Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.286
Filtrar
1.
Methods Mol Biol ; 2816: 1-11, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38977583

RESUMEN

The intricate interplay between the muscle and bone tissues is a fundamental aspect of musculoskeletal physiology. Over the past decades, emerging research has highlighted the pivotal role of lipid signaling in mediating communication between these tissues. This chapter delves into the multifaceted mechanisms through which lipids, particularly phospholipids, sphingolipids, and eicosanoids, participate in orchestrating cellular responses and metabolic pathways in both muscle and bone. Additionally, we examine the clinical implications of disrupted lipid signaling in musculoskeletal disorders, offering insights into potential therapeutic avenues. This chapter aims to shed light on the complex lipid-driven interactions between the muscle and bone tissues, paving the way for a deeper understanding of musculoskeletal health and disease.


Asunto(s)
Metabolismo de los Lípidos , Enfermedades Musculoesqueléticas , Transducción de Señal , Animales , Humanos , Huesos/metabolismo , Eicosanoides/metabolismo , Músculo Esquelético/metabolismo , Enfermedades Musculoesqueléticas/metabolismo , Fosfolípidos/metabolismo , Esfingolípidos/metabolismo
2.
Prostaglandins Other Lipid Mediat ; 173: 106840, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38830399

RESUMEN

We have previously demonstrated that the glucocorticoid receptor ß (GRß) isoform induces hepatic steatosis in mice fed a normal chow diet. The GRß isoform inhibits the glucocorticoid-binding isoform GRα, reducing responsiveness and inducing glucocorticoid resistance. We hypothesized that GRß regulates lipids that cause metabolic dysfunction. To determine the effect of GRß on hepatic lipid classes and molecular species, we overexpressed GRß (GRß-Ad) and vector (Vec-Ad) using adenovirus delivery, as we previously described. We fed the mice a normal chow diet for 5 days and harvested the livers. We utilized liquid chromatography-mass spectrometry (LC-MS) analyses of the livers to determine the lipid species driven by GRß. The most significant changes in the lipidome were monoacylglycerides and cholesterol esters. There was also increased gene expression in the GRß-Ad mice for lipogenesis, eicosanoid synthesis, and inflammatory pathways. These indicate that GRß-induced glucocorticoid resistance may drive hepatic fat accumulation, providing new therapeutic advantages.


Asunto(s)
Eicosanoides , Glucocorticoides , Inflamación , Lipogénesis , Hígado , Receptores de Glucocorticoides , Animales , Ratones , Hígado/metabolismo , Receptores de Glucocorticoides/metabolismo , Receptores de Glucocorticoides/genética , Eicosanoides/metabolismo , Glucocorticoides/metabolismo , Inflamación/metabolismo , Masculino , Ratones Endogámicos C57BL , Metabolismo de los Lípidos
3.
FASEB J ; 38(10): e23692, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38786655

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection involves an initial viral infection phase followed by a host-response phase that includes an eicosanoid and cytokine storm, lung inflammation and respiratory failure. While vaccination and early anti-viral therapies are effective in preventing or limiting the pathogenic host response, this latter phase is poorly understood with no highly effective treatment options. Inhibitors of soluble epoxide hydrolase (sEH) increase levels of anti-inflammatory molecules called epoxyeicosatrienoic acids (EETs). This study aimed to investigate the impact of sEH inhibition on the host response to SARS-CoV-2 infection in a mouse model with human angiotensin-converting enzyme 2 (ACE2) expression. Mice were infected with SARS-CoV-2 and treated with either vehicle or the sEH inhibitor 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU). At day 5 post-infection, SARS-CoV-2 induced weight loss, clinical signs, a cytokine storm, an eicosanoid storm, and severe lung inflammation with ~50% mortality on days 6-8 post-infection. SARS-CoV-2 infection induced lung expression of phospholipase A2 (PLA2), cyclooxygenase (COX) and lipoxygenase (LOX) pathway genes, while suppressing expression of most cytochrome P450 genes. Treatment with the sEH inhibitor TPPU delayed weight loss but did not alter clinical signs, lung cytokine expression or overall survival of infected mice. Interestingly, TPPU treatment significantly reversed the eicosanoid storm and attenuated viral-induced elevation of 39 fatty acids and oxylipins from COX, LOX and P450 pathways, which suggests the effects at the level of PLA2 activation. The suppression of the eicosanoid storm by TPPU without corresponding changes in lung cytokines, lung inflammation or mortality reveals a surprising dissociation between systemic oxylipin and cytokine signaling pathways during SARS-CoV-2 infection and suggests that the cytokine storm is primarily responsible for morbidity and mortality in this animal model.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19 , Síndrome de Liberación de Citoquinas , Eicosanoides , Epóxido Hidrolasas , SARS-CoV-2 , Animales , Ratones , Eicosanoides/metabolismo , COVID-19/inmunología , COVID-19/virología , COVID-19/metabolismo , SARS-CoV-2/efectos de los fármacos , Epóxido Hidrolasas/antagonistas & inhibidores , Epóxido Hidrolasas/metabolismo , Síndrome de Liberación de Citoquinas/tratamiento farmacológico , Piperidinas/farmacología , Piperidinas/uso terapéutico , Citocinas/metabolismo , Humanos , Pulmón/virología , Pulmón/metabolismo , Pulmón/patología , Pulmón/efectos de los fármacos , Enzima Convertidora de Angiotensina 2/metabolismo , Modelos Animales de Enfermedad , Compuestos de Fenilurea/farmacología , Compuestos de Fenilurea/uso terapéutico , Femenino
4.
Prostaglandins Other Lipid Mediat ; 173: 106852, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38761959

RESUMEN

Zerumbone, a sesquiterpene isolated from Zingiber zerumbet, has many bioactivities, exhibiting anti-inflammatory properties. However, the effect of zerumbone on the eicosanoid signaling pathway has yet to be examined. Here, we deciphered the anti-eicosanoid properties of zerumbone isolated from ginger. The molecular interaction between zerumbone and eicosanoid metabolizing enzymes (COX-2, 5-LOX, FLAP, and LTA4-hydrolase) and receptors (EP-4, BLT-1, and ICAM-1) along with NOS-2 were assessed using Auto-Dock 4.2 and visualized by chimera and Liggplot+ software. Further, the leukocytes were treated with zerumbone (1-20 µM) and activated using bacterial lipopolysaccharide (LPS-10 nM). The oxidative stress (OS) markers, antioxidant enzymes, and the eicosanoid pathway mediators such as COX-2, 5-LOX, BLT-1, and EP-4 were assessed. The molecular interaction of zerumbone with eicosanoids showed a higher binding affinity with mPGES-1, followed by NOS-2, FLAP, COX-2, LTA-4-hydrolase, and BLT-1. The concentration of 5 µM zerumbone effectively prevented the generation of reactive oxygen species (ROS) and nitric oxide (NO). Likewise, zerumbone significantly (p<0.05) inhibited COX-2, 5-LOX, NOS-2, EP-4, BLT-1, and ICAM-1 expression in LPS-induced peripheral blood leukocytes from rats. Further, the zerumbone treatment on the human PBMCs activated with LPS showed significant inhibition in the expression of ICAM1, COX-2, 5-LOX, and the generation of inflammatory cytokines compared to the control. Overall, the data presented infers that zerumbone positively modulates critical enzymes and receptors of eicosanoids in leukocytes activated with lipopolysaccharides. Thus, zerumbone can be a potential anti-eicosanoid drug in managing inflammation.


Asunto(s)
Antiinflamatorios , Eicosanoides , Lipopolisacáridos , Sesquiterpenos , Transducción de Señal , Sesquiterpenos/farmacología , Sesquiterpenos/química , Lipopolisacáridos/farmacología , Eicosanoides/metabolismo , Humanos , Antiinflamatorios/farmacología , Transducción de Señal/efectos de los fármacos , Leucocitos/efectos de los fármacos , Leucocitos/metabolismo , Animales , Estrés Oxidativo/efectos de los fármacos , Ratas
5.
Eur J Pharmacol ; 976: 176694, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38821162

RESUMEN

Alzheimer's disease (AD) is a prevalent neurodegenerative condition affecting a substantial portion of the global population. It is marked by a complex interplay of factors, including the accumulation of amyloid plaques and tau tangles within the brain, leading to neuroinflammation and neuronal damage. Recent studies have underscored the role of free lipids and their derivatives in the initiation and progression of AD. Eicosanoids, metabolites of polyunsaturated fatty acids like arachidonic acid (AA), emerge as key players in this scenario. Remarkably, eicosanoids can either promote or inhibit the development of AD, and this multifaceted role is determined by how eicosanoid signaling influences the immune responses within the brain. However, the precise molecular mechanisms dictating the dual role of eicosanoids in AD remain elusive. In this comprehensive review, we explore the intricate involvement of eicosanoids in neuronal function and dysfunction. Furthermore, we assess the therapeutic potential of targeting eicosanoid signaling pathways as a viable strategy for mitigating or halting the progression of AD.


Asunto(s)
Enfermedad de Alzheimer , Eicosanoides , Enfermedades Neuroinflamatorias , Transducción de Señal , Humanos , Enfermedad de Alzheimer/metabolismo , Eicosanoides/metabolismo , Animales , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/inmunología , Encéfalo/metabolismo , Encéfalo/patología
6.
Prostaglandins Other Lipid Mediat ; 173: 106848, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38723943

RESUMEN

New insights have been gained on the role of platelets beyond thrombosis. Platelets can accumulate in damaged and inflamed tissues, acting as a sentinel to detect and repair tissue damage. However, by releasing several soluble factors, including thromboxane A2 (TXA2) and 12-hydroxyeicosatetraenoic acid, and extracellular vesicles (EVs), platelets can activate vascular cells, stromal, such as fibroblasts, immune cells, and cancer cells, leading to atherosclerosis, vascular restenosis, tissue fibrosis, and tumor metastasis. Platelet-derived extracellular vesicles (PEVs) are released when platelets are activated and can transfer their cargo to other cell types, thus contributing to the development of diseases. Inhibitors of the internalization of PEVs can potentially represent novel therapeutic tools. Both platelets and PEVs contain a significant number of different types of molecules, and their omics assessment and integration with clinical data using computational approaches have the potential to detect early disease development and monitor drug treatments.


Asunto(s)
Plaquetas , Eicosanoides , Vesículas Extracelulares , Humanos , Vesículas Extracelulares/metabolismo , Plaquetas/metabolismo , Plaquetas/patología , Eicosanoides/metabolismo , Animales , Comunicación Celular
7.
Sci Total Environ ; 928: 172295, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38588744

RESUMEN

BACKGROUND/AIM: Heavy metals are known to induce oxidative stress and inflammation, and the association between metal exposure and adverse birth outcomes is well established. However, there lacks research on biomarker profiles linking metal exposures and adverse birth outcomes. Eicosanoids are lipid molecules that regulate inflammation in the body, and there is growing evidence that suggests associations between plasma eicosanoids and pregnancy outcomes. Eicosanoids may aid our understanding of etiologic birth pathways. Here, we assessed associations between maternal blood metal concentrations with eicosanoid profiles among 654 pregnant women in the Puerto Rico PROTECT birth cohort. METHODS: We measured concentrations of 11 metals in whole blood collected at median 18 and 26 weeks of pregnancy, and eicosanoid profiles measured in plasma collected at median 26 weeks. Multivariable linear models were used to regress eicosanoids on metals concentrations. Effect modification by infant sex was explored using interaction terms. RESULTS: A total of 55 eicosanoids were profiled. Notably, 12-oxoeicosatetraenoic acid (12-oxoETE) and 15-oxoeicosatetraenoic acid (15-oxoETE), both of which exert inflammatory activities, had the greatest number of significant associations with metal concentrations. These eicosanoids were associated with increased concentrations of Cu, Mn, and Zn, and decreased concentrations of Cd, Co, Ni, and Pb, with the strongest effect sizes observed for 12-oxoETE and Pb (ß:-33.5,95 %CI:-42.9,-22.6) and 15-oxoETE and Sn (ß:43.2,95 %CI:11.4,84.1). Also, we observed differences in metals-eicosanoid associations by infant sex. Particularly, Cs and Mn had the most infant sex-specific significant associations with eicosanoids, which were primarily driven by female fetuses. All significant sex-specific associations with Cs were inverse among females, while significant sex-specific associations with Mn among females were positive within the cyclooxygenase group but inverse among the lipoxygenase group. CONCLUSION: Certain metals were significantly associated with eicosanoids that are responsible for regulating inflammatory responses. Eicosanoid-metal associations may suggest a role for eicosanoids in mediating metal-induced adverse birth outcomes.


Asunto(s)
Eicosanoides , Exposición Materna , Humanos , Femenino , Eicosanoides/sangre , Embarazo , Puerto Rico , Adulto , Exposición Materna/estadística & datos numéricos , Contaminantes Ambientales/sangre , Metales Pesados/sangre , Adulto Joven , Metales/sangre
8.
Biomolecules ; 14(4)2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38672462

RESUMEN

Microgravity is one of the main stressors that astronauts are exposed to during space missions. This condition has been linked to many disorders, including those that feature dysfunctional immune homeostasis and inflammatory damage. Over the past 30 years, a significant body of work has been gathered connecting weightlessness-either authentic or simulated-to an inefficient reaction to pathogens, dysfunctional production of cytokines and impaired survival of immune cells. These processes are also orchestrated by a plethora of bioactive lipids, produced by virtually all cells involved in immune events, which control the induction, magnitude, outcome, compartmentalization and trafficking of immunocytes during the response to injury. Despite their crucial importance in inflammation and its modulation, however, data concerning the role of bioactive lipids in microgravity-induced immune dysfunctions are surprisingly scarce, both in quantity and in variety, and the vast majority of it focuses on two lipid classes, namely eicosanoids and endocannabinoids. The present review aims to outline the accumulated knowledge addressing the effects elicited by microgravity-both simulated and authentic-on the metabolism and signaling of these two prominent lipid groups in the context of immune and inflammatory homeostasis.


Asunto(s)
Sistema Inmunológico , Ingravidez , Humanos , Sistema Inmunológico/metabolismo , Sistema Inmunológico/inmunología , Animales , Endocannabinoides/metabolismo , Eicosanoides/metabolismo , Metabolismo de los Lípidos , Inflamación/metabolismo , Inflamación/inmunología , Transducción de Señal , Vuelo Espacial , Lípidos/inmunología
9.
J Nutr Sci ; 13: e18, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38572365

RESUMEN

Lipid emulsions are essential components of parenteral nutrition solutions that provide energy and essential fatty acids. The complexity of the formulations of lipid emulsions may lead to adverse outcomes such as platelet reactivity and changes in platelet aggregation and related coagulation. Platelets are responsible for haemostasis; they activate and demonstrate morphological changes upon extracellular factors to maintain blood fluidity and vascular integrity. Although parenteral nutrition lipid emulsions are generally found safe with regard to modulation of platelet activity, studies are still accumulating. Thus, this review aims to investigate platelet-related changes by parenteral nutrition lipid emulsions in human studies. Studies have pointed out patients at risk of bleeding and increased platelet aggregation responses due to the administration of lipid emulsions. Lipid emulsions may further benefit patients at high risk of thrombosis due to anti-thrombotic effects and should be cautiously used in patients with thrombocytopenia. The reported platelet-related changes might be associated with the fatty acid change in the plasma membranes of platelets following changes in platelet synthesis and plasma levels of eicosanoids. In conclusion, studies investigating platelets and parenteral nutrition should be supported to minimize the adverse effects and to benefit from the potential protective effects of parenteral nutrition lipid emulsions.


Asunto(s)
Ácidos Grasos , Nutrición Parenteral , Humanos , Emulsiones , Nutrición Parenteral/efectos adversos , Eicosanoides
10.
J Biomed Sci ; 31(1): 28, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38438941

RESUMEN

BACKGROUND: Ticks are vectors of various pathogens, including tick-borne encephalitis virus causing TBE and bacteria such as Borrelia burgdorferi sensu lato and Anaplasma phagocytophilum causing e.g. viral-bacterial co-infections (TBE + LB/HGA), which pose diagnostic and therapeutic problems. Since these infections are usually accompanied by inflammation and oxidative stress causing metabolic modifications, including phospholipids, the aim of the study was to assess the level of polyunsaturated fatty acids and their metabolism (ROS- and enzyme-dependent) products in the blood plasma of patients with TBE and TBE + LB/HGA before and after pharmacotherapy. METHODS: The total antioxidant status was determined using 2,20-azino-bis-3-ethylbenzothiazolin-6-sulfonic acid. The phospholipid and free fatty acids were analysed by gas chromatography. Lipid peroxidation was estimated by measuring small molecular weight reactive aldehyde, malondialdehyde and neuroprostanes. The reactive aldehyde was determined using gas chromatography coupled with mass spectrometry. The activity of enzymes was examined spectrophotometrically. An analysis of endocannabinoids and eicosanoids was performed using a Shimadzu UPLC system coupled with an electrospray ionization source to a Shimadzu 8060 Triple Quadrupole system. Receptor expression was measured using an enzyme-linked immunosorbent assay (ELISA). RESULTS: The reduced antioxidant status as a result of infection was accompanied by a decrease in the level of phospholipid arachidonic acid (AA) and docosahexaenoic acid (DHA) in TBE, an increase in DHA in co-infection and in free DHA in TBE with an increase in the level of lipid peroxidation products. The enhanced activity of enzymes metabolizing phospholipids and free PUFAs increased the level of endocannabinoids and eicosanoids, while decreased 15-PGJ2 and PGE2 was accompanied by activation of granulocyte receptors before pharmacotherapy and only tending to normalize after treatment. CONCLUSION: Since classical pharmacotherapy does not prevent disorders of phospholipid metabolism, the need to support treatment with antioxidants may be suggested.


Asunto(s)
Anaplasma phagocytophilum , Borrelia burgdorferi , Coinfección , Virus de la Encefalitis Transmitidos por Garrapatas , Garrapatas , Humanos , Animales , Metabolismo de los Lípidos , Antioxidantes , Endocannabinoides , Bacterias , Aldehídos , Eicosanoides , Fosfolípidos
11.
Cell Mol Life Sci ; 81(1): 125, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38467757

RESUMEN

Adipose triglyceride lipase (ATGL) is involved in lipolysis and displays a detrimental pathophysiological role in cardio-metabolic diseases. However, the organo-protective effects of ATGL-induced lipolysis were also suggested. The aim of this work was to characterize the function of lipid droplets (LDs) and ATGL-induced lipolysis in the regulation of endothelial function. ATGL-dependent LDs hydrolysis and cytosolic phospholipase A2 (cPLA2)-derived eicosanoids production were studied in the aorta, endothelial and smooth muscle cells exposed to exogenous oleic acid (OA) or arachidonic acid (AA). Functional effects of ATGL-dependent lipolysis and subsequent activation of cPLA2/PGI2 pathway were also studied in vivo in relation to postprandial endothelial dysfunction.The formation of LDs was invariably associated with elevated production of endogenous AA-derived prostacyclin (PGI2). In the presence of the inhibitor of ATGL or the inhibitor of cytosolic phospholipase A2, the production of eicosanoids was reduced, with a concomitant increase in the number of LDs. OA administration impaired endothelial barrier integrity in vitro that was further impaired if OA was given together with ATGL inhibitor. Importantly, in vivo, olive oil induced postprandial endothelial dysfunction that was significantly deteriorated by ATGL inhibition, cPLA2 inhibition or by prostacyclin (IP) receptor blockade.In summary, vascular LDs formation induced by exogenous AA or OA was associated with ATGL- and cPLA2-dependent PGI2 production from endogenous AA. The inhibition of ATGL resulted in an impairment of endothelial barrier function in vitro. The inhibition of ATGL-cPLA2-PGI2 dependent pathway resulted in the deterioration of endothelial function upon exposure to olive oil in vivo. In conclusion, vascular ATGL-cPLA2-PGI2 dependent pathway activated by lipid overload and linked to LDs formation in endothelium and smooth muscle cells has a vasoprotective role by counterbalancing detrimental effects of lipid overload on endothelial function.


Asunto(s)
Eicosanoides , Lipólisis , Lipólisis/fisiología , Aceite de Oliva , Ácido Araquidónico/metabolismo , Eicosanoides/metabolismo , Prostaglandinas I/metabolismo , Fosfolipasas/metabolismo
12.
Curr Opin Virol ; 66: 101399, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38547562

RESUMEN

Respiratory viral infections represent a constant threat for human health and urge for a better understanding of the pulmonary immune response to prevent disease severity. Macrophages are at the center of pulmonary immunity, where they play a pivotal role in orchestrating beneficial and/or pathological outcomes during infection. Eicosanoids, the host bioactive lipid mediators, have re-emerged as important regulators of pulmonary immunity during respiratory viral infections. In this review, we summarize the current knowledge linking eicosanoids' and pulmonary macrophages' homeostatic and antimicrobial functions and discuss eicosanoids as emerging targets for immunotherapy in viral infection.


Asunto(s)
Eicosanoides , Macrófagos Alveolares , Eicosanoides/metabolismo , Eicosanoides/inmunología , Humanos , Macrófagos Alveolares/inmunología , Animales , Pulmón/inmunología , Pulmón/virología , Virosis/inmunología , Infecciones del Sistema Respiratorio/inmunología , Infecciones del Sistema Respiratorio/virología
14.
Cell Commun Signal ; 22(1): 189, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38519981

RESUMEN

The proinflammatory cytokines and arachidonic acid (AA)-derived eicosanoids play a key role in cartilage degeneration in osteoarthritis (OA). The lysophosphatidylcholine acyltransferase 3 (LPCAT3) preferentially incorporates AA into the membranes. Our recent studies showed that MALT1 [mucosa-associated lymphoid tissue lymphoma translocation protein 1]) plays a crucial role in propagating inflammatory signaling triggered by IL-1ß and other inflammatory mediators in endothelial cells. The present study shows that LPCAT3 expression was up-regulated in both human and mice articular cartilage of OA, and correlated with severity of OA. The IL-1ß-induces cell death via upregulation of LPCAT3, MMP3, ADAMTS5, and eicosanoids via MALT1. Gene silencing or pharmacological inhibition of LPCAT3 or MALT1 in chondrocytes and human cartilage explants notably suppressed the IL-1ß-induced cartilage catabolism through inhibition of expression of MMP3, ADAMTS5, and also secretion of cytokines and eicosanoids. Mechanistically, overexpression of MALT1 in chondrocytes significantly upregulated the expression of LPCAT3 along with MMP3 and ADAMTS5 via c-Myc. Inhibition of c-Myc suppressed the IL-1ß-MALT1-dependent upregulation of LPCAT3, MMP3 and ADAMTS5. Consistent with the in vitro data, pharmacological inhibition of MALT1 or gene silencing of LPCAT3 using siRNA-lipid nanoparticles suppressed the synovial articular cartilage erosion, pro-inflammatory cytokines, and eicosanoids such as PGE2, LTB4, and attenuated osteoarthritis induced by the destabilization of the medial meniscus in mice. Overall, our data reveal a previously unrecognized role of the MALT1-LPCAT3 axis in osteoarthritis. Targeting the MALT1-LPCAT3 pathway with MALT1 inhibitors or siRNA-liposomes of LPCAT3 may become an effective strategy to treat OA by suppressing eicosanoids, matrix-degrading enzymes, and proinflammatory cytokines.


Asunto(s)
Cartílago Articular , Osteoartritis , Animales , Humanos , Ratones , 1-Acilglicerofosfocolina O-Aciltransferasa/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferasa/farmacología , Cartílago Articular/metabolismo , Cartílago Articular/patología , Células Cultivadas , Condrocitos/metabolismo , Citocinas/metabolismo , Eicosanoides/metabolismo , Eicosanoides/farmacología , Eicosanoides/uso terapéutico , Células Endoteliales/metabolismo , Interleucina-1beta/metabolismo , Metaloproteinasa 3 de la Matriz/metabolismo , Metaloproteinasa 3 de la Matriz/farmacología , Metaloproteinasa 3 de la Matriz/uso terapéutico , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/metabolismo , Osteoartritis/metabolismo , ARN Interferente Pequeño/metabolismo
15.
Biomolecules ; 14(3)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38540794

RESUMEN

Polyunsaturated fatty acids (PUFAs) generate pro- and anti-inflammatory eicosanoids via three different metabolic pathways. This study profiled tear PUFAs and their metabolites and examined the relationships with dry eye (DE) and meibomian gland dysfunction (MGD) symptoms and signs. A total of 40 individuals with normal eyelids and corneal anatomies were prospectively recruited. The symptoms and signs of DE and MGD were assessed, and tear samples (from the right eye) were analyzed by mass spectrometry. Mann-Whitney U tests assessed differences between medians; Spearman tests assessed correlations between continuous variables; and linear regression models assessed the impact of potential confounders. The median age was 63 years; 95% were male; 30% were White; and 85% were non-Hispanic. The symptoms of DE/MGD were not correlated with tear PUFAs and eicosanoids. DE signs (i.e., tear break-up time (TBUT) and Schirmer's) negatively correlated with anti-inflammatory eicosanoids (11,12-dihydroxyeicosatrienoic acid (11,12 DHET) and 14,15-dihydroxyicosatrienoic acid (14,15, DHET)). Corneal staining positively correlated with the anti-inflammatory PUFA, docosahexaenoic acid (DHA). MGD signs significantly associated with the pro-inflammatory eicosanoid 15-hydroxyeicosatetranoic acid (15-HETE) and DHA. Several relationships remained significant when potential confounders were considered. DE/MGD signs relate more to tear PUFAs and eicosanoids than symptoms. Understanding the impact of PUFA-related metabolic pathways in DE/MGD may provide targets for new therapeutic interventions.


Asunto(s)
Síndromes de Ojo Seco , Humanos , Masculino , Persona de Mediana Edad , Femenino , Síndromes de Ojo Seco/tratamiento farmacológico , Eicosanoides/metabolismo , Lágrimas/metabolismo , Córnea/metabolismo , Ácidos Docosahexaenoicos , Antiinflamatorios/uso terapéutico
16.
Pharmacol Res ; 202: 107113, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38387744

RESUMEN

Sepsis, a complex clinical syndrome characterized by an exaggerated host response to infection, often necessitates hospitalization and intensive care unit admission. Delayed or inaccurate diagnosis of sepsis, coupled with suboptimal treatment strategies, can result in unfavorable outcomes, including mortality. Maresins, a newly discovered family of lipid mediators synthesized from docosahexaenoic acid by macrophages, have emerged as key players in promoting inflammation resolution and the termination of inflammatory processes. Extensive evidence has unequivocally demonstrated the beneficial effects of maresins in modulating the inflammatory response associated with sepsis; however, their bioactivity and functions exhibit remarkable diversity and complexity. This article presents a comprehensive review of recent research on the role of maresins in sepsis, aiming to enhance our understanding of their effectiveness and elucidate the specific mechanisms underlying their actions in sepsis treatment. Furthermore, emerging insights into the management of patients with sepsis are also highlighted.


Asunto(s)
Antiinflamatorios , Sepsis , Humanos , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Inflamación/tratamiento farmacológico , Inflamación/complicaciones , Ácidos Docosahexaenoicos/uso terapéutico , Ácidos Docosahexaenoicos/farmacología , Eicosanoides , Mediadores de Inflamación , Sepsis/tratamiento farmacológico , Sepsis/complicaciones
17.
Toxicol Appl Pharmacol ; 484: 116856, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38336253

RESUMEN

High-fat diet (HFD) contributes to neuroinflammation forming, hence it is crucial to find safe and effective substances that are able to counteract its progress. The anti-inflammatory properties of phytocannabinoids acquired from the Cannabis plant have been widely acknowledged. We evaluated the effects of cannabidiol (CBD) treatment on induced by applying HFD early stages of neuroinflammation in Wistar rat cerebral cortex. In our 7-week experiment, CBD was injected intraperitoneally over the last 14days at a dose of 10 mg/kg of body weight once a day. The level of arachidonic acid, a precursor to pro-inflammatory eicosanoids, decreased in all analysed lipid classes after CBD administration to the HFD group. Moreover, the extent of diminishing the activity of the omega-6 (n-6) fatty acid pathway by CBD was the greatest in diacylglycerols and phospholipids. Surprisingly, CBD was also capable of downregulating the activity of the omega-3 (n-3) pathway. The expression of enzymes involved in the synthesis of the eicosanoids was significantly increased in the HFD group and subsequently lowered by CBD. Significant changes in various cytokines levels were also discovered. Our results strongly suggest the ability of CBD to reduce the formation of lipid inflammation precursors in rat cerebral cortex, as a primary event in the development of neurodegenerative diseases. This can raise hopes for the future use of this cannabinoid for therapeutic purposes since it is a substance lacking lasting and severe side effects.


Asunto(s)
Cannabidiol , Ratas , Animales , Cannabidiol/farmacología , Enfermedades Neuroinflamatorias , Ratas Wistar , Dieta Alta en Grasa/efectos adversos , Fosfolípidos , Corteza Cerebral , Eicosanoides
18.
Ann Nutr Metab ; 80(3): 117-127, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38354712

RESUMEN

INTRODUCTION: Oxylipins are mediators of oxidative stress. To characterize the underlying inflammatory processes and phenotype effect of iron metabolism disorders, we investigated the oxylipin profile in hereditary hemochromatosis (HH) and dysmetabolic iron overload syndrome (DIOS) patients. METHODS: An LC-MS/MS-based method was performed to quantify plasma oxylipins in 20 HH and 20 DIOS patients in fasting conditions and 3 h after an iron-rich meal in HH patients. RESULTS: Principal component analysis showed no separation between HH and DIOS, suggesting that the clinical phenotype has no direct impact on oxylipin metabolism. 20-HETE was higher in DIOS and correlated with hypertension (p = 0.03). Different oxylipin signatures were observed in HH before and after the iron-rich meal. Discriminant oxylipins include epoxy fatty acids derived from docosahexaenoic acid and arachidonic acid as well as 13-HODE and 9-HODE. Mediation analysis found no major contribution of dietary iron absorption for 16/22 oxylipins significantly affected by the meal. DISCUSSION: The oxylipin profiles of HH and DIOS seemed similar except for 20-HETE, possibly reflecting different hypertension prevalence between the two groups. Oxylipins were significantly affected by the iron-rich meal, but the specific contribution of iron was not clear. Although iron may contribute to oxidative stress and inflammation in HH and DIOS, this does not seem to directly affect oxylipin metabolism.


Asunto(s)
Eicosanoides , Hemocromatosis , Sobrecarga de Hierro , Hierro de la Dieta , Oxilipinas , Humanos , Oxilipinas/sangre , Masculino , Femenino , Hemocromatosis/sangre , Hemocromatosis/genética , Persona de Mediana Edad , Hierro de la Dieta/administración & dosificación , Adulto , Eicosanoides/sangre , Sobrecarga de Hierro/sangre , Ácidos Hidroxieicosatetraenoicos/sangre , Espectrometría de Masas en Tándem , Estrés Oxidativo , Análisis de Componente Principal , Anciano , Ácidos Linoleicos/sangre , Cromatografía Liquida
19.
Prostaglandins Other Lipid Mediat ; 171: 106815, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38280539

RESUMEN

Glaucoma is a complex neurodegenerative disease characterized by optic nerve damage and visual field loss, and remains a leading cause of irreversible blindness. Elevated intraocular pressure (IOP) is a critical risk factor that requires effective management. Emerging research underscores dual roles of bioactive lipid mediators in both IOP regulation, and the modulation of neurodegeneration and neuroinflammation in glaucoma. Bioactive lipids, encompassing eicosanoids, specialized pro-resolving mediators (SPMs), sphingolipids, and endocannabinoids, have emerged as crucial players in these processes, orchestrating inflammation and diverse effects on aqueous humor dynamics and tissue remodeling. Perturbations in these lipid mediators contribute to retinal ganglion cell loss, vascular dysfunction, oxidative stress, and neuroinflammation. Glaucoma management primarily targets IOP reduction via pharmacological agents and surgical interventions, with prostaglandin analogues at the forefront. Intriguingly, additional lipid mediators offer promise in attenuating inflammation and providing neuroprotection. Here we explore these pathways to shed light on their intricate roles, and to unveil novel therapeutic avenues for glaucoma management.


Asunto(s)
Glaucoma , Enfermedades Neurodegenerativas , Humanos , Enfermedades Neuroinflamatorias , Glaucoma/tratamiento farmacológico , Glaucoma/metabolismo , Eicosanoides/uso terapéutico , Inflamación/tratamiento farmacológico , Mediadores de Inflamación
20.
J Nutr Biochem ; 126: 109580, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38272323

RESUMEN

Breastfeeding is the gold standard in infant nutrition and continuous researches aim to optimize infant formula composition as the best alternative available. Human milk lipid content provides more than 50% of energy requirements for infants together with essential vitamins, polyunsaturated fatty acids, and other bioactive components. While fatty acids and vitamins human milk content has been extensively studied and, when needed those have been added to infant formulas, less is known about polyunsaturated fatty acids functional derivatives and other bioactive components. Here we describe the comparison of lipid compositions in breast milk from 22 healthy volunteers breastfeeding mothers and the six most common infant formula devoting particular attention to two families of signaling lipids, endocannabinoids, and eicosanoids. The main differences between breast milk and formulas lie in a variety of saturated fatty and unsaturated fatty acids, in the total amount (45-95% less in infant formula) and a variety of endocannabinoids and eicosanoids (2-AG, 5(s)HETE, 15(S)-HETE and 14,15-EET).


Asunto(s)
Fórmulas Infantiles , Leche Humana , Lactante , Femenino , Humanos , Leche Humana/química , Fórmulas Infantiles/química , Endocannabinoides , Lípidos/química , Ácidos Grasos/análisis , Ácidos Grasos Insaturados , Vitaminas , Eicosanoides , Ácidos Hidroxieicosatetraenoicos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...