods , Drug Compounding/standards , Hot Temperature , Drug Contamination/prevention & control , Filtration/instrumentation , Gases
10.
Mol Biol Rep ; 51(1): 639, 2024 May 10.
Article En | MEDLINE | ID: mdl-38727924

BACKGROUND: Peucedani Radix, also known as "Qian-hu" is a traditional Chinese medicine derived from Peucedanum praeruptorum Dunn. It is widely utilized for treating wind-heat colds and coughs accompanied by excessive phlegm. However, due to morphological similarities, limited resources, and heightened market demand, numerous substitutes and adulterants of Peucedani Radix have emerged within the herbal medicine market. Moreover, Peucedani Radix is typically dried and sliced for sale, rendering traditional identification methods challenging. MATERIALS AND METHODS: We initially examined and compared 104 commercial "Qian-hu" samples from various Chinese medicinal markets and 44 species representing genuine, adulterants or substitutes, utilizing the mini barcode ITS2 region to elucidate the botanical origins of the commercial "Qian-hu". The nucleotide signature specific to Peucedani Radix was subsequently developed by analyzing the polymorphic sites within the aligned ITS2 sequences. RESULTS: The results demonstrated a success rate of 100% and 93.3% for DNA extraction and PCR amplification, respectively. Forty-five samples were authentic "Qian-hu", while the remaining samples were all adulterants, originating from nine distinct species. Peucedani Radix, its substitutes, and adulterants were successfully identified based on the neighbor-joining tree. The 24-bp nucleotide signature (5'-ATTGTCGTACGAATCCTCGTCGTC-3') revealed distinct differences between Peucedani Radix and its common substitutes and adulterants. The newly designed specific primers (PR-F/PR-R) can amplify the nucleotide signature region from commercial samples and processed materials with severe DNA degradation. CONCLUSIONS: We advocate for the utilization of ITS2 and nucleotide signature for the rapid and precise identification of herbal medicines and their adulterants to regulate the Chinese herbal medicine industry.


DNA Barcoding, Taxonomic , DNA, Plant , DNA, Plant/genetics , DNA Barcoding, Taxonomic/methods , Drugs, Chinese Herbal/standards , Apiaceae/genetics , Apiaceae/classification , Medicine, Chinese Traditional/standards , DNA, Ribosomal Spacer/genetics , Drug Contamination , Plants, Medicinal/genetics , Phylogeny , Sequence Analysis, DNA/methods , Polymerase Chain Reaction/methods , Nucleotides/genetics , Nucleotides/analysis
11.
J Sep Sci ; 47(9-10): e2300949, 2024 May.
Article En | MEDLINE | ID: mdl-38726739

Hydrophilic interaction liquid chromatography (HILIC) has been widely applied to challenging analysis in biomedical and pharmaceutical fields, bridging the gap between normal-phase high-performance liquid chromatography and reversed-phase high-performance liquid chromatography (RP-HPLC). This paper comprehensively explores the retention mechanisms of amitriptyline and its impurities A, B, C, D, F, and G on amide, amino, diol, and silica columns. Dual HILIC/RP-HPLC retention mechanisms were developed, and transitional points between HILIC and RP-HPLC mechanisms were calculated on amide, diol, and silica columns. Adsorption and partition contributions to overall retention mechanisms were evaluated using Python software in HILIC and RP-HPLC regions. The cation exchange mechanism dominates overall retention for ionized analytes in the silica column (R2 > 0.995), whereas the retention of ionized analytes increases with pH. Impacts of acetonitrile content, buffer ionic strength, and pH, along with their interactions on the retention of ionized analytes in the silica column, were determined using the chemometric approach. Acetonitrile content showed the most significant impact on the retention mechanisms. These findings highlight that a detailed investigation into retention mechanisms provides notable insights into factors influencing analyte retention and separation, promising valuable guidance for future analysis.


Amides , Amitriptyline , Hydrophobic and Hydrophilic Interactions , Silicon Dioxide , Silicon Dioxide/chemistry , Amitriptyline/analysis , Amitriptyline/chemistry , Amides/chemistry , Amides/analysis , Chromatography, High Pressure Liquid , Drug Contamination , Chromatography, Liquid/methods , Molecular Structure
12.
Pharm Res ; 41(5): 983-1006, 2024 May.
Article En | MEDLINE | ID: mdl-38561580

OBJECTIVE: This research aims to elucidate critical impurities in process validation batches of tacrolimus injection formulations, focusing on identification and characterization of previously unreported impurity at RRT 0.42, identified as the tacrolimus alcohol adduct. The potential root causes for the formation of new impurity was determined using structured risk assessment by cause and effect fishbone diagram. The primary objective was to propose mitigation plan and demonstrate the control of impurities with 6 month accelerated stability results in development batches. METHODS: The investigation utilizes method validation and characterization studies to affirm the accuracy of quantifying the tacrolimus alcohol adduct. The research methodology employed different characterization techniques like rotational rheometer, ICP‒MS, MALDI-MS, 1H NMR, 13C NMR, and DEPT-135 NMR for structural elucidation. Additionally, the exact mass of the impurity is validated using electrospray ionization mass spectra. RESULTS: Results indicate successful identification and characterization of the tacrolimus alcohol adduct. The study further explores the transformation of Tacrolimus monohydrate under various conditions, unveiling the formation of Tacrolimus hydroxy acid and proposing the existence of a novel degradation product, the Tacrolimus alcohol adduct. Six-month data from development lots utilizing Manufacturing Process II demonstrate significantly lower levels of alcohol adducts. CONCLUSIONS: Manufacturing Process II, selectively locates Tacrolimus within the micellar core of HCO-60, this prevent direct contact of ethanol with Tacrolimus which minimizes impurity alcohol adduct formation. This research contributes to the understanding of tacrolimus formulations, offering ways to safeguard product integrity and stability during manufacturing and storage.


Drug Contamination , Immunosuppressive Agents , Tacrolimus , Drug Contamination/prevention & control , Tacrolimus/chemistry , Tacrolimus/analysis , Immunosuppressive Agents/chemistry , Immunosuppressive Agents/analysis , Drug Stability , Alcohols/chemistry , Alcohols/analysis , Drug Compounding/methods , Magnetic Resonance Spectroscopy/methods
13.
Fitoterapia ; 175: 105942, 2024 Jun.
Article En | MEDLINE | ID: mdl-38575088

Pruni Semen, the dried ripe seed of Prunus humilis, P. japonica, or P. pedunculata as recorded in the Chinese Pharmacopoeia, has been widely used in pharmaceutical and food industries. The adulteration of the marketed product with morphologically similar plants of the same genus has led to variable product quality and clinical effectiveness. This study systematically investigated the phylogenetic relationships, morphological traits, and chemical profiles of 37 Pruni Semen samples from planting bases, markets, and fields. DNA barcoding could successfully distinguish the genuine and counterfeit Pruni Semen, and the results indicated that there was almost no authentic Pruni Semen available in the market. The samples were divided into "big seed" (P. pedunculata and P. salicina seeds) and "small seed" (P. humilis, P. japonica, P. tomentosa, and P. avium seeds) categories based on morphology results. The notable discrepancy in the chemical characteristics of "big seed" and "small seed" was that "small seeds" were rich in flavonoids and low in amygdalin, whereas "big seeds" were the opposite. Furthermore, principal component analysis and clustered heatmap analysis verified the distinguishing features of "big seed" and "small seed" based on morphological and chemical characteristics. This study suggested that a combination of DNA barcoding and morphological and chemical characteristics can aid in the identification and quality evaluation of authentic and adulterated Pruni Semen. These findings may help standardize Pruni Semen available in the market and protect the rights and interests of customers.


DNA Barcoding, Taxonomic , Phylogeny , Prunus , Seeds , Seeds/chemistry , Prunus/chemistry , Prunus/classification , Prunus/genetics , Amygdalin , Flavonoids/analysis , Drug Contamination , China , Phytochemicals
14.
J Pharm Biomed Anal ; 245: 116160, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38663256

Technical advances in the field of quality analysis allow an increasingly deeper look into the impurity profile of drugs. The ability to detect unexpected impurities in addition to known impurities ensures the supply of high-quality drugs and can prevent recalls due to the detection of harmful unexpected impurities, as has happened recently with the N-nitrosamine and azido impurities in losartan (LOS) drug products. In the present study, the LC-MS/HRMS approach described by Backer et al. was applied to an even more complex system, being the investigation of 35 LOS drug products and combination preparations purchased in 2018 and 2022 in German pharmacies. The film-coated tablets were analysed by means of four LC-MS/HRMS method variants. For the separation a Zorbax RR StableBond C18 column (3.0 ×100 mm, particle size of 3.5 µm, pore size of 80 Å), a gradient elution and for mass spectrometric detection a qTOF mass spectrometer with electrospray ionization in positive and negative mode was used. An information-dependent acquisition method was applied for the acquisition of high-resolution mass spectrometry data. The combination of an untargeted and a targeted screening approach revealed the finding of eight impurities in total. Beside the five LOS related compounds, LOS impurity F, J, K, L, M, and related compound D from amlodipine besilate, LOS azide and an unknown derivative thereof were detected. Identification and structure elucidation, respectively, were successfully performed using in silico fragmentation. Differences in the impurity profiles of drug products from 2018 and 2022 could be observed. This study shows that broad screening approaches like this are applicable to the analysis of drug products and can be an important enhancement of the quality assurance of medicinal products.


Drug Contamination , Losartan , Tablets , Tandem Mass Spectrometry , Losartan/analysis , Losartan/chemistry , Drug Contamination/prevention & control , Tablets/analysis , Germany , Tandem Mass Spectrometry/methods , Chromatography, Liquid/methods , Spectrometry, Mass, Electrospray Ionization/methods , Chromatography, High Pressure Liquid/methods
15.
Int J Pharm ; 657: 124164, 2024 May 25.
Article En | MEDLINE | ID: mdl-38688429

Liposomes are widely used in the pharmaceutical industry as drug delivery systems to increase the efficacy and reduce the off-target toxicity of active pharmaceutical ingredients (APIs). The liposomes are more complex drug delivery systems than the traditional dosage forms, and phospholipids and cholesterol are the major structural excipients. These two excipients undergo hydrolysis and/or oxidation during liposome preparation and storage, resulting in lipids hydrolyzed products (LHPs) and cholesterol oxidation products (COPs) in the final liposomal formulations. These excipient-related impurities at elevated concentrations may affect liposome stability and exert biological functions. This review focuses on LHPs and COPs, two major categories of excipient-related impurities in the liposomal formulations, and discusses factors affecting their formation, and analytical methods to determine these excipient-related impurities.


Drug Contamination , Excipients , Liposomes , Excipients/chemistry , Drug Contamination/prevention & control , Cholesterol/chemistry , Hydrolysis , Phospholipids/chemistry , Oxidation-Reduction , Chemistry, Pharmaceutical/methods , Drug Stability
16.
PDA J Pharm Sci Technol ; 78(2): 206-211, 2024.
Article En | MEDLINE | ID: mdl-38609149

The Cell Banks, Advanced Technologies (ATMPs, NGS) session at the 2023 Viral Clearance Symposium (VCS) focused on the assurance of high virus safety profiles of advanced technology medicinal products (ATMPs) by implementation of advanced virus detection methods using rapid and sensitive technologies, such as next-generation sequencing (NGS). All presentations in this session made the need to replace in vivo testing for viruses by new technologies that have been demonstrated to be incomparably broad in their detection capabilities and can even detect unknown viruses. An evaluation of historical data collected by the Consortium on Adventitious Agent Contamination in Biomanufacturing (CAACB) from their members' in vivo and in vitro adventitious virus test experience as well as on using NGS was presented. The data convincingly supported the necessity to replace in vivo testing with faster, broader, more sensitive, more accurate, and more specific virus detection methods. Additionally, a collaborative study-initiated by the CAACB-with the goal to revisit traditional adventitious agent testing by using targeted NGS to replace in vivo and in vitro tests for well-known and broadly used Chinese hamster ovary (CHO) cells was presented, including the planned risk-assessment approach using prior knowledge and historical data. Overall, this session demonstrated that the use of new virus detection methods, such as NGS, represents a great opportunity to provide sufficient viral safety margins, specifically, for ATMPs, where downstream virus clearance is not possible. This path forward is also supported by the final ICH Q5A(R2) guideline.


Drug Contamination , High-Throughput Nucleotide Sequencing , Animals , Cricetinae , CHO Cells , Cricetulus , Drug Contamination/prevention & control , Technology
17.
AMA J Ethics ; 26(4): E289-294, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38564743

This commentary responds to a case about diethylene glycol-contaminated glycerin in cough syrup. Glycerin is a commonly used excipient in medicines to improve texture and taste. Excipients are typically pharmacologically inactive ingredients contained in prescription and over-the-counter drugs that play a critical role in the delivery, effectiveness, and stability of active drug substances. The commentary first canvasses how contaminants enter the excipient supply chains. One way is by misleading labeling or intentional adulteration by manufacturers or suppliers. Another way is by human or systemic error. This commentary then discusses quality control testing and suggests the ethical and clinical importance of increased transparency in excipient supply chains.


Excipients , Glycerol , Child , Humans , Excipients/adverse effects , Pharmaceutical Preparations , Drug Contamination , Cough/drug therapy
18.
Klin Monbl Augenheilkd ; 241(4): 392-397, 2024 Apr.
Article En | MEDLINE | ID: mdl-38653293

PURPOSE: To introduce a novel technique of the aseptic manufacture of autologous serum eye drops (ASEDs) with a prefiltered closed system and to analyze the sterility of the produced ophtioles between 2018 and 2022. METHODS: This is a prospective single-center study conducted at the Department of Ophthalmology at a Swiss University Hospital between 2018 and 2022. For regulatory reasons, closed systems for manufacturing ASEDs are strongly recommended. We attached an upstream sterile filter (Sterivex PES0.22 µm Burlington, USA) to a commercially available closed system (COL System Modena, Italy) for manufacturing ASEDs. The goal of this novel approach was to reduce the microbiological contamination of the donated autologous blood. Using the presented manufacturing method, we are able to produce, on average, 56 ophtioles per batch, containing either 1.45 mL or 2.5 mL of autologous serum per ophtiole. For each batch of ASEDs, we performed a microbiological analysis by automated blood culture testing (BACTEC). This system examines the presence of bacteria and fungi. RESULTS: We analyzed all manufactured batches between 2018 and 2022. None of the 2297 batches and the resulting 129 060 ophtioles showed bacterial or mycotic contamination. During the analyzed period, two batches were discarded: one due to fibrin-lipid aggregations, further microbiological and histological work-up excluded any contamination; another due to false-positive HIV in serological testing. Overall, the contamination rate was 0%, and the batch discharge rate was 0.09%. CONCLUSIONS: The combination of upstream sterile filtration with a commercial closed system for manufacturing ASEDs proved to be effective in ensuring sterility without any contamination over the past 4 years. This is becoming crucial, as the demand for autologous blood products for treating ocular surface disorders, such as refractory dry eyes or nonhealing defects of the corneal epithelium, is on the rise.


Drug Contamination , Ophthalmic Solutions , Serum , Humans , Drug Contamination/prevention & control , Prospective Studies , Sterilization/methods , Asepsis/methods
19.
J Pharm Biomed Anal ; 244: 116128, 2024 Jul 15.
Article En | MEDLINE | ID: mdl-38598924

Genotoxic impurities (GTIs) are potential carcinogens that need to be controlled down to ppm or lower concentration levels in pharmaceuticals under strict regulations. The static headspace gas chromatography (HS-GC) coupled with electron capture detection (ECD) is an effective approach to monitor halogenated and nitroaromatic genotoxins. Deep eutectic solvents (DESs) possess tunable physico-chemical properties and low vapor pressure for HS-GC methods. In this study, zwitterionic and non-ionic DESs have been used for the first time to develop and validate a sensitive analytical method for the analysis of 24 genotoxins at sub-ppm concentrations. Compared to non-ionic diluents, zwitterionic DESs produced exceptional analytical performance and the betaine : 7 (1,4- butane diol) DES outperformed the betaine : 5 (1,4-butane diol) DES. Limits of detection (LOD) down to the 5-ppb concentration level were achieved in DESs. Wide linear ranges spanning over 5 orders of magnitude (0.005-100 µg g-1) were obtained for most analytes with exceptional sensitivities and high precision. The method accuracy and precision were validated using 3 commercially available drug substances and excellent recoveries were obtained. This study broadens the applicability of HS-GC in the determination of less volatile GTIs by establishing DESs as viable diluent substitutes for organic solvents in routine pharmaceutical analysis.


Deep Eutectic Solvents , Drug Contamination , Limit of Detection , Mutagens , Drug Contamination/prevention & control , Chromatography, Gas/methods , Mutagens/analysis , Pharmaceutical Preparations/analysis , Pharmaceutical Preparations/chemistry , Deep Eutectic Solvents/chemistry , Deep Eutectic Solvents/analysis , Green Chemistry Technology/methods , Reproducibility of Results , Solvents/chemistry
20.
PLoS One ; 19(4): e0299789, 2024.
Article En | MEDLINE | ID: mdl-38574164

We examined the spatial distribution of Per- and Polyfluoroalkyl Substances (PFAS) in the US drinking water and explored the relationship between PFAS contamination, public water systems (PWS) characteristics, and socioeconomic attributes of the affected communities. Using data from the EPA's third Unregulated Contaminant Rule, the Census Bureau, and the Bureau of Labor Statistics, we identified spatial contamination hot spots and found that PFAS contamination was correlated with PWSs size, non-surface raw water intake sources, population, and housing density. We also found that non-white communities had less PFAS in drinking water. Lastly, we observed that PFAS contamination varied depending on regional industrial composition. The results showed that drinking water PFAS contamination was an externality of not only some industrial activities but also household consumption.


Alkanesulfonic Acids , Drinking Water , Fluorocarbons , Water Pollutants, Chemical , Drinking Water/analysis , Water Pollutants, Chemical/analysis , Water Pollution , Drug Contamination
...