Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.300
1.
Development ; 151(10)2024 May 15.
Article En | MEDLINE | ID: mdl-38682291

The planar polarized organization of hair cells in the vestibular maculae is unique because these sensory organs contain two groups of cells with oppositely oriented stereociliary bundles that meet at a line of polarity reversal (LPR). EMX2 is a transcription factor expressed by one hair cell group that reverses the orientation of their bundles, thereby forming the LPR. We generated Emx2-CreERt2 transgenic mice for genetic lineage tracing and demonstrate Emx2 expression before hair cell specification when the nascent utricle and saccule constitute a continuous prosensory domain. Precursors labeled by Emx2-CreERt2 at this stage give rise to hair cells located along one side of the LPR in the mature utricle or saccule, indicating that this boundary is first established in the prosensory domain. Consistent with this, Emx2-CreERt2 lineage tracing in Dreher mutants, where the utricle and saccule fail to segregate, labels a continuous field of cells along one side of a fused utriculo-saccular-cochlear organ. These observations reveal that LPR positioning is pre-determined in the developing prosensory domain, and that EMX2 expression defines lineages of hair cells with oppositely oriented stereociliary bundles.


Cell Lineage , Cell Polarity , Ear, Inner , Homeodomain Proteins , Mice, Transgenic , Transcription Factors , Animals , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Mice , Cell Lineage/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Ear, Inner/metabolism , Ear, Inner/embryology , Ear, Inner/cytology , Cell Polarity/genetics , Saccule and Utricle/cytology , Saccule and Utricle/metabolism , Saccule and Utricle/embryology , Gene Expression Regulation, Developmental , Hair Cells, Auditory/metabolism , Hair Cells, Auditory/cytology
2.
Article Zh | MEDLINE | ID: mdl-38677986

Objective: To explore the mechanism of noise-induced hidden hearing loss by proteomics. Methods: In October 2022, 64 SPF male C57BL/6J mice were divided into control group and noise exposure group with 32 mice in each group according to random sampling method. The noise exposure group was exposed to 100 dB sound pressure level, 2000-16000 Hz broadband noise for 2 h, and the mouse hidden hearing loss model was established. Auditory brainstem response (ABR) was used to test the change of hearing threshold of mice on the 7th day after noise exposure, the damage of basal membrane hair cells was observed by immunofluorescence, and the differentially expressed proteins in the inner ear of mice in each group were identified and analyzed by 4D-Label-free quantitative proteomics, and verified by Western blotting. The results were statistically analyzed by ANOVA and t test. Results: On the 7th day after noise exposure, there was no significant difference in hearing threshold between the control group and the noise exposure group at click and 8000 Hz acoustic stimulation (P>0.05) . The hearing threshold in the noise exposure group was significantly higher than that in the control group under 16000 Hz acoustic stimulation (P<0.05) . Confocal immunofluorescence showed that the basal membrane hair cells of cochlear tissue in noise exposure group were arranged neatly, but the relative expression of C-terminal binding protein 2 antibody of presynaptic membrane in middle gyrus and basal gyrus was significantly lower than that in control group (P<0.05) . GO enrichment analysis showed that the functions of differentially expressed proteins were mainly concentrated in membrane potential regulation, ligand-gated channel activity, and ligand-gated ion channel activity. KEGG pathway enrichment analysis showed that differentially expressed proteins were significantly enriched in phosphatidylinositol 3 kinase-protein kinase B (PI3K-Akt) signaling pathway, NOD-like receptor signaling pathway, calcium signaling pathway, etc. Western blotting showed that the expression of inositol 1, 4, 5-trisphosphate receptor 3 (Itpr3) was increased and the expression of solute carrier family 38 member 2 (Slc38a2) was decreased in the noise exposure group (P<0.05) . Conclusion: Through proteomic analysis, screening and verification of the differential expression proteins Itpr3 and Slc38a2 in the constructed mouse noise-induced hidden hearing loss model, the glutaminergic synaptic related pathways represented by Itpr3 and Slc38a2 may be involved in the occurrence of hidden hearing loss.


Evoked Potentials, Auditory, Brain Stem , Hearing Loss, Noise-Induced , Mice, Inbred C57BL , Noise , Proteomics , Animals , Mice , Hearing Loss, Noise-Induced/metabolism , Hearing Loss, Noise-Induced/physiopathology , Male , Noise/adverse effects , Disease Models, Animal , Auditory Threshold , Ear, Inner/metabolism , Hearing Loss, Hidden
3.
J Vis Exp ; (204)2024 Feb 23.
Article En | MEDLINE | ID: mdl-38465931

Efficient and minimally invasive drug delivery to the inner ear is a significant challenge. The round window membrane (RWM), being one of the few entry points to the inner ear, has become a vital focus of investigation. However, due to the complexities of isolating the RWM, our understanding of its pharmacokinetics remains limited. The RWM comprises three distinct layers: the outer epithelium, the middle connective tissue layer, and the inner epithelial layer, each potentially possessing unique delivery properties. Current models for investigating transport across the RWM utilize in vivo animal models or ex vivo RWM models which rely on cell cultures or membrane fragments. Guinea pigs serve as a validated preclinical model for the investigation of drug pharmacokinetics within the inner ear and are an important animal model for the translational development of delivery vehicles to the cochlea. In this study, we describe an approach for explantation of a guinea pig RWM with surrounding cochlear bone for benchtop drug delivery experiments. This method allows for preservation of native RWM architecture and may provide a more realistic representation of barriers to transport than current benchtop models.


Ear, Inner , Round Window, Ear , Guinea Pigs , Animals , Round Window, Ear/surgery , Ear, Inner/metabolism , Cochlea , Drug Delivery Systems , Models, Animal
4.
Colloids Surf B Biointerfaces ; 237: 113855, 2024 May.
Article En | MEDLINE | ID: mdl-38513298

Local drug delivery has been exploited recently to treat hearing loss, as this method can both bypass the blood-labyrinth barrier and provide sustained drug release. Combined drug microcrystals (MCs) offer additional advantages for sensorineural hearing loss treatment via intratympanic (IT) injection due to their shape effect and combination strategy. In this study, to endow viscous effects of hydrogels, nonspherical dexamethasone (DEX) and lipoic acid (LA) MCs were incorporated into silk fibroin (SF) hydrogels, which were subsequently administered to the tympanic cavity to investigate their pharmaceutical properties. First, we prepared DEX and LA MCs by a traditional precipitation technique followed by SF hydrogel incorporation (SF+DEX+LA). After characterization of the physicochemical features, including morphology, rheology, and dissolution, both a suspension of combined DEX and LA MCs (DEX+LA) and SF+DEX+LA were administered to guinea pigs by IT injection, after which the pharmacokinetics, biodegradation and biocompatibility were evaluated. To our surprise, compared to the DEX+LA group, the pharmacokinetics of the SF+DEX+LA hydrogel group did not improve significantly, which may be ascribed to their nonspherical shape and deposition effects of the drugs MCs. The cochlear tissue in each group displayed good morphology, with no obvious inflammatory reactions. This combined MC suspension has the clear advantages of no vehicle, easy scale-up preparation, and good biocompatibility and outcomes, which paves the way for practical treatment of hearing loss via local drug delivery.


Ear, Inner , Fibroins , Hearing Loss , Thioctic Acid , Animals , Guinea Pigs , Hydrogels/chemistry , Thioctic Acid/pharmacology , Dexamethasone , Silk/metabolism , Ear, Inner/metabolism , Hearing Loss/drug therapy , Hearing Loss/metabolism , Fibroins/pharmacology
5.
Sci Rep ; 14(1): 3038, 2024 02 06.
Article En | MEDLINE | ID: mdl-38321040

The stria vascularis (SV) is a stratified epithelium in the lateral wall of the mammalian cochlea, responsible for both endolymphatic ion homeostasis and generation of the endocochlear potential (EP) critical for normal hearing. The SV has three layers consisting predominantly of basal, intermediate, and marginal cells. Intermediate and marginal cells form an intricate interdigitated network of cell projections making discrimination of the cells challenging. To enable intermediate cell visualization, we engineered by BAC transgenesis, reporter mouse lines expressing ZsGreen fluorescent protein under the control of Kcnj10 promoter and regulatory sequences. Kcnj10 encodes KCNJ10 protein (also known as Kir4.1 or Kir1.2), an ATP-sensitive inwardly-rectifying potassium channel critical to EP generation, highly expressed in SV intermediate cells. In these transgenic mice, ZsGreen fluorescence mimics Kcnj10 endogenous expression in the cochlea and was detected in the intermediate cells of the SV, in the inner phalangeal cells, Hensen's, Deiters' and pillar cells, in a subset of spiral ganglion neurons, and in glial cells. We show that expression of the transgene in hemizygous mice does not alter auditory function, nor EP. These transgenic Tg(Kcnj10-ZsGreen) mice allow live and fixed tissue visualization of ZsGreen-expressing intermediate cells and will facilitate future studies of stria vascularis cell function.


Ear, Inner , Potassium Channels, Inwardly Rectifying , Animals , Mice , Stria Vascularis/metabolism , Potassium Channels, Inwardly Rectifying/metabolism , Cochlea/metabolism , Ear, Inner/metabolism , Mice, Transgenic , Mammals/metabolism
6.
Int J Mol Sci ; 25(3)2024 Feb 01.
Article En | MEDLINE | ID: mdl-38339024

Nucleotide excision repair (NER) is a multistep biochemical process that maintains the integrity of the genome. Unlike other mechanisms that maintain genomic integrity, NER is distinguished by two irreversible nucleolytic events that are executed by the xeroderma pigmentosum group G (XPG) and xeroderma pigmentosum group F (XPF) structure-specific endonucleases. Beyond nucleolysis, XPG and XPF regulate the overall efficiency of NER through various protein-protein interactions. The current experiments evaluated whether an environmental stressor could negatively affect the expression of Xpg (Ercc5: excision repair cross-complementing 5) or Xpf (Ercc4: excision repair cross-complementing 4) in the mammalian cochlea. Ubiquitous background noise was used as an environmental stressor. Gene expression levels for Xpg and Xpf were quantified from the cochlear neurosensory epithelium after noise exposure. Further, nonlinear cochlear signal processing was investigated as a functional consequence of changes in endonuclease expression levels. Exposure to stressful background noise abrogated the expression of both Xpg and Xpf, and these effects were associated with pathological nonlinear signal processing from receptor cells within the mammalian inner ear. Given that exposure to environmental sounds (noise, music, etc.) is ubiquitous in daily life, sound-induced limitations to structure-specific endonucleases might represent an overlooked genomic threat.


Ear, Inner , Xeroderma Pigmentosum , Animals , Endonucleases/genetics , Endonucleases/metabolism , Ear, Inner/metabolism , DNA Repair , Mammals/genetics , Mammals/metabolism
7.
Curr Drug Targets ; 25(3): 158-170, 2024.
Article En | MEDLINE | ID: mdl-38192136

Bile acids play important roles in the human body, and changes in their pool can be used as markers for various liver pathologies. In addition to their functional effects in modulating inflammatory responses and cellular survivability, the unconjugated or conjugated, secondary, or primary nature of bile acids accounts for their various ligand effects. The common hydrophilic bile acids have been used successfully as local treatment to resolve drug-induced cell damage or to ameliorate hearing loss. From various literature references, bile acids show concentration and tissue-dependent effects. Some hydrophobic bile acids act as ligands modulating vitamin D receptors, muscarinic receptors, and calcium-activated potassium channels, important proteins in the inner ear system. Currently, there are limited resources investigating the therapeutic effects of bile acid on hearing loss and little to no information on detecting bile acids in the remote ear system, let alone baseline bile acid levels and their prevalence in healthy and disease conditions. This review presents both hydrophilic and hydrophobic human bile acids and their tissue-specific effects in modulating cellular integrity, thus considering the possible effects and extended therapeutic applicability of bile acids to the inner ear tissue.


Bile Acids and Salts , Hearing Loss , Animals , Humans , Bile Acids and Salts/metabolism , Bile Acids and Salts/therapeutic use , Ear, Inner/drug effects , Ear, Inner/metabolism , Hearing/drug effects , Hearing Loss/drug therapy , Hydrophobic and Hydrophilic Interactions , Ligands , Receptors, Calcitriol/metabolism , Receptors, Muscarinic/metabolism
8.
J Pharm Pharmacol ; 76(4): 295-306, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38206827

OBJECTIVES: Biochemical alterations due to diabetes development and progress are complex and diabetes-associated injury to various tissues has been well reported. Nevertheless, a close investigation of the literature demonstrates limited coverage regarding these biochemical and molecular alterations within the inner ear and their impact on the vestibulocochlear environment. A closer look at these may reveal pharmacological targets that could alleviate the severity of disease in patients. KEY FINDINGS: Tight control of glucose levels within the highly metabolic inner ear structures is crucial for their physiology and function. Impaired glucose homeostasis is well known to occur in vestibulocochlear malfunctioning. Moreover, the involvement of insulin signalling, and glucose transporters were recently confirmed in vestibulocochlear structures and are believed to play a crucial role in auditory and vestibular functions. CONCLUSION: Oxidative overload, glucolipotoxicity, perturbed blood rheology, endothelial dysfunction, compromised microvascular supply, and neurotoxicity are reported in many diabetic complications such as nephropathy, retinopathy, and diabetic neuropathy and are incriminated in the disruption of blood labyrinth barrier as well as vestibulocochlear neuritis. Dysfunctional insulin signalling was recently reported in the Organ of Corti. Insulin resistance in the inner ear niche warrants further studies to verify and uncover new pharmacological targets to manage this debilitating condition better.


Diabetes Mellitus , Ear, Inner , Hearing Loss , Insulins , Humans , Ear, Inner/metabolism , Hearing Loss/drug therapy , Hearing Loss/etiology , Hearing Loss/metabolism , Diabetes Mellitus/drug therapy , Diabetes Mellitus/metabolism , Insulins/metabolism , Glucose/metabolism
9.
Hear Res ; 442: 108950, 2024 Feb.
Article En | MEDLINE | ID: mdl-38218017

Countless therapeutic antibodies are currently available for the treatment of a broad range of diseases. Some target molecules of therapeutic antibodies are involved in the pathogenesis of sensorineural hearing loss (SNHL), suggesting that SNHL may be a novel target for monoclonal antibody (mAb) therapy. When considering mAb therapy for SNHL, understanding of the pharmacokinetics of mAbs after local application into the middle ear is crucial. To reveal the fundamental characteristics of mAb pharmacokinetics following local application into the middle ear of guinea pigs, we performed pharmacokinetic analyses of mouse monoclonal antibodies to FLAG-tag (FLAG-mAbs), which have no specific binding sites in the middle and inner ear. FLAG-mAbs were rapidly transferred from the middle ear to the cochlear fluid, indicating high permeability of the round window membrane to mAbs. FLAG-mAbs were eliminated from the cochlear fluid 3 h after application, similar to small molecules. Whole-body autoradiography and quantitative assessments of cerebrospinal fluid and serum demonstrated that the biodistribution of FLAG-mAbs was limited to the middle and inner ear. Altogether, the pharmacokinetics of mAbs are similar to those of small molecules when locally applied into the middle ear, suggesting the necessity of drug delivery systems for appropriate mAb delivery to the cochlear fluid after local application into the middle ear.


Ear, Inner , Hearing Loss, Sensorineural , Mice , Guinea Pigs , Animals , Antibodies, Monoclonal/metabolism , Tissue Distribution , Ear, Inner/metabolism , Cochlea/metabolism , Ear, Middle , Round Window, Ear/metabolism , Hearing Loss, Sensorineural/metabolism
10.
Nat Commun ; 15(1): 526, 2024 Jan 16.
Article En | MEDLINE | ID: mdl-38228630

The inner ear is the hub where hair cells (HCs) transduce sound, gravity, and head acceleration stimuli to the brain. Hearing and balance rely on mechanosensation, the fastest sensory signals transmitted to the brain. The mechanoelectrical transducer (MET) channel is the entryway for the sound-balance-brain interface, but the channel-complex composition is not entirely known. Here, we report that the mouse utilizes Piezo1 (Pz1) and Piezo2 (Pz2) isoforms as MET-complex components. The Pz channels, expressed in HC stereocilia, and cell lines are co-localized and co-assembled with MET complex partners. Mice expressing non-functional Pz1 and Pz2 at the ROSA26 locus have impaired auditory and vestibular traits that can only be explained if the Pzs are integral to the MET complex. We suggest that Pz subunits constitute part of the MET complex and that interactions with other MET complex components yield functional MET units to generate HC MET currents.


Ear, Inner , Hair Cells, Auditory, Inner , Animals , Mice , Hair Cells, Auditory, Inner/metabolism , Hair Cells, Auditory/metabolism , Stereocilia/metabolism , Ear, Inner/metabolism , Hearing , Mechanotransduction, Cellular , Mammals/metabolism , Ion Channels/genetics , Ion Channels/metabolism
11.
Tissue Eng Part A ; 30(3-4): 131-143, 2024 02.
Article En | MEDLINE | ID: mdl-37917115

The development of in vitro models that accurately recapitulate the complex cellular and molecular interactions of the inner ear is crucial for understanding inner ear development, function, and disease. In this study, we utilized a customized microfluidic platform to generate human induced pluripotent stem cell (hiPSC)-derived three-dimensional otic sensory neurons (OSNs). hiPSC-derived otic neuronal progenitors (ONPs) were cultured in hydrogel-embedded microfluidic channels over a 40-day period. Careful modulation of Wnt and Shh signaling pathways was used to influence dorsoventral patterning and direct differentiation toward a vestibular neuron lineage. After validating the microfluidic platform, OSN spheroid transcription factor and protein expression were assessed using real-time quantitative polymerase chain reaction (RT-qPCR), immunocytochemistry, and flow cytometry. The results demonstrated the successful differentiation of hiPSCs into ONPs and subsequent divergent differentiation into vestibular neuronal lineages, as evidenced by the expression of characteristic markers. Overall, our microfluidic platform provides a physiologically relevant environment for the culture and differentiation of hiPSCs, offering a valuable tool for studying inner ear development, disease and drug screening, and regenerative medicine applications.


Ear, Inner , Induced Pluripotent Stem Cells , Humans , Ear, Inner/metabolism , Neurons , Cell Differentiation/physiology , Gene Expression Regulation
12.
Biochem Biophys Res Commun ; 687: 149172, 2023 12 20.
Article En | MEDLINE | ID: mdl-37931421

OBJECTIVE: The study aimed to observe the effects of noise exposure on the pericytes of the cochlear stria vascularis (SV) in mice and to investigate its molecular mechanism. METHOD: Male C57BL/6J mice aged 6-8 weeks were used as the subjects. Auditory Brainstem Response (ABR) was used to assess hearing loss. Hematoxylin and Eosin (HE) staining was conducted to observe morphological alterations in the SV. Immunofluorescence combined with transmission electron microscopy (TEM) was used to scrutinize changes in pericytes following acoustic injury. Western blotting (WB) was used to assess the expression variations of the migration-related protein Osteopontin (OPN). Evans Blue assay was performed to evaluate the permeability of the blood labyrinth barrier (BLB). 4-Hydroxynonenal (4-HNE) staining, in conjunction with measurements of Superoxide Dismutase (SOD), Malondialdehyde (MDA), and Catalase (CAT) content, was used to ascertain whether oxidative stress injury occurred in the SV. WB, combined with immunofluorescence, was used to examine alterations in the expression of proliferator-activated receptor-gamma coactivator 1α (PGC-1α) in the SV and pericytes. RESULTS: Noise exposure resulted in permanent hearing loss in C57BL/6J mice, accompanied by SV swelling, migration of pericytes from their vascular attachments, BLB leakage, elevated oxidative stress levels in the SV, and reduced expression of PGC-1α on both the SV and migrating pericytes. CONCLUSION: Noise exposure may potentially increase oxidative stress levels in the SV, downregulate the expression levels of PGC-1α, promote pericytes migration, and subsequently lead to an elevation in BLB permeability.


Deafness , Ear, Inner , Hearing Loss, Noise-Induced , Animals , Humans , Male , Mice , Cochlea/metabolism , Deafness/metabolism , Ear, Inner/metabolism , Hearing Loss, Noise-Induced/metabolism , Mice, Inbred C57BL , Pericytes/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism
13.
Development ; 150(21)2023 Nov 01.
Article En | MEDLINE | ID: mdl-37938828

Cranial ganglia are aggregates of sensory neurons that mediate distinct types of sensation. The statoacoustic ganglion (SAG) develops into several lobes that are spatially arranged to connect appropriately with hair cells of the inner ear. To investigate the cellular behaviours involved in the 3D organization of the SAG, we use high-resolution confocal imaging of single-cell, labelled zebrafish neuroblasts (NBs), photoconversion, photoablation, and genetic perturbations. We show that otic NBs delaminate out of the otic epithelium in an epithelial-mesenchymal transition-like manner, rearranging apical polarity and primary cilia proteins. We also show that, once delaminated, NBs require RhoGTPases in order to perform active migration. Furthermore, tracking of recently delaminated NBs revealed their directed migration and coalescence around a small population of pioneer SAG neurons. These pioneer SAG neurons, not from otic placode origin, populate the coalescence region before otic neurogenesis begins and their ablation disrupts delaminated NB migratory pathways, consequentially affecting SAG shape. Altogether, this work shows for the first time the role of pioneer SAG neurons in orchestrating SAG development.


Ear, Inner , Zebrafish , Animals , Zebrafish/genetics , Cell Differentiation/genetics , Ear, Inner/metabolism , Hair Cells, Auditory/physiology , Sensory Receptor Cells
14.
Development ; 150(19)2023 10 01.
Article En | MEDLINE | ID: mdl-37796037

Inner ear development requires the coordination of cell types from distinct epithelial, mesenchymal and neuronal lineages. Although we have learned much from animal models, many details about human inner ear development remain elusive. We recently developed an in vitro model of human inner ear organogenesis using pluripotent stem cells in a 3D culture, fostering the growth of a sensorineural circuit, including hair cells and neurons. Despite previously characterizing some cell types, many remain undefined. This study aimed to chart the in vitro development timeline of the inner ear organoid to understand the mechanisms at play. Using single-cell RNA sequencing at ten stages during the first 36 days of differentiation, we tracked the evolution from pluripotency to various ear cell types after exposure to specific signaling modulators. Our findings showcase gene expression that influences differentiation, identifying a plethora of ectodermal and mesenchymal cell types. We also discern aspects of the organoid model consistent with in vivo development, while highlighting potential discrepancies. Our study establishes the Inner Ear Organoid Developmental Atlas (IODA), offering deeper insights into human biology and improving inner ear tissue differentiation.


Ear, Inner , Animals , Humans , Ear, Inner/metabolism , Hair Cells, Auditory , Organoids , Cells, Cultured , Cell Differentiation/genetics
15.
Sci Rep ; 13(1): 12573, 2023 08 03.
Article En | MEDLINE | ID: mdl-37537240

It has previously been shown that the zinc-finger transcription factor Gata3 has dynamic expression within the inner ear throughout embryonic development and is essential for cochlear neurosensory development. However, the temporal window for which Gata3 is required for proper formation of the cochlear neurosensory epithelia remains unclear. To investigate the role of Gata3 in cochlear neurosensory development in the late prosensory stages, we used the Sox2-creERT2 mouse line to target and conditionally delete Gata3 at E11.5, a timepoint before cells have fully committed to a neurosensory fate. While the inner ears of Sox2-creERT2: Gata3 f/f mice appear normal with no gross structural defects, the sensory cells in the organ of Corti are partially lost and disorganized in an increasing severity from base to apex. Additionally, spiral ganglion neurons display aberrant peripheral projections, including increased distances between radial bundles and disorganization upon reaching the organ of Corti. Furthermore, heterozygous Sox2-creERT2: Gata3 f/+ mice show a reduced aberrant phenotype in comparison to the homozygous mutant, supporting the hypothesis that Gata3 is not only required for proper formation at the later proneurosensory stage, but also that a specific expression level of Gata3 is required. Therefore, this study provides evidence that Gata3 plays a time-sensitive and dose-dependent role in the development of sensory and neuronal cells in late proneurosensory stages.


Ear, Inner , GATA3 Transcription Factor , Animals , Mice , GATA3 Transcription Factor/genetics , GATA3 Transcription Factor/metabolism , Mice, Knockout , Ear, Inner/metabolism , Cochlea/metabolism , Epithelium/metabolism , Gene Expression Regulation, Developmental
16.
Genes (Basel) ; 14(7)2023 06 28.
Article En | MEDLINE | ID: mdl-37510276

BACKGROUND: In vertebrates, the development of the inner ear is a delicate process, whereas its relating molecular pathways are still poorly understood. LMO4, an LIM domain-only transcriptional regulator, is drawing an increasing amount of interest for its multiple roles regarding human embryonic development and the modulation of ototoxic side effects of cisplatin including cochlear apoptosis and hearing loss. The aim of the present study is to further explore the role of lmo4a in zebrafish inner ear development and thus explore its functional role. METHODS: The Spatial Transcript Omics DataBase was referred to in order to evaluate the expression of lmo4a during the first 24 h of zebrafish development. In situ hybridization was applied to validate and extend the expression profile of lmo4a to 3 days post-fertilization. The morpholino (MO) knockdown and CRISPR/Cas9 knockout (KO) of lmo4a was applied. Morphological analyses of otic vesical, hair cells, statoacoustic ganglion and semicircular canals were conducted. The swimming pattern of lmo4a KO and MO zebrafish was tracked. In situ hybridization was further applied to verify the expression of genes of the related pathways. Rescue of the phenotype was attempted by blockage of the bmp pathway via heat shock and injection of Dorsomorphin. RESULTS: lmo4a is constitutively expressed in the otic placode and otic vesicle during the early stages of zebrafish development. Knockdown and knockout of lmo4a both induced smaller otocysts, less hair cells, immature statoacoustic ganglion and malformed semicircular canals. Abnormal swimming patterns could be observed in both lmo4a MO and KO zebrafish. eya1 in preplacodal ectoderm patterning was downregulated. bmp2 and bmp4 expressions were found to be upregulated and extended in lmo4a morphants, and blockage of the Bmp pathway partially rescued the vestibular defects. CONCLUSIONS: We concluded that lmo4a holds a regulative effect on the Bmp pathway and is required for the normal development of zebrafish inner ear. Our study pointed out the conservatism of LMO4 in inner ear development between mammals and zebrafish as well as shed more light on the molecular mechanisms behind it. Further research is needed to distinguish the relationships between lmo4 and the Bmp pathway, which may lead to diagnostic and therapeutic approaches towards human inner ear malformation.


Ear, Inner , Zebrafish , Animals , Adaptor Proteins, Signal Transducing/metabolism , Cochlea/metabolism , Ear, Inner/metabolism , Hair Cells, Auditory/metabolism , LIM Domain Proteins/genetics , Mammals/metabolism , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
17.
Int J Mol Sci ; 24(11)2023 May 26.
Article En | MEDLINE | ID: mdl-37298241

TRPC channels are critical players in cochlear hair cells and sensory neurons, as demonstrated in animal experiments. However, evidence for TRPC expression in the human cochlea is still lacking. This reflects the logistic and practical difficulties in obtaining human cochleae. The purpose of this study was to detect TRPC6, TRPC5 and TRPC3 in the human cochlea. Temporal bone pairs were excised from ten body donors, and the inner ear was first assessed based on computed tomography scans. Decalcification was then performed using 20% EDTA solutions. Immunohistochemistry with knockout-tested antibodies followed. The organ of Corti, the stria vascularis, the spiral lamina, spiral ganglion neurons and cochlear nerves were specifically stained. This unique report of TRPC channels in the human cochlea supports the hypothesis of the potentially critical role of TRPC channels in human cochlear health and disease which has been suggested in previous rodent experiments.


Cochlea , Ear, Inner , Animals , Humans , Immunohistochemistry , Cochlea/metabolism , Ear, Inner/metabolism , Stria Vascularis/metabolism , Hearing
18.
Biol Open ; 12(6)2023 06 15.
Article En | MEDLINE | ID: mdl-37272628

The vertebrate inner ear is the sensory organ mediating hearing and balance. The entire organ develops from the otic placode, which itself originates from the otic-epibranchial progenitor domain (OEPD). Multiple studies in various species have shown the importance of the forkhead-box and distal-less homeodomain transcription factor families for OEPD and subsequent otic placode formation. However, the transcriptional networks downstream of these factors are only beginning to be understood. Using transcriptome analysis, we here reveal numerous genes regulated by the distal-less homeodomain transcription factors Dlx3b and Dlx4b (Dlx3b/4b). We identify known and novel transcripts displaying widespread OEPD expression in a Dlx3b/4b-dependent manner. Some genes, with a known OEPD expression in other vertebrate species, might be members of a presumptive vertebrate core module required for proper otic development. Moreover, we identify genes controlling early-born sensory hair cell formation as well as regulating biomineral tissue development, both consistent with defective sensory hair cell and otolith formation observed in dlx3b/4b mutants. Finally, we show that ectopic Atoh1b expression can rescue early sensorigenesis even in the absence of Dlx3b/4b. Taken together, our data will help to unravel the gene regulatory network underlying early inner ear development and provide insights into the molecular control of vertebrate inner ear formation to restore hearing loss in humans ultimately.


Ear, Inner , Zebrafish , Animals , Humans , Ear, Inner/metabolism , Gene Expression Profiling , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/genetics
20.
Dev Dyn ; 252(10): 1269-1279, 2023 10.
Article En | MEDLINE | ID: mdl-37171017

BACKGROUND: The vertebrate inner ear contains distinct sensory epithelia specialized for auditory or vestibular function. In zebrafish, the first sensory epithelia form at opposite ends of the otic vesicle and are functionally distinct: the anterior utricular macula is essential for vestibular function whereas the posterior saccular macula is critical for hearing. Mechanisms distinguishing these maculae are not clear. Here, we examined the effects of manipulating Fgf or Hh on expression of pax5 and pou3f3b, unique markers of utricular and saccular identity. We also examined the roles of pax2a and atoh1a/b, early regulators of sensory specification. RESULTS: fgf3 and fgf8a were uniquely required for pax5 and pou3f3b, respectively. Elevating Fgf or blocking Hh expanded expression of pax5 but repressed pou3f3b, while blocking Fgf had the opposite effect. Blocking sensory specification did not affect pax5 or pou3f3b, but both markers were lost in pax2a-/- mutants. Maintenance of pax2a expression requires Fgf, Hh and Pax2a itself. CONCLUSION: Specification of utricular identity requires high Fgf and is repressed by Hh, whereas saccular identity requires Hh plus low Fgf. pax2a acts downstream of Fgf and Hh to maintain both fates. Comparison with mouse suggests this may reflect a broadly conserved developmental mechanism.


Ear, Inner , Zebrafish , Animals , Mice , Ear, Inner/metabolism , Hearing , PAX2 Transcription Factor/genetics , PAX2 Transcription Factor/metabolism , Zebrafish/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Fibroblast Growth Factor 1 , Hedgehog Proteins , Fibroblast Growth Factors
...