RESUMEN
Dysbiosis of the gut microbiota has been associated with different illnesses and emotional disorders such as stress. Traditional fermented foods that are rich in probiotics suggest modulation of dysbiosis, which protects against stress-induced disorders. The academic stress was evaluated in medical students using the SISCO Inventory of Academic Stress before and after ingestion of an aguamiel-based beverage fermented with Lactobacillus plantarum, Lactobacillus paracasei and Lactobacillus brevis (n = 27) and a control group (n = 18). In addition, microbial phyla in feces were quantified by qPCR. The results showed that the consumption of 100 mL of a beverage fermented with lactic acid bacteria (3 × 108 cfu/mL) for 8 weeks significantly reduced academic stress (p = 0.001), while the control group (placebo intervention) had no significant changes in the perception of academic stress (p = 0.607). Significant change (p = 0.001) was shown in the scores for environmental demands, and physical and psychological factors. Consumption of the fermented beverage significantly increased the phyla Firmicutes and Bacteroidetes but not Gammaproteobacteria. No significant changes were found in the control group, except for a slight increase in the phylum Firmicutes. The intake of this fermented beverage suggest a modulation of gut microbiota and possible reduction in stress-related symptoms in university students, without changing their lifestyle or diet.
Asunto(s)
Agave , Alimentos Fermentados/microbiología , Probióticos/administración & dosificación , Estrés Psicológico/terapia , Estudiantes de Medicina/psicología , Adulto , Disbiosis/microbiología , Disbiosis/psicología , Heces/microbiología , Femenino , Fermentación , Microbioma Gastrointestinal , Humanos , Lactobacillales , Estudios Longitudinales , Masculino , México , Estudios Prospectivos , Método Simple Ciego , Estrés Psicológico/microbiología , Adulto JovenRESUMEN
Cognitive functions, such as learning and memory, may be impaired during aging. Age-related cognitive impairment is associated with selective neuronal loss, oxidative changes that lead to microglia activation and neuroinflammation. In addition, it is associated to alteration reduction in trophic factors affecting neurogenesis and synaptic plasticity. In recent years, attention has been paid to the relationship between gut microbiota and brain. In aging, there is an alteration in microbiota, gut microbiota diversity is perturbed with an increase in pathogenic bacteria at the expense of beneficial ones. Dysbiosis may lead to chronic inflammation, and a decrease in bacteria metabolites such as short-chain fatty acids which have been related to an upregulation of neurotrophic factors. Supplementation with prebiotics and probiotics can modulate gut microbiota, returning it to a more physiological state; thus, they may be considered as a possible treatment for age-related cognitive impairment.