Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur J Neurosci ; 58(11): 4282-4297, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37933572

RESUMEN

Duchenne muscular dystrophy (DMD) is a severe progressive neuromuscular disorder that causes cardiac and respiratory failure. Patients with DMD have tachycardia and autonomic nervous dysfunction at a young age, which can potentially worsen cardiorespiratory function. Therefore, we hypothesised that plasticity occurs in neurons of the cardiorespiratory brainstem nucleus (nucleus tractus solitarius [NTS]) due to DMD, thus affecting neuronal regulation because afferent information from cardiorespiratory organs changes with disease progression. Patch-clamp experiments were performed on second-order NTS neurons from Dmd-mutated (Dm) rats that showed no functional dystrophin protein expression, as confirmed by immunohistochemistry. NTS neurons are classified into two electrophysiological phenotypes: one showing a delayed onset of spiking from hyperpolarised membrane potentials, namely, delayed-onset spiking (DS)-type neurons, and the other showing a rapid onset, namely, rapid-onset spiking-type neurons. Neuroplasticity mainly occurs in DS-type neurons in Dm rats and is characterised by blunted neuronal excitability accompanied by reduced outward currents and a facilitatory effect on synaptic transmission, that is, an increased frequency of spontaneous and miniature excitatory postsynaptic currents (EPSCs) without changes in the amplitude and an increased amplitude of tractus solitarius-evoked EPSCs without changes in the paired-pulse ratio. Although we cannot rule out the possibility that the neuroplastic changes observed in Dm rats were caused by dystrophin deficiency in the neurons themselves, the plasticity could be caused by cardiorespiratory deterioration and/or adaptation in DMD patients.


Asunto(s)
Distrofina , Núcleo Solitario , Animales , Humanos , Ratas , Distrofina/genética , Distrofina/metabolismo , Distrofina/farmacología , Fenómenos Electrofisiológicos , Neuronas/fisiología , Núcleo Solitario/metabolismo , Transmisión Sináptica/fisiología
2.
BMC Med ; 18(1): 343, 2020 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-33208172

RESUMEN

BACKGROUND: Duchenne muscular dystrophy (DMD) is a progressive, degenerative muscular disorder and cognitive dysfunction caused by mutations in the dystrophin gene. It is characterized by excess inflammatory responses in the muscle and repeated degeneration and regeneration cycles. Neutral sphingomyelinase 2/sphingomyelin phosphodiesterase 3 (nSMase2/Smpd3) hydrolyzes sphingomyelin in lipid rafts. This protein thus modulates inflammatory responses, cell survival or apoptosis pathways, and the secretion of extracellular vesicles in a Ca2+-dependent manner. However, its roles in dystrophic pathology have not yet been clarified. METHODS: To investigate the effects of the loss of nSMase2/Smpd3 on dystrophic muscles and its role in the abnormal behavior observed in DMD patients, we generated mdx mice lacking the nSMase2/Smpd3 gene (mdx:Smpd3 double knockout [DKO] mice). RESULTS: Young mdx:Smpd3 DKO mice exhibited reduced muscular degeneration and decreased inflammation responses, but later on they showed exacerbated muscular necrosis. In addition, the abnormal stress response displayed by mdx mice was improved in the mdx:Smpd3 DKO mice, with the recovery of brain-derived neurotrophic factor (Bdnf) expression in the hippocampus. CONCLUSIONS: nSMase2/Smpd3-modulated lipid raft integrity is a potential therapeutic target for DMD.


Asunto(s)
Distrofia Muscular de Duchenne/genética , Esfingomielina Fosfodiesterasa/metabolismo , Animales , Modelos Animales de Enfermedad , Distrofina/genética , Distrofina/metabolismo , Distrofina/farmacología , Humanos , Masculino , Ratones , Ratones Endogámicos mdx , Ratones Noqueados
3.
J Appl Physiol (1985) ; 127(4): 1058-1066, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31295065

RESUMEN

Progressive muscle injury and weakness are hallmarks of Duchenne muscular dystrophy. We showed previously that quercetin (Q) partially protected dystrophic limb muscles from disease-related injury. As quercetin activates PGC-1α through Sirtuin-1, an NAD+-dependent deacetylase, the depleted NAD+ in dystrophic skeletal muscle may limit quercetin efficacy; hence, supplementation with the NAD+ donor, nicotinamide riboside (NR), may facilitate quercetin efficacy. Lisinopril (Lis) protects skeletal muscle and improves cardiac function in dystrophin-deficient mice; therefore, it was included in this study to evaluate the effects of lisinopril used with quercetin and NR. Our purpose was to determine the extent to which Q, NR, and Lis decreased dystrophic injury. We hypothesized that Q, NR, or Lis alone would improve muscle function and decrease histological injury and when used in combination would have additive effects. Muscle function of 11-mo-old DBA (healthy), D2-mdx (dystrophin-deficient), and D2-mdx mice was assessed after treatment with Q, NR, and/or Lis for 7 mo. To mimic typical pharmacology of patients with Duchenne muscular dystrophy, a group was treated with prednisolone (Pred) in combination with Q, NR, and Lis. At 11 mo of age, dystrophin deficiency decreased specific tension and tetanic force in the soleus and extensor digitorum longus muscles and was not corrected by any treatment. Dystrophic muscle was more sensitive to contraction-induced injury, which was partially offset in the QNRLisPred group, whereas fatigue was similar between all groups. Treatments did not decrease histological damage. These data suggest that treatment with Q, NR, Lis, and Pred failed to adequately maintain dystrophic limb muscle function or decrease histological damage.NEW & NOTEWORTHY Despite a compelling rationale and previous evidence to the contrary in short-term investigations, quercetin, nicotinamide riboside, or Lisinopril, alone or in combination, failed to restore muscle function or decrease histological injury in dystrophic limb muscle from D2-mdx mice after long-term administration. Importantly, we also found that in the D2-mdx model, an emerging and relatively understudied model of Duchenne muscular dystrophy dystrophin deficiency caused profound muscle dysfunction and histopathology in skeletal muscle.


Asunto(s)
Músculo Esquelético/efectos de los fármacos , Distrofia Muscular Animal/tratamiento farmacológico , Distrofia Muscular de Duchenne/tratamiento farmacológico , Preparaciones Farmacéuticas/administración & dosificación , Animales , Suplementos Dietéticos , Modelos Animales de Enfermedad , Distrofina/farmacología , Masculino , Ratones , Ratones Endogámicos DBA , Ratones Endogámicos mdx , Contracción Muscular/efectos de los fármacos , Quercetina/farmacología
4.
J Pathol ; 248(3): 339-351, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30883742

RESUMEN

Exon skipping is a promising genetic therapeutic strategy for restoring dystrophin expression in the treatment of Duchenne muscular dystrophy (DMD). The potential for newly synthesized dystrophin to trigger an immune response in DMD patients, however, is not well established. We have evaluated the effect of chronic phosphorodiamidate morpholino oligomer (PMO) treatment on skeletal muscle pathology and asked whether sustained dystrophin expression elicits a dystrophin-specific autoimmune response. Here, two independent cohorts of dystrophic mdx mice were treated chronically with either 800 mg/kg/month PMO for 6 months (n = 8) or 100 mg/kg/week PMO for 12 weeks (n = 11). We found that significant muscle inflammation persisted after exon skipping in skeletal muscle. Evaluation of humoral responses showed serum-circulating antibodies directed against de novo dystrophin in a subset of mice, as assessed both by Western blotting and immunofluorescent staining; however, no dystrophin-specific antibodies were observed in the control saline-treated mdx cohorts (n = 8) or in aged (12-month-old) mdx mice with expanded 'revertant' dystrophin-expressing fibers. Reactive antibodies recognized both full-length and truncated exon-skipped dystrophin isoforms in mouse skeletal muscle. We found more antigen-specific T-cell cytokine responses (e.g. IFN-g, IL-2) in dystrophin antibody-positive mice than in dystrophin antibody-negative mice. We also found expression of major histocompatibility complex class I on some of the dystrophin-expressing fibers along with CD8+ and perforin-positive T cells in the vicinity, suggesting an activation of cell-mediated damage had occurred in the muscle. Evaluation of complement membrane attack complex (MAC) deposition on the muscle fibers further revealed lower MAC deposition on muscle fibers of dystrophin antibody-negative mice than on those of dystrophin antibody-positive mice. Our results indicate that de novo dystrophin expression after exon skipping can trigger both cell-mediated and humoral immune responses in mdx mice. Our data highlights the need to further investigate the autoimmune response and its long-term consequences after exon-skipping therapy. Copyright © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Distrofina/farmacología , Exones/efectos de los fármacos , Morfolinos/farmacología , Distrofia Muscular de Duchenne/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Distrofina/genética , Exones/genética , Terapia Genética/métodos , Masculino , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Ratones Transgénicos , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/genética
5.
J Proteomics ; 191: 80-87, 2019 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-29625189

RESUMEN

The Dp71 protein is the most abundant dystrophin in the central nervous system (CNS). Several dystrophin Dp71 isoforms have been described and are classified into three groups, each with a different C-terminal end. However, the functions of Dp71 isoforms remain unknown. In the present study, we analysed the effect of Dp71eΔ71 overexpression on neuronal differentiation of PC12 Tet-On cells. Overexpression of dystrophin Dp71eΔ71 stimulates neuronal differentiation, increasing the percentage of cells with neurites and neurite length. According to 2-DE analysis, Dp71eΔ71 overexpression modified the protein expression profile of rat pheochromocytoma PC12 Tet-On cells that had been treated with neuronal growth factor (NGF) for nine days. Interestingly, all differentially expressed proteins were up-regulated compared to the control. The proteomic analysis showed that Dp71eΔ71 increases the expression of proteins with important roles in the differentiation process, such as HspB1, S100A6, and K8 proteins involved in the cytoskeletal structure and HCNP protein involved in neurotransmitter synthesis. The expression of neuronal marker TH was also up-regulated. Mass spectrometry data are available via ProteomeXchange with identifier PXD009114. SIGNIFICANCE: This study is the first to explore the role of the specific isoform Dp71eΔ71. The results obtained here support the hypothesis that the dystrophin Dp71eΔ71 isoform has an important role in the neurite outgrowth by regulating the levels of proteins involved in the cytoskeletal structure, such as HspB1, S100A6, and K8, and in neurotransmitter synthesis, such as HCNP and TH, biological processes required to stimulate neuronal differentiation.


Asunto(s)
Diferenciación Celular , Distrofina/fisiología , Proyección Neuronal , Neuronas/citología , Animales , Proteínas del Citoesqueleto/metabolismo , Distrofina/farmacología , Neurotransmisores/biosíntesis , Células PC12 , Isoformas de Proteínas , Proteómica/métodos , Ratas
6.
Acta Histochem ; 120(3): 187-195, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29395317

RESUMEN

Dystrophin (Dp) is a multidomain protein that links the actin cytoskeleton to the extracellular matrix through the dystrophin associated proteins complex (DAPC). Dp of 71 kDa (Dp71), corresponding to the COOH-terminal domain of dystrophin, and α1-syntrophin (α1Syn) as the principal component of the DAPC, are strongly expressed in the brain. To clarify their involvement in the central control of osmotic homeostasis, we investigated the effect of 14 days of salt loading (with drinking water containing 2% NaCl) and then reversibly to 30 days of normal hydration (with drinking water without salt), first on the expression by western-blotting and the distribution by immunochemistry of Dp71 and α1Syn in the SON of the rat and, second, on the level of some physiological parameters, as the plasma osmolality, natremia and hematocrit. Dp71 is the most abundant form of dystrophin revealed in the supraoptic nucleu (SON) of control rat. Dp71 was localized in magnocellular neurons (MCNs) and astrocytes, when α1Syn was observed essentially in astrocytes end feet. After 14 days of salt-loading, Dp71 and α1Syn signals decreased and a dual signal for these two proteins was revealed in the astrocytes processes SON surrounding blood capillaries. In addition, salt loading leads to an increase in plasma osmolality, natremia and hematocrit. Reversibly, after 30 days of normal hydration, the intensity of the signal for the two proteins, Dp71 and α1Syn, increased and approached that of control. Furtheremore, the levels of the physiological parameters decreased and approximated those of control. This suggests that Dp71 and α1Syn may be involved in the functional activity of the SON. Their localization in astrocyte end feet emphasizes their importance in neuronal-vascular-astrocyte interactions for the central detection of osmolality. In the SON, Dp71 and α1Syn may be involved in osmosensitivity.


Asunto(s)
Proteínas de Unión al Calcio/farmacología , Distrofina/farmacología , Proteínas de la Membrana/farmacología , Proteínas Musculares/farmacología , Núcleo Supraóptico/efectos de los fármacos , Agua/química , Animales , Astrocitos/química , Proteínas de Unión al Calcio/química , Distrofina/química , Electroforesis , Immunoblotting , Proteínas de la Membrana/química , Proteínas Musculares/química , Estado de Hidratación del Organismo , Ratas , Ratas Wistar , Estándares de Referencia , Cloruro de Sodio/química , Núcleo Supraóptico/química , Vasopresinas/química
7.
Arch Phys Med Rehabil ; 90(1): 66-73, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19154831

RESUMEN

OBJECTIVES: To evaluate the effect of functional overloading on the transplantation of muscle derived stem cells (MDSCs) into dystrophic muscle and the ability of transplanted cells to increase dystrophic muscle's ability to resist overloading-induced weakness. DESIGN: Cross-sectional. SETTING: Laboratory. ANIMALS: Male mice (N=10) with a dystrophin gene mutation. INTERVENTIONS: MDSCs were intramuscularly transplanted into the extensor digitorum longus muscle (EDL). Functional overloading of the EDL was performed by surgical ablation of the EDL's synergist. MAIN OUTCOME MEASURES: The total number of dystrophin-positive fibers/cross-section (as a measure of stem cell engraftment), the average number of CD31+ cells (as a measure of capillarity), and in vitro EDL contractile strength. Independent t tests were used to investigate the effect of overloading on engraftment, capillarity, and strength. Paired t tests were used to investigate the effect of MDSC engraftment on strength and capillarity. RESULTS: MDSC transplantation protects dystrophic muscles against overloading-induced weakness (specific twitch force: control 4.5N/cm2+/-2.3; MDSC treated 7.9N/cm2+/-1.4) (P=.02). This improved force production following overloading is concomitant with an increased regeneration by transplanted MDSCs (MDSC: 26.6+/-20.2 dystrophin-positive fibers/cross-section; overloading + MDSC: 170.6+/-130.9 dystrophin-positive fibers/cross-section [P=.03]). Overloading-induced increases in skeletal muscle capillarity is significantly correlated with increased MDSC engraftment (R2=.80, P=.01). CONCLUSIONS: These findings suggest that the functional contribution of transplanted MDSCs may rely on activity-dependent mechanisms, possibly mediated by skeletal muscle vascularity. Rehabilitation modalities may play an important role in the development of stem cell transplantation strategies for the treatment of muscular dystrophy.


Asunto(s)
Modelos Animales de Enfermedad , Distrofina/farmacología , Contracción Muscular/fisiología , Fibras Musculares Esqueléticas/efectos de los fármacos , Distrofia Muscular Animal/terapia , Trasplante de Células Madre , Animales , Células Cultivadas , Distrofina/administración & dosificación , Distrofina/deficiencia , Masculino , Ratones
8.
Neuroreport ; 8(9-10): 2383-7, 1997 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-9243645

RESUMEN

Dystrophin, the protein altered in Duchenne muscular dystrophy (DMD), is necessary for normal retinal function and exists in several isoforms. We examined the expression of dystrophin and utrophin proteins and transcripts in the rat retina at different developmental stages using Western blots and semi-quantitative RT-PCR. Our results revealed the presence of utrophin (DRP1), G-utrophin and/or DRP2 and four dystrophin isoforms (Dp427, Dp260, Dp140, Dp71) in the normal adult rat retina. Only Dp260 showed a marked progressive increase with age at both protein and mRNA levels. This variation is consistent with the establishment of synaptic functions in the developing retina and suggests a key role for this apo-dystrophin in synaptogenesis.


Asunto(s)
Distrofina/metabolismo , Distrofina/farmacología , Terminales Presinápticos/metabolismo , Retina/crecimiento & desarrollo , Animales , Anticuerpos Monoclonales , Secuencia de Bases , Western Blotting , Proteínas del Citoesqueleto/metabolismo , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Retina/metabolismo , Estereoisomerismo , Utrofina
9.
Biochem Biophys Res Commun ; 215(1): 67-74, 1995 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-7575626

RESUMEN

The expression of dystrophin can be suppressed in cultured skeletal muscle cells (coded L-185 from rat, and C2 from mouse) after a proper genetic manipulation. The influence of presence or absence of dystrophin on the lateral diffusion constant of Con-A-receptors was studied in the cell membrane of such cells (and also of mature skeletal muscle fibres of rat and mouse) by means of the fluorescence recovery after photobleaching (FRAP) technique, applying a novel fluorescent label called Con-A-BODIPY-FI conjugate. It has been established that the normal maturation, of myoblasts into skeletal muscle fibres involves a significant decrease of the mobility of Con-A receptors in the sarcolemma. In the absence of dystrophin, this maturation process cannot take place; the membrane proteins display an increasing mobility during the culture time, which is of lethal effect for these cells.


Asunto(s)
Distrofina/farmacología , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Receptores de Concanavalina A/metabolismo , Sarcolema/metabolismo , Animales , Compuestos de Boro , Línea Celular , Embrión de Pollo , Concanavalina A , Difusión , Colorantes Fluorescentes , Masculino , Ratones , Fotoquímica , Ratas , Ratas Endogámicas F344
10.
Nat Genet ; 8(4): 340-4, 1994 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-7894483

RESUMEN

Dp71 is a non-muscle product of the Duchenne muscular dystrophy gene. It consists of the cysteine-rich and C-terminal domains of dystrophin. We have generated transgenic mdx mice which do not have dystrophin but express Dp71 in their muscle. In these mice, Dp71 was localized to the plasma membrane and restored normal levels of dystrophin associated proteins (DAPs), indicating that Dp71 is capable of interacting with the DAPs in a similar manner to dystrophin. However, the presence of Dp71 and DAPs in the muscle fibres of mdx mice was not sufficient to alleviate symptoms of muscle degeneration.


Asunto(s)
Distrofina/análogos & derivados , Distrofina/metabolismo , Proteínas Musculares/metabolismo , Distrofias Musculares/metabolismo , Animales , Modelos Animales de Enfermedad , Distrofina/farmacología , Femenino , Masculino , Ratones , Ratones Transgénicos , Músculo Esquelético/patología , Distrofias Musculares/genética , Distrofias Musculares/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...