Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.646
1.
BMC Genomics ; 25(1): 451, 2024 May 07.
Article En | MEDLINE | ID: mdl-38714919

BACKGROUND: Sturgeon species are living fossils that exhibit unique reproductive characteristics, and elucidation of the molecular processes governing the formation and quality of sturgeon eggs is crucial. However, comprehensive data on the protein composition of sturgeon ovarian fluid (OF) and eggs and their functional significance are lacking. To address this knowledge gap, the aim of the present study was to conduct a comprehensive comparative proteomic analysis of Siberian sturgeon OF and eggs using liquid chromatography-mass spectrometry (LC-MS/MS). RESULTS: A total of 617 proteins were identified in OF, and 565 proteins were identified in eggs. A total of 772 proteins showed differential abundance. Among the differentially abundant proteins, 365 were more abundant in OFs, while 407 were more abundant in eggs. We identified 339 proteins unique to OFs and 287 proteins specific to eggs, and further investigated the top 10 most abundant proteins in each. The functional annotation of the OF proteins highlighted their predominant association with immune system processes, including the complement and coagulation cascade, neutrophil and leukocyte-mediated immunity, cholesterol metabolism, and regulation of the actin cytoskeleton. Analysis of egg proteins revealed enrichment in metabolic pathways, such as oxidative phosphorylation and fatty acid metabolism, and protein ubiquitination and translation. OF-specific proteins included extracellular matrix and secretory vesicles, and eggs were enriched in proteins localized to mitochondria and ribosome components. CONCLUSIONS: This study presents the first comprehensive characterization of the protein composition of sturgeon OF and eggs and elucidates their distinct functional roles. These findings advance our understanding of sturgeon reproduction, OF-egg signaling and the origin of OF proteins. The mass spectrometry proteomics data have been deposited in the ProteomeXchange Consortium with the dataset identifier PXD044168 to ensure accessibility for further research.


Fishes , Ovary , Proteomics , Animals , Fishes/metabolism , Female , Proteomics/methods , Ovary/metabolism , Tandem Mass Spectrometry , Chromatography, Liquid , Proteome/metabolism , Proteome/analysis , Fish Proteins/metabolism , Ovum/metabolism , Egg Proteins/metabolism , Egg Proteins/analysis
2.
Sci Rep ; 14(1): 10227, 2024 05 03.
Article En | MEDLINE | ID: mdl-38702443

Hydrolyzed egg yolk peptide (YPEP) was shown to increase bone mineral density in ovariectomized rats. However, the underlying mechanism of YPEP on osteoporosis has not been explored. Recent studies have shown that Wnt/ß-catenin signaling pathway and gut microbiota may be involved in the regulation of bone metabolism and the progression of osteoporosis. The present study aimed to explore the preventive effect of the YPEP supplementation on osteoporosis in ovariectomized (OVX) rats and to verify whether YPEP can improve osteoporosis by regulating Wnt/ß-catenin signaling pathway and gut microbiota. The experiment included five groups: sham surgery group (SHAM), ovariectomy group (OVX), 17-ß estradiol group (E2: 25 µg /kg/d 17ß-estradiol), OVX with low-dose YPEP group (LYPEP: 10 mg /kg/d YPEP) and OVX with high-dose YPEP group (HYPEP: 40 mg /kg/d YPEP). In this study, all the bone samples used were femurs. Micro-CT analysis revealed improvements in both bone mineral density (BMD) and microstructure by YPEP treatment. The three-point mechanical bending test indicated an enhancement in the biomechanical properties of the YPEP groups. The serum levels of bone alkaline phosphatase (BALP), bone gla protein (BGP), calcium (Ca), and phosphorus (P) were markedly higher in the YPEP groups than in the OVX group. The LYPEP group had markedly lower levels of alkaline phosphatase (ALP), tartrate-resistant acid phosphatase (TRAP) and C-terminal telopeptide of type I collagen (CTX-I) than the OVX group. The YPEP groups had significantly higher protein levels of the Wnt3a, ß-catenin, LRP5, RUNX2 and OPG of the Wnt/ß-catenin signaling pathway compared with the OVX group. Compared to the OVX group, the ratio of OPG/RANKL was markedly higher in the LYPEP group. At the genus level, there was a significantly increase in relative abundance of Lachnospiraceae_NK4A136_group and a decrease in Escherichia_Shigella in YPEP groups, compared with the OVX group. However, in the correlation analysis, there was no correlation between these two bacteria and bone metabolism and microstructure indexes. These findings demonstrate that YPEP has the potential to improve osteoporosis, and the mechanism may be associated with its modulating effect on Wnt/ß-catenin signaling pathway.


Bone Density , Osteoporosis , Ovariectomy , Wnt Signaling Pathway , Animals , Ovariectomy/adverse effects , Wnt Signaling Pathway/drug effects , Female , Osteoporosis/prevention & control , Osteoporosis/metabolism , Bone Density/drug effects , Rats , Rats, Sprague-Dawley , Egg Yolk/chemistry , Egg Yolk/metabolism , Low Density Lipoprotein Receptor-Related Protein-5/metabolism , Egg Proteins/pharmacology , Egg Proteins/metabolism , Peptides/pharmacology , beta Catenin/metabolism , Alkaline Phosphatase/metabolism , Femur/drug effects , Femur/metabolism , X-Ray Microtomography
3.
Arch Insect Biochem Physiol ; 116(1): e22120, 2024 May.
Article En | MEDLINE | ID: mdl-38739744

The vitellogenin receptor (VgR) is essential for the uptake and transport of the yolk precursor, vitellogenin (Vg). Vg is synthesized in the fat body, released in the hemolymph, and absorbed in the ovaries, via receptor-mediated endocytosis. Besides its important role in the reproductive pathway, Vg occurs in nonreproductive worker honey bee, suggesting its participation in other pathways. The objective was to verify if the VgR occurs in the hypopharyngeal glands of Apis mellifera workers and how Vg is internalized by these cells. VgR occurrence in the hypopharyngeal glands was evaluated by qPCR analyses of VgR and immunohistochemistry in workers with different tasks. The VgR gene is expressed in the hypopharyngeal glands of workers with higher transcript levels in nurse honey bees. VgR is more expressed in 11-day-old workers from queenright colonies, compared to orphan ones. Nurse workers with developed hypopharyngeal glands present higher VgR transcripts than those with poorly developed glands. The immunohistochemistry results showed the co-localization of Vg, VgR and clathrin (protein that plays a major role in the formation of coated vesicles in endocytosis) in the hypopharyngeal glands, suggesting receptor-mediated endocytosis. The results demonstrate that VgR performs the transport of Vg to the hypopharyngeal glands, supporting the Ovary Ground Plan Hypothesis and contributing to the understanding of the role of this gland in the social context of honey bees.


Egg Proteins , Hypopharynx , Insect Proteins , Receptors, Cell Surface , Animals , Bees/metabolism , Bees/genetics , Receptors, Cell Surface/metabolism , Receptors, Cell Surface/genetics , Insect Proteins/metabolism , Insect Proteins/genetics , Egg Proteins/metabolism , Egg Proteins/genetics , Hypopharynx/metabolism , Female , Vitellogenins/metabolism , Vitellogenins/genetics , Clathrin/metabolism
4.
Parasitol Res ; 123(4): 197, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38668762

The majority of ixodid ticks display host-specificity to varying extents. Feeding on different hosts affects their development and reproduction. Consequences can be analyzed at the level of the egg, as it is the initial stage of tick development. Tick egg proteins are abundant and diverse, providing nutrients for embryonic development. However, studies on tick egg profiles are scarce. In this study, we aimed to analyze whether feeding Haemaphysalis qinghaiensis ticks on the yaks (Bos grunniens) and domestic sheep (Ovis aries) has an impact on the variety and variability of the egg proteome. Detached engorged females were used to lay eggs, which were then collected, dewaxed, and subjected to protein extraction. The extracted egg proteins were enzymatically digested using Filter-Aided Sample Preparation (FASP), and the unique peptides were separated and detected by Liquid Chromatography-tandem Mass Spectrometry (LC-MS/MS). The MS data were searched against the previously constructed whole tick transcriptome library of H. qinghaiensis, and the UniProt database for the identification of tick-derived egg proteins. The analysis revealed 49 and 53 high-confidence proteins identified in eggs collected from B. grunniens (EggBg) and O. aries (EggOa), respectively. Of these, 46 high-confidence proteins were common to both egg types, while three were unique to EggBg and seven to EggOa. All the identified proteins mainly belonged to enzymes, enzyme inhibitors, transporters, and proteins with unknown functions. The differential abundance analysis showed that nine proteins were significantly more present in EggBg, while six were significantly more present in EggOa. Overall, enzymes were the most diverse group, while vitellogenin (Vg) was the most abundant. Blood meal uptake on different hosts has a certain effect on the egg proteome composition and the abundance of some proteins, but it may also lead to compensation of protein roles.


Egg Proteins , Ixodidae , Animals , Ixodidae/physiology , Ixodidae/metabolism , Ixodidae/growth & development , Female , Egg Proteins/metabolism , Cattle , Sheep , Proteome , Ovum/chemistry , Tandem Mass Spectrometry , Chromatography, Liquid , Tick Infestations/veterinary , Tick Infestations/parasitology , Feeding Behavior
5.
Poult Sci ; 103(5): 103629, 2024 May.
Article En | MEDLINE | ID: mdl-38518664

Chicken egg chalaza (CLZ) is a natural colloidal structure in eggs that exists as an egg yolk stabilizer and is similar in composition to egg white. In this study, the proteome, phosphoproteome, and N-glycoproteome of CLZ were characterized in depth. We hydrolyzed the CLZ proteins and enriched the phosphopeptides and glycopeptides. We identified 45 phosphoproteins and 80 N-glycoproteins, containing 59 phosphosites and 203 N-glycosylation sites, respectively. Typically, the ovalbumin in CLZ was both phosphorylated and N-glycosylated, with 4 phosphosites and 4 N-glycosylation sites. Moreover, we identified 2 N-glycosylated subunits of ovomucin, mucin-5B and mucin-6, with 32 and nine N- glycosylation sites, respectively. Analysis of the phosphorylation and N-glycosylation status of CLZ proteins could provide novel insights into the structural and functional characteristics of CLZ.


Chickens , Egg Proteins , Animals , Egg Proteins/chemistry , Egg Proteins/metabolism , Proteomics , Proteome , Avian Proteins/chemistry , Avian Proteins/metabolism , Glycoproteins/chemistry , Glycoproteins/metabolism , Glycosylation , Ovum/chemistry , Phosphoproteins/chemistry , Phosphoproteins/metabolism
6.
Mol Ecol ; 33(5): e17263, 2024 Mar.
Article En | MEDLINE | ID: mdl-38318732

The absence of robust interspecific isolation barriers among pantherines, including the iconic South American jaguar (Panthera onca), led us to study molecular evolution of typically rapidly evolving reproductive proteins within this subfamily and related groups. In this study, we delved into the evolutionary forces acting on the zona pellucida (ZP) gamete interaction protein family and the sperm-oocyte fusion protein pair IZUMO1-JUNO across the Carnivora order, distinguishing between Caniformia and Feliformia suborders and anticipating few significant diversifying changes in the Pantherinae subfamily. A chromosome-resolved jaguar genome assembly facilitated coding sequences, enabling the reconstruction of protein evolutionary histories. Examining sequence variability across more than 30 Carnivora species revealed that Feliformia exhibited significantly lower diversity compared to its sister taxa, Caniformia. Molecular evolution analyses of ZP2 and ZP3, subunits directly involved in sperm-recognition, unveiled diversifying positive selection in Feliformia, Caniformia and Pantherinae, although no significant changes were linked to sperm binding. Structural cross-linking ZP subunits, ZP4 and ZP1 exhibited lower levels or complete absence of positive selection. Notably, the fusion protein IZUMO1 displayed prominent positive selection signatures and sites in basal lineages of both Caniformia and Feliformia, extending along the Caniformia subtree but absent in Pantherinae. Conversely, JUNO did not exhibit any positive selection signatures across tested lineages and clades. Eight Caniformia-specific positive selected sites in IZUMO1 were detected within two JUNO-interaction clusters. Our findings provide for the first time insights into the evolutionary trajectories of ZP proteins and the IZUMO1-JUNO gamete interaction pair within the Carnivora order.


Caniformia , Carnivora , Panthera , Animals , Male , Receptors, Cell Surface/genetics , Egg Proteins/genetics , Egg Proteins/chemistry , Egg Proteins/metabolism , Semen/metabolism , Sperm-Ovum Interactions/genetics , Carnivora/genetics , Caniformia/metabolism , Feliformia/metabolism , Panthera/metabolism , Zona Pellucida/metabolism
7.
Nat Commun ; 15(1): 1241, 2024 Feb 09.
Article En | MEDLINE | ID: mdl-38336808

Paraneoplastic syndromes occur in cancer patients and originate from dysfunction of organs at a distance from the tumor or its metastasis. A wide range of organs can be affected in paraneoplastic syndromes; however, the pathological mechanisms by which tumors influence host organs are poorly understood. Recent studies in the fly uncovered that tumor secreted factors target host organs, leading to pathological effects. In this study, using a Drosophila gut tumor model, we characterize a mechanism of tumor-induced kidney dysfunction. Specifically, we find that Pvf1, a PDGF/VEGF signaling ligand, secreted by gut tumors activates the PvR/JNK/Jra signaling pathway in the principal cells of the kidney, leading to mis-expression of renal genes and paraneoplastic renal syndrome-like phenotypes. Our study describes an important mechanism by which gut tumors perturb the function of the kidney, which might be of clinical relevance for the treatment of paraneoplastic syndromes.


Drosophila Proteins , Nephrotic Syndrome , Paraneoplastic Syndromes , Animals , Humans , Drosophila/metabolism , Nephrotic Syndrome/genetics , Paraneoplastic Syndromes/therapy , Kidney/metabolism , Signal Transduction , Egg Proteins/metabolism , Drosophila Proteins/metabolism
8.
Int J Biol Macromol ; 260(Pt 2): 129632, 2024 Mar.
Article En | MEDLINE | ID: mdl-38253139

Oogenesis is a complex process regulated by precise coordination of multiple factors, including maternal genes. Zygote arrest 1 (zar1) has been identified as an ovary-specific maternal gene that is vital for oocyte-to-embryo transition and oogenesis in mouse and zebrafish. However, its function in other species remains to be elucidated. In the present study, zar1 was identified with conserved C-terminal zinc finger domains in Nile tilapia. zar1 was highly expressed in the ovary and specifically expressed in phase I and II oocytes. Disruption of zar1 led to the failed transition from oogonia to phase I oocytes, with somatic cell apoptosis. Down-regulation and failed polyadenylation of figla, gdf9, bmp15 and wee2 mRNAs were observed in the ovaries of zar1-/- fish. Cpeb1, a gene essential for polyadenylation that interacts with Zar1, was down-regulated in zar1-/- fish. Moreover, decreased levels of serum estrogen and increased levels of androgen were observed in zar1-/- fish. Taken together, zar1 seems to be essential for tilapia oogenesis by regulating polyadenylation and estrogen synthesis. Our study shows that Zar1 has different molecular functions during gonadal development by the similar signaling pathway in different species.


Cichlids , Tilapia , Female , Animals , Mice , Tilapia/genetics , Tilapia/metabolism , Zebrafish/metabolism , Cichlids/genetics , Cichlids/metabolism , Polyadenylation , Egg Proteins/metabolism , Oogenesis/genetics , Estrogens , Transcription Factors/genetics , mRNA Cleavage and Polyadenylation Factors/genetics
9.
PLoS Genet ; 20(1): e1011145, 2024 Jan.
Article En | MEDLINE | ID: mdl-38285728

Females from many mosquito species feed on blood to acquire nutrients for egg development. The oogenetic cycle has been characterized in the arboviral vector Aedes aegypti, where after a bloodmeal, the lipid transporter lipophorin (Lp) shuttles lipids from the midgut and fat body to the ovaries, and a yolk precursor protein, vitellogenin (Vg), is deposited into the oocyte by receptor-mediated endocytosis. Our understanding of how the roles of these two nutrient transporters are mutually coordinated is however limited in this and other mosquito species. Here, we demonstrate that in the malaria mosquito Anopheles gambiae, Lp and Vg are reciprocally regulated in a timely manner to optimize egg development and ensure fertility. Defective lipid transport via Lp knockdown triggers abortive ovarian follicle development, leading to misregulation of Vg and aberrant yolk granules. Conversely, depletion of Vg causes an upregulation of Lp in the fat body in a manner that appears to be at least partially dependent on target of rapamycin (TOR) signaling, resulting in excess lipid accumulation in the developing follicles. Embryos deposited by Vg-depleted mothers are completely inviable, and are arrested early during development, likely due to severely reduced amino acid levels and protein synthesis. Our findings demonstrate that the mutual regulation of these two nutrient transporters is essential to safeguard fertility by ensuring correct nutrient balance in the developing oocyte, and validate Vg and Lp as two potential candidates for mosquito control.


Aedes , Anopheles , Malaria , Female , Animals , Anopheles/genetics , Mosquito Vectors/genetics , Vitellogenins/genetics , Vitellogenins/metabolism , Egg Proteins/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Fertility/genetics , Lipids , Aedes/genetics , Aedes/metabolism
10.
Sci Rep ; 14(1): 1820, 2024 01 20.
Article En | MEDLINE | ID: mdl-38245605

Vitellogenesis is the most important process in animal reproduction, in which yolk proteins play a vital role. Among multiple yolk protein precursors, vitellogenin (Vtg) is a well-known major yolk protein (MYP) in most oviparous animals. However, the nature of MYP in the freshwater gastropod snail Biomphalaria glabrata remains elusive. In the current study, we applied bioinformatics, tissue-specific transcriptomics, ovotestis-targeted proteomics, and phylogenetics to investigate the large lipid transfer protein (LLTP) superfamily and ferritin-like family in B. glabrata. Four members of LLTP superfamily (BgVtg1, BgVtg2, BgApo1, and BgApo2), one yolk ferritin (Bg yolk ferritin), and four soma ferritins (Bg ferritin 1, 2, 3, and 4) were identified in B. glabrata genome. The proteomic analysis demonstrated that, among the putative yolk proteins, BgVtg1 was the yolk protein appearing in the highest amount in the ovotestis, followed by Bg yolk ferritin. RNAseq profile showed that the leading synthesis sites of BgVtg1 and Bg yolk ferritin are in the ovotestis (presumably follicle cells) and digestive gland, respectively. Phylogenetic analysis indicated that BgVtg1 is well clustered with Vtgs of other vertebrates and invertebrates. We conclude that, vitellogenin (BgVtg1), not yolk ferritin (Bg yolk ferritin), is the major yolk protein precursor in the schistosomiasis vector snail B. glabrata.


Biomphalaria , Schistosomiasis , Animals , Biomphalaria/genetics , Vitellogenins/genetics , Vitellogenins/metabolism , Multiomics , Phylogeny , Proteomics , Egg Proteins/metabolism , Ferritins/genetics , Schistosoma mansoni/metabolism
11.
Biomolecules ; 13(11)2023 11 10.
Article En | MEDLINE | ID: mdl-38002318

Mammalian fertilization is a species-selective event that involves a series of interactions between sperm proteins and the oocyte's zona pellucida (ZP) glycoproteins. Bovine ZP consists of three glycoproteins: bZP2, bZP3, and bZP4. In our previous study, we demonstrated that bovine sperm binds to plastic wells coated with recombinant bZP4 and identified that the N-terminal domain and the middle region of bZP4 are critical for sperm-binding activity. Here, we investigated the sperm-binding site in the middle region (residues 290 to 340) of bZP4, which includes the hinge region. We showed that bovine sperm binds to bZP4's middle region in a species-selective manner. We mapped the function of bZP4's middle region to its N-glycosylation site at Asn-314 using several recombinant mutated proteins. Moreover, we showed that mutations of the N-glycosylation sites at Asn-314 close to the hinge region and Asn-146 of the hinge region of bZP4 and bZP3, respectively, reduced the sperm-binding activity of the complex of the bZP3 (from 32 to 178) and bZP4 (from 136 to 464) fragments. Together, these results suggest that ZP's middle regions of bZP3 and bZP4 form one of the sperm-binding sites of bovine ZP.


Membrane Glycoproteins , Receptors, Cell Surface , Male , Cattle , Animals , Zona Pellucida Glycoproteins/genetics , Zona Pellucida Glycoproteins/metabolism , Glycosylation , Membrane Glycoproteins/metabolism , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Egg Proteins/genetics , Egg Proteins/chemistry , Egg Proteins/metabolism , Zona Pellucida/metabolism , Semen/metabolism , Spermatozoa/metabolism , Glycoproteins/metabolism , Mammals/metabolism
12.
BMC Biol ; 21(1): 214, 2023 10 13.
Article En | MEDLINE | ID: mdl-37833714

BACKGROUND: Up to 40% of the world population live in areas where mosquitoes capable of transmitting the dengue virus, including Aedes aegypti, coexist with humans. Understanding how mosquito egg development and oviposition are regulated at the molecular level may provide new insights into novel mosquito control strategies. Previously, we identified a protein named eggshell organizing factor 1 (EOF1) that when knocked down with RNA interference (RNAi) resulted in non-melanized and fragile eggs that did not contain viable embryos. RESULTS: In this current study, we performed a comprehensive RNAi screen of putative A. aegypti eggshell proteins to identify additional proteins that interact with intracellular EOF1. We identified several proteins essential for eggshell formation in A. aegypti and characterized their phenotypes through a combination of molecular and biochemical approaches. We found that Nasrat, Closca, and Polehole structural proteins, together with the Nudel serine protease, are indispensable for eggshell melanization and egg viability. While all four proteins are predominantly expressed in ovaries of adult females, Nudel messenger RNA (mRNA) expression is highly upregulated in response to blood feeding. Furthermore, we identified four additional secreted eggshell enzymes that regulated mosquito eggshell formation and melanization. These enzymes included three dopachrome-converting enzymes (DCEs) and one cysteine protease. All eight of these eggshell proteins were essential for proper eggshell formation. Interestingly, their eggshell surface topologies in response to RNAi did not phenocopy the effect of RNAi-EOF1, suggesting that additional mechanisms may influence how EOF1 regulates eggshell formation and melanization. CONCLUSIONS: While our studies did not identify a definitive regulator of EOF1, we did identify eight additional proteins involved in mosquito eggshell formation that may be leveraged for future control strategies.


Aedes , Animals , Humans , Female , Aedes/genetics , Egg Proteins/genetics , Egg Proteins/metabolism , RNA Interference , Ovary/metabolism
13.
Sheng Wu Gong Cheng Xue Bao ; 39(7): 2684-2694, 2023 Jul 25.
Article Zh | MEDLINE | ID: mdl-37584124

The aim of this study was to clone the chicken zp1 gene encoding zona pellucida 1 (Zp1) and investigate its tissues expression profile and its effect on osteoblast mineralization. The expression level of zp1 was quantified in various tissues of laying hens and in the tibia of the pre- and post-sexual maturity by RT-qPCR. Zp1 overexpressed vector was transfected into chicken calvarial osteoblasts which were induced differentiation for 8 days, and the extracellular mineral and the expression of mineralization-related genes were detected. The full-length chicken zp1 gene is 3 045 bp, encoding 958 amino acids residuals, and has two N-glycosylation sites. The highest expression level of the zp1 gene was found in the liver, followed by the tibia and yolk membrane, while no expression was detected in the heart and eggshell gland. Compared with the pre-sexual maturity hens, the concentration of estrogen (E2) in plasma, the content of glycosaminoglycan (GAG) and the expression level of the zp1 gene in the tibia with post-sexual maturity were higher. The extracellular matrix and the level of osteoblast mineralization-related genes showed a significantly upregulated expression in chicken calvarial osteoblasts with Zp1 overexpressed and addition of estrogen. The expression of the zp1 gene is tissue-specific and positively regulated osteoblast mineralization under the action of estrogen, laying the foundation for elucidating the functional properties of Zp1 in chicken bones during the egg production period.


Chickens , Membrane Glycoproteins , Female , Animals , Zona Pellucida Glycoproteins , Membrane Glycoproteins/chemistry , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Chickens/genetics , Egg Proteins/chemistry , Egg Proteins/genetics , Egg Proteins/metabolism , Receptors, Cell Surface , Estrogens
14.
Food Chem ; 419: 136031, 2023 Sep 01.
Article En | MEDLINE | ID: mdl-37004363

The purpose of this study was to investigate the mechanism for the differences in heat-induced gel properties of egg white proteins with different interior quality during ageing in laying hens. Quantitative proteomic analysis revealed that the abundance of ovotransferrin, avidin, mucin 5B, and clusterin increased with decreasing Haugh units (HU), leading to the transition from disorder to order in the secondary and tertiary structure of egg white proteins, with the burial of hydrophobic groups and a reduction in the negative charge on the protein surface, rendering the egg white protein solution aggregated. These changes would accelerate the rate of aggregation of egg white proteins during heating, resulting in the loss of orientation of the molecular chains, forming coarse and porous gel structures and poor gel properties. This research provides a new idea for improving the gelling properties of egg whites from lower interior quality during ageing in laying hens.


Chickens , Hot Temperature , Animals , Female , Chickens/metabolism , Proteomics , Egg Proteins/metabolism , Aging , Diet , Animal Feed/analysis
15.
Int J Mol Sci ; 24(5)2023 Feb 28.
Article En | MEDLINE | ID: mdl-36902087

Glucose oxidase (GOx)-based electrodes are important for bioelectronics, such as glucose sensors. It is challenging to effectively link GOx with nanomaterial-modified electrodes while preserving enzyme activity in a biocompatible environment. To date, no reports have used biocompatible food-based materials, such as egg white proteins, combined with GOx, redox molecules, and nanoparticles to create the biorecognition layer for biosensors and biofuel cells. This article demonstrates the interface of GOx integrated with egg white proteins on a 5 nm gold nanoparticle (AuNP) functionalized with a 1,4-naphthoquinone (NQ) and conjugated with a screen-printed flexible conductive carbon nanotube (CNT)-modified electrode. Egg white proteins containing ovalbumin can form three-dimensional scaffolds to accommodate immobilized enzymes and adjust the analytical performance. The structure of this biointerface prevents the escape of enzymes and provides a suitable microenvironment for the effective reaction. The bioelectrode's performance and kinetics were evaluated. Using redox-mediated molecules with the AuNPs and the three-dimensional matrix made of egg white proteins improves the transfer of electrons between the electrode and the redox center. By engineering the layer of egg white proteins on the GOx-NQ-AuNPs-mediated CNT-functionalized electrodes, we can modulate analytical performances such as sensitivity and linear range. The bioelectrodes demonstrate high sensitivity and can prolong the stability by more than 85% after 6 h of continuous operation. The use of food-based proteins with redox molecule-modified AuNPs and printed electrodes demonstrates advantages for biosensors and energy devices due to their small size, large surface area, and ease of modification. This concept holds a promise for creating biocompatible electrodes for biosensors and self-sustaining energy devices.


Bioelectric Energy Sources , Biosensing Techniques , Metal Nanoparticles , Nanotubes, Carbon , Glucose Oxidase/metabolism , Gold/chemistry , Metal Nanoparticles/chemistry , Oxidation-Reduction , Electrodes , Enzymes, Immobilized/chemistry , Biosensing Techniques/methods , Nanotubes, Carbon/chemistry , Egg Proteins/metabolism , Glucose/chemistry
16.
PLoS One ; 18(3): e0283087, 2023.
Article En | MEDLINE | ID: mdl-36943849

The egg coat including mammalian zona pellucida (ZP) and the avian equivalent, i.e., inner-perivitelline layer (IPVL), is a specialized extracellular matrix being composed of the ZP glycoproteins and surrounds both pre-ovulatory oocytes and ovulated egg cells in vertebrates. The egg coat is well known for its potential importance in both the reproduction and early development, although the underlying molecular mechanisms remain to be fully elucidated. Interestingly, ZP3, one of the ZP-glycoprotein family members forming scaffolds of the egg-coat matrices with other ZP glycoproteins, exhibits extreme but distinctive microheterogeneity to form a large number of isoelectric-point isoforms at least in the chicken IPVL. In the present study, we performed three-dimensional confocal imaging and two-dimensional polyacrylamide-gel electrophoresis (2D-PAGE) of chicken IPVLs that were isolated from the ovarian follicles at different growth stages before ovulation. The results suggest that the relative proportions of the ZP3 isoforms are differentially altered during the structural maturation of the egg-coat matrices. Furthermore, tandem mass spectrometry (MS/MS) analyses and ZP1 binding assays against separated ZP3 isoforms demonstrated that each ZP3 isoform contains characteristic modifications, and there are large differences among ZP3 isoforms in the ZP1 binding affinities. These results suggest that the microheterogeneity of chicken ZP3 might be regulated to be associated with the formation of egg-coat matrices during the structural maturation of chicken IPVL. Our findings may provide new insights into molecular mechanisms of egg-coat assembly processes.


Tandem Mass Spectrometry , Zona Pellucida , Animals , Female , Zona Pellucida/metabolism , Egg Proteins/metabolism , Zona Pellucida Glycoproteins/metabolism , Chickens/metabolism , Protein Isoforms/metabolism , Extracellular Matrix Proteins/metabolism , Mammals/metabolism
17.
Zool Res ; 44(2): 259-268, 2023 03 18.
Article En | MEDLINE | ID: mdl-36650065

Reproductive strategies and spawning habits play key roles in the evolution of endemic East Asian cyprinids. However, the molecular mechanisms underlying the regulation of spawning habits are not well understood. We recently identified zona pellucida (Zp) as the top differentially expressed protein between East Asian cyprinids that produce adhesive and semi-buoyant eggs, suggesting that Zp protein may play important roles in the regulation of egg type. In this work, we generated transgenic zebrafish in which oocyte-specific expression of zp genes from rare minnow ( Gobiocypris rarus), an East Asian cyprinid laying adhesive eggs, was driven by a zebrafish zp3.2 gene promoter. We found that the transgenic eggs obtained partial adhesiveness and exhibited alteration in hydration and buoyancy. Abnormal metabolism of vitellogenin (VTG) may contribute to enhanced hydration and/or buoyancy. Our work shows that expression of the exogenous zp3a gene from an adhesive-egg producing fish is sufficient to induce changes in both egg adhesiveness and buoyancy in zebrafish, emphasizing the important role of zp genes in the regulation of spawning habits. Our results thus provide new insights into how endemic East Asian cyprinids may have adapted to the Yangtze river-lake system via changes in spawning habits.


Cyprinidae , Zebrafish , Animals , Zebrafish/genetics , Zona Pellucida Glycoproteins/genetics , Zona Pellucida Glycoproteins/metabolism , Egg Proteins/genetics , Egg Proteins/metabolism , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Amino Acid Sequence , Adhesiveness , Receptors, Cell Surface/genetics , Animals, Genetically Modified/genetics
18.
Fish Physiol Biochem ; 49(1): 117-137, 2023 Feb.
Article En | MEDLINE | ID: mdl-36648592

Lipoprotein receptors, including low-density lipoprotein receptor (LDLr) relatives (Lrs) and LDLr-related proteins (Lrps), belong to the LDLr supergene family and participate in diverse physiological functions. In this study, novel sequences of lr and lrp genes expressed in the ovary of the short-finned eel, Anguilla australis, during early gonadal development are presented. The genes encoding the LDLr-like, Lrp1-like, Lrp1b-like, Lrp3, Lrp4-like, Lrp5-like, Lrp6, Lrp10, Lrp11, Lrp12-like, and Lr11-like proteins were found and identified by sequence and structure analysis, in addition to phylogenetic analysis. Genes encoding proteins previously implicated in follicle development and vitellogenin (Vtg) uptake in oviparous vertebrates were also identified, i.e. lr8 (including lr8 + and lr8- variants) and lrp13; their identification was reinforced by conserved synteny with orthologues in other teleost fish. Compared to other lr/lrp genes, the genes encoding Lr8 + , Lr8-, and Lrp13 were highly expressed in ovary during early development, decreasing as oocyte development advanced when induced by hypophysation. Furthermore, lr8 + , lr8-, and lrp13 were dominantly expressed in the ovary when compared with 17 other tissues. Finally, this study successfully detected the expression of both lr8 variants, which showed different expression patterns to those reported in other oviparous vertebrates and provided the first characterisation of Lrp13 in Anguilla sp. We propose that lr8 + , lr8-, and lrp13 encode putative Vtg receptors in anguillid eels.


Anguilla , Ovary , Female , Animals , Ovary/metabolism , Anguilla/genetics , Phylogeny , Egg Proteins/metabolism
19.
Cells Dev ; 173: 203822, 2023 03.
Article En | MEDLINE | ID: mdl-36400422

Regulation of the rate of stem cell division is one of the key determinants of the abundance of differentiating progeny in stem cell-supported tissues, and mis-regulation can lead to tumorigenesis. The well-studied Drosophila testis niche is an excellent model system to study the regulation of stem cell division in vivo. This niche supports two stem cell populations-the germline stem cells (GSCs) and cyst stem cells (CySCs), which cluster around a group of cells called the hub. The differentiating cells of these two stem cell populations cooperate together to produce sperm. Signal transduction initiated by the epidermal growth factor receptor (Egfr) is a key regulatory pathway in the cyst lineage, and much of the study of this stem cell population has centered around understanding the complexities of the requirements for Egfr signaling. We examined another receptor tyrosine kinase, Pvr, the sole Drosophila PDGF/VEGF homolog, and found that it accumulates in the cyst lineage cells of the testis, while its ligand Pvf1 accumulates in the hub. Pvr inhibition caused a reduction in both CySC numbers and the proportion of CySCs in S phase, similar to Egfr inhibition. However, testes with Pvr inhibition exhibited a low-penetrance non-autonomous germ cell differentiation defect distinct from that observed with Egfr inhibition. Cyst cells with constitutively activated Pvr failed to support germ cell differentiation, as observed with constitutively activated Egfr. However, constitutively activated Pvr promoted tumorous accumulation of cyst cells outside of the niche, a phenotype not observed with constitutively activated Egfr. Thus, Egfr and Pvr have some receptor-specific functions and some shared functions in the cyst lineage cells of the testis.


Cysts , Drosophila Proteins , Animals , Male , Drosophila , Testis/metabolism , Drosophila melanogaster/genetics , Semen , ErbB Receptors/genetics , ErbB Receptors/metabolism , Cell Self Renewal , Receptor Protein-Tyrosine Kinases/genetics , Receptor Protein-Tyrosine Kinases/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Egg Proteins/genetics , Egg Proteins/metabolism
20.
Food Chem ; 404(Pt B): 134670, 2023 Mar 15.
Article En | MEDLINE | ID: mdl-36323023

Major yolk proteins (MYPs), one class of the main abundant proteins in sea cucumber body wall, seem to garner more attention in recent years. Herein, a method using multiple reactions monitoring mass spectrometry (MRM-MS) was deliberatively developed to perform quantification analysis of three MYPs, i.e. BAH79576.1, BAH79577.1 and PIK45784.1. Contents of MYPs in body wall of fresh and dried sea cucumbers as well as in waste liquid of boiling and steaming were determined using their corresponding signature peptides of VDEFTGIVGSLR, KLDMYPPPLAR, LDMYPPPLAR, and SGHGEVMFVDSK. The loss of MYPs in the processing of sea cucumbers was directly verified by quantitation data of MYPs in sea cucumber body wall and the waste liquids. This study not only evidenced the loss of MYPs during the processing of sea cucumbers, but also implicated the potential of recycling MYPs from the processing waste water, providing helpful suggestions in maximizing the value of sea cucumbers.


Sea Cucumbers , Stichopus , Animals , Proteomics/methods , Stichopus/chemistry , Sea Cucumbers/metabolism , Mass Spectrometry , Egg Proteins/metabolism
...