Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neurobiol Aging ; 107: 21-29, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34371284

RESUMEN

Formation of Reticulon 3 (RTN3)-immunoreactive dystrophic neurites (RIDNs) occurs early during the growth of amyloid plaques in Alzheimer's disease (AD) brains. We have shown that RIDNs in AD and aging mouse brains are composed of abnormally clustered tubular endoplasmic reticulum (ER) and degenerating mitochondria. To understand RTN3-mediated abnormal tubular ER clustering, we aimed to identify proteins that interact with RTN3 and impact accumulation of tubular ER in RIDNs. We found that the N-terminal domain of RTN3, which is unique among RTN family members, specifically interacted with dynactin 6 (DCTN6), a protein involved in dynein-mediated retrograde transport of cargo vesicles. DCTN6 protein levels decrease with aging in the hippocampal regions of WT mice. We found that DCTN6 deficiency enhanced RTN3 protein levels, high molecular weight RTN3 levels, and hippocampus-specific RIDN formation in aging brains of transgenic mice overexpressing RTN3. Our results suggest that the DCTN6-RTN3 interaction mediates tubular ER trafficking in axons, and a DCTN6 deficiency in the hippocampus impairs axonal ER trafficking, leading to abnormal ER accumulation and RIDN formation in brains of aging mice.


Asunto(s)
Envejecimiento/patología , Enfermedad de Alzheimer/patología , Encéfalo/metabolismo , Encéfalo/patología , Complejo Dinactina/deficiencia , Neuritas/patología , Distrofias Neuroaxonales/etiología , Envejecimiento/metabolismo , Enfermedad de Alzheimer/metabolismo , Animales , Transporte Axonal , Complejo Dinactina/metabolismo , Retículo Endoplásmico/metabolismo , Células HEK293 , Humanos , Ratones Transgénicos , Proteínas del Tejido Nervioso/metabolismo , Placa Amiloide/metabolismo
2.
Mol Neurodegener ; 14(1): 27, 2019 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-31291987

RESUMEN

BACKGROUND: Dynactin subunit 1 is the largest subunit of the dynactin complex, an activator of the molecular motor protein complex dynein. Reduced levels of DCTN1 mRNA and protein have been found in sporadic amyotrophic lateral sclerosis (ALS) patients, and mutations have been associated with disease, but the role of this protein in disease pathogenesis is still unknown. METHODS: We characterized a Dynactin1a depletion model in the zebrafish embryo and combined in vivo molecular analysis of primary motor neuron development with live in vivo axonal transport assays in single cells to investigate ALS-related defects. To probe neuromuscular junction (NMJ) function and organization we performed paired motor neuron-muscle electrophysiological recordings and GCaMP calcium imaging in live, intact larvae, and the synapse structure was investigated by electron microscopy. RESULTS: Here we show that Dynactin1a depletion is sufficient to induce defects in the development of spinal cord motor neurons and in the function of the NMJ. We observe synapse instability, impaired growth of primary motor neurons, and higher failure rates of action potentials at the NMJ. In addition, the embryos display locomotion defects consistent with NMJ dysfunction. Rescue of the observed phenotype by overexpression of wild-type human DCTN1-GFP indicates a cell-autonomous mechanism. Synaptic accumulation of DCTN1-GFP, as well as ultrastructural analysis of NMJ synapses exhibiting wider synaptic clefts, support a local role for Dynactin1a in synaptic function. Furthermore, live in vivo analysis of axonal transport and cytoskeleton dynamics in primary motor neurons show that the phenotype reported here is independent of modulation of these processes. CONCLUSIONS: Our study reveals a novel role for Dynactin1 in ALS pathogenesis, where it acts cell-autonomously to promote motor neuron synapse stability independently of dynein-mediated axonal transport.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Complejo Dinactina/deficiencia , Degeneración Nerviosa/genética , Sinapsis/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Transporte Axonal/genética , Modelos Animales de Enfermedad , Neuronas Motoras/metabolismo , Degeneración Nerviosa/patología , Unión Neuromuscular/genética , Médula Espinal/metabolismo , Pez Cebra
3.
Mol Neurodegener ; 13(1): 10, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29490687

RESUMEN

BACKGROUND: Dynactin p150Glued, the largest subunit of the dynactin macromolecular complex, binds to both microtubules and tubulin dimers through the N-terminal cytoskeleton-associated protein and glycine-rich (CAP-Gly) and basic domains, and serves as an anti-catastrophe factor in stabilizing microtubules in neurons. P150Glued also initiates dynein-mediated axonal retrograde transport. Multiple missense mutations at the CAP-Gly domain of p150Glued are associated with motor neuron diseases and other neurodegenerative disorders, further supporting the importance of microtubule domains (MTBDs) in p150Glued functions. However, most functional studies were performed in vitro. Whether p150Glued is required for neuronal function and survival in vivo is unknown. METHODS: Using Cre-loxP genetic manipulation, we first generated a line of p150Glued knock-in mice by inserting two LoxP sites flanking the MTBD-coding exons 2 to 4 of p150Glued-encoding Dctn1 gene (Dctn1LoxP/), and then crossbred the resulting Dctn1LoxP/ mice with Thy1-Cre mice to generate the bigenic p150Glued (Dctn1LoxP/LoxP; Thy1-Cre) conditional knockout (cKO) mice for the downstream motor behavioral and neuropathological studies. RESULTS: P150Glued expression was completely abolished in Cre-expressing postnatal neurons, including corticospinal motor neurons (CSMNs) and spinal motor neurons (SMNs), while the MTBD-truncated forms remained. P150Glued ablation did not affect the formation of dynein/dynactin complex in neurons. The p150Glued cKO mice did not show any obvious developmental phenotypes, but exhibited impairments in motor coordination and rearing after 12 months of age. Around 20% loss of SMNs was found in the lumbar spinal cord of 18-month-old cKO mice, in company with increased gliosis, neuromuscular junction (NMJ) disintegration and muscle atrophy. By contrast, no obvious degeneration of CSMNs, striatal neurons, midbrain dopaminergic neurons, cerebellar granule cells or Purkinje cells was observed. Abnormal accumulation of acetylated α-tubulin, and autophagosome/lysosome proteins was found in the SMNs of aged cKO mice. Additionally, the total and cell surface levels of glutamate receptors were also substantially elevated in the p150Glued-depleted spinal neurons, in correlation with increased vulnerability to excitotoxicity. CONCLUSION: Overall, our findings demonstrate that p150Glued is particularly required to maintain the function and survival of SMNs during aging. P150Glued may exert its protective function through regulating the transportation of autophagosomes, lysosomes, and postsynaptic glutamate receptors in neurons.


Asunto(s)
Envejecimiento/patología , Complejo Dinactina/deficiencia , Neuronas Motoras/patología , Degeneración Nerviosa/patología , Envejecimiento/metabolismo , Animales , Ratones , Ratones Noqueados , Neuronas Motoras/metabolismo , Degeneración Nerviosa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...