Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.496
1.
Sci Rep ; 14(1): 11241, 2024 05 16.
Article En | MEDLINE | ID: mdl-38755246

Current density, the membrane current value divided by membrane capacitance (Cm), is widely used in cellular electrophysiology. Comparing current densities obtained in different cell populations assume that Cm and ion current magnitudes are linearly related, however data is scarce about this in cardiomyocytes. Therefore, we statistically analyzed the distributions, and the relationship between parameters of canine cardiac ion currents and Cm, and tested if dividing original parameters with Cm had any effect. Under conventional voltage clamp conditions, correlations were high for IK1, moderate for IKr and ICa,L, while negligible for IKs. Correlation between Ito1 peak amplitude and Cm was negligible when analyzing all cells together, however, the analysis showed high correlations when cells of subepicardial, subendocardial or midmyocardial origin were analyzed separately. In action potential voltage clamp experiments IK1, IKr and ICa,L parameters showed high correlations with Cm. For INCX, INa,late and IKs there were low-to-moderate correlations between Cm and these current parameters. Dividing the original current parameters with Cm reduced both the coefficient of variation, and the deviation from normal distribution. The level of correlation between ion currents and Cm varies depending on the ion current studied. This must be considered when evaluating ion current densities in cardiac cells.


Action Potentials , Electric Capacitance , Heart Ventricles , Myocytes, Cardiac , Patch-Clamp Techniques , Animals , Dogs , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/physiology , Heart Ventricles/cytology , Heart Ventricles/metabolism , Action Potentials/physiology , Membrane Potentials/physiology , Ion Channels/metabolism , Cell Membrane/metabolism
2.
Int J Mol Sci ; 25(10)2024 May 07.
Article En | MEDLINE | ID: mdl-38791115

Surface chemistry and bulk structure jointly play crucial roles in achieving high-performance supercapacitors. Here, the synergistic effect of surface chemistry properties (vacancy and phosphorization) and structure-derived properties (hollow hydrangea-like structure) on energy storage is explored by the surface treatment and architecture design of the nanostructures. The theoretical calculations and experiments prove that surface chemistry modulation is capable of improving electronic conductivity and electrolyte wettability. The structural engineering of both hollow and nanosheets produces a high specific surface area and an abundant pore structure, which is favorable in exposing more active sites and shortens the ion diffusion distance. Benefiting from its admirable physicochemical properties, the surface phosphorylated MnCo2O4.5 hollow hydrangea-like structure (P-MnCoO) delivers a high capacitance of 425 F g-1 at 1 A g-1, a superior capability rate of 63.9%, capacitance retention at 10 A g-1, and extremely long cyclic stability (91.1% after 10,000 cycles). The fabricated P-MnCoO/AC asymmetric supercapacitor achieved superior energy and power density. This work opens a new avenue to further improve the electrochemical performance of metal oxides for supercapacitors.


Electric Capacitance , Manganese Compounds , Oxides , Oxygen , Manganese Compounds/chemistry , Oxides/chemistry , Oxygen/chemistry , Surface Properties , Nanostructures/chemistry , Electrochemical Techniques/methods
3.
PLoS One ; 19(5): e0301437, 2024.
Article En | MEDLINE | ID: mdl-38753682

Many different kind of fluids in a wide variety of industries exist, such as two-phase and three-phase. Various combinations of them can be expected and gas-oil-water is one of the most common flows. Measuring the volume fraction of phases without separation is vital in many aspects, one of which is financial issues. Many methods are utilized to ascertain the volumetric proportion of each phase. Sensors based on measuring capacity are so popular because this kind of sensor operates seamlessly and autonomously without necessitating any form of segregation or disruption for measuring in the process. Besides, at the present moment, Artificial intelligence (AI) can be nominated as the most useful tool in several fields, and metering is no exception. Also, three main type of regimes can be found which are annular, stratified, and homogeneous. In this paper, volume fractions in a gas-oil-water three-phase homogeneous regime are measured. To accomplish this objective, an Artificial Neural Network (ANN) and a capacitance-based sensor are utilized. To train the presented network, an optimized sensor was implemented in the COMSOL Multiphysics software and after doing a lot of simulations, 231 different data are produced. Among all obtained results, 70 percent of them (161 data) are awarded to the train data, and the rest of them (70 data) are considered for the test data. This investigation proposes a new intelligent metering system based on the Multilayer Perceptron network (MLP) that can estimate a three-phase water-oil-gas fluid's water volume fraction precisely with a very low error. The obtained Mean Absolute Error (MAE) is equal to 1.66. This dedicates the presented predicting method's considerable accuracy. Moreover, this study was confined to homogeneous regime and cannot measure void fractions of other fluid types and this can be considered for future works. Besides, temperature and pressure changes which highly temper relative permittivity and density of the liquid inside the pipe can be considered for another future idea.


Artificial Intelligence , Neural Networks, Computer , Water , Electric Capacitance , Gases/analysis
4.
Biosens Bioelectron ; 258: 116376, 2024 Aug 15.
Article En | MEDLINE | ID: mdl-38739999

The capacitive immunosensor, known for its label-free simplicity, has great potential for point-of-care diagnostics. However, the interaction between insulation and recognition layers on the sensing electrode greatly affects its performance. This study introduces a pioneering dual-layer strategy, implementing a novel combination of acrylic resin (AR) and nitrocellulose (NC) coatings on screen-printed carbon electrodes (SPCEs). This innovative approach not only enhances the dielectric properties of the capacitive sensor but also streamlines the immobilization of recognizing elements. Particularly noteworthy is the superior reliability and insulation offered by the AR coating, surpassing the limitations of traditional self-assembled monolayer (SAM) modifications. This dual-layer methodology establishes a robust foundation for constructing capacitive sensors optimized specifically for liquid medium-based biosensing applications. The NC coating in this study represents a breakthrough in effectively immobilizing BSA, unraveling the capacitive response intricately linked to the quantity of adsorbed recognizing elements. The results underscore the prowess of the proposed immunosensor, showcasing a meticulously defined linear calibration curve for anti-BSA (ranging from 0 to 25 µg/ml). Additionally, specific interactions with anti-HAS and anti-TNF-α further validate the versatility and efficacy of the developed immunosensor. This work presents a streamlined and highly efficient protocol for developing label-free immunosensors for antibody determination and introduces a paradigm shift by utilizing readily available electrodes and sensing systems. The findings are poised to catalyze a significant acceleration in the advancement of biosensor technology, opening new avenues for innovative applications in point-of-care diagnostics.


Acrylic Resins , Biosensing Techniques , Carbon , Collodion , Electrodes , Serum Albumin, Bovine , Biosensing Techniques/instrumentation , Carbon/chemistry , Acrylic Resins/chemistry , Immunoassay/instrumentation , Immunoassay/methods , Collodion/chemistry , Serum Albumin, Bovine/chemistry , Humans , Electric Capacitance , Limit of Detection , Electrochemical Techniques/methods , Antibodies, Immobilized/chemistry , Animals
5.
Biosensors (Basel) ; 14(5)2024 May 10.
Article En | MEDLINE | ID: mdl-38785715

Electrochemical impedance spectroscopy (EIS) is becoming more and more relevant for the characterization of biosensors employing interdigitated electrodes. We compare four different sensor topologies for an exemplary use case of ion sensing to extract recommendations for the design optimizations of impedimetric biosensors. Therefore, we first extract how sensor design parameters affect the sensor capacitance using analytical calculations and finite element (FEM) simulations. Moreover, we develop equivalent circuit models for our sensor topologies and validate them using FEM simulations. As a result, the impedimetric sensor response is better understood, and sensitive and selective frequency ranges can be determined for a given sensor topology. From this, we extract design optimizations for different sensing principles.


Biosensing Techniques , Dielectric Spectroscopy , Electric Capacitance , Electrodes , Ions , Finite Element Analysis
6.
Int J Biol Macromol ; 268(Pt 1): 131639, 2024 May.
Article En | MEDLINE | ID: mdl-38641278

The phenomenon of overlapping double layers due to micropores inhibits capacitive deionization performance, which is improved by increasing the pore size. In this study, a novel ternary composite electrode (sodium lignosulfonate/reduced graphene oxide/cobalt sulfide, LGC) was designed using a two-step hydrothermal method. CoS with high pseudocapacitance modifies sodium lignosulfonate and graphene connected by hydrogen bonding, benefiting from the constitutive steric structure. The electrochemical performance was significantly enhanced, and the desalination capacity substantially improved. The LGC electrode specific capacitance was as high as 354.47 F g-1 at a 1 A g-1 current density. The desalination capacity of the capacitive deionization device comprising LGC and activated carbon in 1 M NaCl electrolyte reached 28.04 mg g-1 at an operating condition of 1.2 V, 7 mL min-1. Additionally, the LGC electrodes degraded naturally post the experiment by simply removing the CoS, suggesting that the LGC composites are promising material for capacitive deionization electrodes.


Cobalt , Electrodes , Graphite , Lignin , Graphite/chemistry , Lignin/chemistry , Lignin/analogs & derivatives , Cobalt/chemistry , Porosity , Water Purification/methods , Electric Capacitance , Sodium Chloride/chemistry
7.
PLoS One ; 19(4): e0299079, 2024.
Article En | MEDLINE | ID: mdl-38630772

Organic photovoltaic cells are a promising technology for generating renewable energy from sunlight. These cells are made from organic materials, such as polymers or small molecules, and can be lightweight, flexible, and low-cost. Here, we have created a novel mixture of magnesium phthalocyanine (MgPc) and chlorophenyl ethyl diisoquinoline (Ch-diisoQ). A coating unit has been utilized in preparing MgPc, Ch-diisoQ, and MgPc-Ch-diisoQ films onto to FTO substrate. The MgPc-Ch-diisoQ film has a spherical and homogeneous surface morphology with a grain size of 15.9 nm. The optical absorption of the MgPc-Ch-diisoQ film was measured, and three distinct bands were observed at 800-600 nm, 600-400 nm, and 400-250 nm, with a band gap energy of 1.58 eV. The current density-voltage and capacitance-voltage measurements were performed to analyze the photoelectric properties of the three tested cells. The forward current density obtained from our investigated blend cell is more significant than that for each material by about 22%. The photovoltaic parameters (Voc, Isc, and FF) of the MgPc-Ch-diisoQ cell were found to be 0.45 V, 2.12 µA, and 0.4, respectively. We believe that our investigated MgPc-Ch-diisoQ film will be a promising active layer in organic solar cells.


Edible Grain , Isoindoles , Magnesium , Electric Capacitance , Electronics , Indoles
8.
PLoS One ; 19(4): e0298282, 2024.
Article En | MEDLINE | ID: mdl-38635658

Liquid level detection system is an essential core functional component of automatic clinical medical testing instrument. The conventional liquid level detection method has low detection accuracy and sensitivity, and may have the problem of false detection, which may lead to the inaccurate test results. This paper presents a high sensitivity liquid level detection system based on the principle of variable capacitance. When the sampling probe contacts the liquid level, the probe capacitance will change. The liquid level detection circuit board judges whether the probe contacts the liquid level by sensing the change of probe capacitance. When judging the liquid level signal, the combination of slope detection and amplitude detection is used. The liquid level detection circuit board takes the phase-locked loop(PLL) circuit as the center to detect the change of the capacitance. The reference signal of the PLL is set as a square wave of 375kHz. The double tube probe is used as a part of the tuning capacitor of the voltage controlled oscillator to control the frequency of the output signal, which can realize the rapid phase locking. The experimental results show that the system has accurate detection results, high sensitivity, stable and reliable operation, good dynamic response performance in the case of large and small liquid volume. Compared with other liquid level detection methods based on machine vision, ultrasonic, optics and so on, the proposed liquid level detection system has simpler structure and lower cost, it can avoid the problems of collision, carryover contamination and empty suction by controlling the depth of sampling needle inserted into liquid.


Electric Capacitance
9.
Int J Biol Macromol ; 267(Pt 2): 131463, 2024 May.
Article En | MEDLINE | ID: mdl-38599418

The rational and effective combination of different electrochemical substances to prepare high-performance supercapacitor electrodes has been widely studied by researchers. Currently, most work focuses on polymerizing conductive polymers onto the surface of nanocellulose and carbon materials, and then preparing them into supercapacitor electrodes. This method is effective, but the process is cumbersome. Therefore, we propose a simpler and more effective method. A hydrogel was prepared by using TEMPO oxidized cellulose nanofibers (TOCNF)/multi walled carbon nanotubes (MWCNT), and then immersed in aniline and FeCI3 solutions for 24 h to obtain a hydrogel electrode. At a current density of 0.5 mA cm-2, it exhibits an area specific capacitance of 1028 mF cm-2, with a maximum strain of 58 % and a compressive stress of 150 KPa. The assembled symmetrical supercapacitor exhibits a high specific capacitance of 303 mF cm-2 at a current density of 0.5 mA cm-2. The research results indicate that the proposed method is a new feasible approach for developing supercapacitors.


Cellulose , Electric Capacitance , Electrodes , Hydrogels , Nanotubes, Carbon , Cellulose/chemistry , Nanotubes, Carbon/chemistry , Hydrogels/chemistry , Nanofibers/chemistry
10.
Chemosphere ; 357: 141965, 2024 Jun.
Article En | MEDLINE | ID: mdl-38621491

In this work, we report a supercapacitor electrode material based on nano-flower like cobalt molybdate decorated on porous activated carbon derived from waste onion peels (ß-CoMoO4-POAC). The obtained POAC exhibits highly porous structure and after the hydrothermal treatment with salts of cobalt and molybdenum, we observed a uniform distribution of ß-cobalt molybdate (ß-CoMoO4) as nano-flowers on the surface of POAC. The chemical composition, morphology and porosity of the materials were thoroughly analyzed using field emission scanning electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, infrared spectroscopy and Brunauer-Emmet-Teller surface area measurement. Due to its flower like and highly porous morphology, ß-CoMoO4@POAC exhibits a high specific capacitance of 1110.72 F/g at a current density of 1 mA/cm2 with superior cyclic retention of 96.03% after 2000 cycles. The best electrochemical performance exhibited by ß-CoMoO4@POAC is mainly due to its high surface area and porous nature of the material which assists in active transport of ions. This study reveals the exceptional electrochemical properties of ß-CoMoO4@POAC which could be considered as a potential material for advanced energy storage devices.


Cobalt , Electric Capacitance , Electrodes , Molybdenum , Nanocomposites , Molybdenum/chemistry , Cobalt/chemistry , Nanocomposites/chemistry , Porosity , Charcoal/chemistry , Carbon/chemistry
11.
J Colloid Interface Sci ; 665: 720-732, 2024 Jul.
Article En | MEDLINE | ID: mdl-38554462

Carbon nanostructures derived from human hair biowaste are incorporated into polyvinylidene fluoride (PVDF) polymer to enhance the energy conversion performance of a triboelectric nanogenerator (TENG). The PVDF filled with activated carbon nanomaterial from human hair (AC-HH) exhibits improved surface charge density and photoinduced charge generation. These remarkable properties are attributed to the presence of graphene-like nanostructures in AC-HH, contributing to the augmented performance of PVDF@AC-HH TENG. The correlation of surface morphologies, surface charge potential, charge capacitance properties, and TENG electrical output of the PVDF composites at various AC-HH loading is studied and discussed. Applications of the PVDF@AC-HH TENG as a power source for micro/nanoelectronics and a movement sensor for detecting finger gestures are also demonstrated. The photoresponse property of the fabricated TENG is demonstrated and analyzed in-depth. The analysis indicates that the photoinduced charge carriers originate from the conductive reduced graphene oxide (rGO), contributing to the enhanced surface charge density of the PVDF composite film. This research introduces a novel approach to enhancing TENG performance through the utilization of carbon nanostructures derived from human biowaste. The findings of this work are crucial for the development of innovative energy-harvesting technology with multifunctionality, including power generation, motion detection, and photoresponse capabilities.


Charcoal , Fluorocarbon Polymers , Nanostructures , Polyvinyls , Humans , Electric Capacitance , Hair
12.
Bioresour Technol ; 399: 130573, 2024 May.
Article En | MEDLINE | ID: mdl-38479626

Exploring new electrode structures and co-doped composite biomass material electrodes is considered to be an effective way of developing cheap, efficient carbon-based supercapacitors. A bamboo-based sandwich-structured matrix was prepared from thin bamboo veneer and bamboo fiber by pretreatment with H3PO4 and Co2+-catalyzed graphitization. The pore structure was modulated by hydrothermal activation with NaOH and electrodeposition of carbon nanotubes (CNTs) to obtain CNTs modified, Co/P co-doped sandwich-structured woodceramics electrode (CNT@Co/P). It not only has an obvious sandwich structure, but also retains the natural structural characteristics of bamboo. The specific capacitance of the resulting electrode (CNT@Co/P-20) is as high as 453.72F/g using 1 wt% of carboxylated multi-walled carbon nanotubes (CMWCNT) solution as the deposition electrolyte at a current density of 0.2 A/g for 20 min at room temperature. When the power density is 500 W/kg, the energy density reaches 21.3Wh /kg, showing a good electrochemical performance.


Nanotubes, Carbon , Nanotubes, Carbon/chemistry , Electroplating , Electrodes , Electric Capacitance , Biomass
13.
Chemosphere ; 354: 141593, 2024 Apr.
Article En | MEDLINE | ID: mdl-38460854

This study presents an innovative method for synthesizing activated carbon with an exceptionally high surface area (3359 m2 g-1) using kenaf fiber-based biochar through chemical activation. The achieved specific surface area surpasses activated carbon derived from other reported fiber-based precursors. The resulting activated carbon was investigated as electrodes for supercapacitors, revealing a remarkable maximum capacitance of 312 F g-1 at a current density of 0.5 A g-1. An aqueous symmetric supercapacitor employing these high-surface-area electrodes exhibited an outstanding energy density of 18.9 Wh kg-1 at a power density of 250 W kg-1. Notably, the supercapacitor retained exceptional capacitance, maintaining 93% of its initial capacitance even after 5000 charge-discharge cycles.


Charcoal , Hibiscus , Electric Capacitance , Electrodes
14.
Environ Sci Pollut Res Int ; 31(18): 26606-26617, 2024 Apr.
Article En | MEDLINE | ID: mdl-38451461

A simple, low-cost, and environmentally benign process for synthesizing nanostructured NiO/NiAl2O4 on multiple kinds of carbon nanostructures (CNS) is presented. This method develops polylactic acid (PLA) based waste plastic materials for the producing CNS. These composites (NiO@NiAl2O4/CNS) were examined as potential electrodes in supercapacitors (SC) as they exhibit good charge/discharge reversibility and provide adequate specific capacitance values with a maximum being 1984 F/g at 0.5 A g-1. It is noteworthy that the cycling stability of this sample at 10 A g-1 maintained 101.7% of its initial capacity even after 5000 GCD cycles. An asymmetric supercapacitor (ASC) was built and analyzed, with NiO@NiAl2O4/CNS serving as the cathode and activated carbon serving as the anode of the device. The concluded device has an energy density of 58 Wh kg-1 with a power density of 986 W kg-1 and a SCs of 216.5 F/g. The results showed that the materials mentioned are a great option to use as electrode materials in applications involving the storage of energy.


Electrodes , Plastics , Polyesters , Polyesters/chemistry , Plastics/chemistry , Nanoparticles/chemistry , Electric Capacitance , Nickel/chemistry
15.
IEEE Trans Biomed Circuits Syst ; 18(3): 662-678, 2024 Jun.
Article En | MEDLINE | ID: mdl-38306262

This article demonstrates an inductively coupled high-accuracy localization system for miniature ingestible devices. It utilizes an inductance double capacitances-series capacitance (LCC-S) compensation architecture that enables mutual inductance measurement at primary side that is positioned outside the human body and less constrained by power budget and size than the miniature ingestible. Depending on the secondary circuit architecture, only limited and simple cooperative measurements are needed from the ingestible secondary side, which saves power and area in the miniature device. The errors in the system are modeled thoroughly, providing insights about system require-ments for a particular localization accuracy target for efficient design and to identify key building blocks with large influence on overall performance. The model shows that sub-centimeter localization root-mean-square error (RMSE) can be achieved with a modest external ADC (18bit) using three primary coils and three secondary coils. The localization is verified along a complete small intestine tract with realistic dimensions. The proposed model is verified by simulation and experiment showing that at the selected frequency range up to 5 MHz the body has no influence on the accuracy. The use of 0.9% saline as phantom is proposed which guarantees the analysis validity for all body types.


Equipment Design , Humans , Electric Capacitance , Wireless Technology/instrumentation
16.
Int J Biol Macromol ; 262(Pt 2): 130254, 2024 Mar.
Article En | MEDLINE | ID: mdl-38368992

The developed porous structure and high density are essential to enhance the bulk performance of carbon-based supercapacitors. Nevertheless, it remains a significant challenge to optimize the balance between the porous structure and the density of carbon materials to realize superior gravimetric and areal electrochemical performance. The soluble starch-derived interconnected hierarchical porous carbon microspheres were prepared through a simple hydrothermal treatment succeeded by chemical activation with a low dosage of KOH. Due to the formation of interconnected spherical morphology, hierarchical porous structure, reasonable mesopore volume (0.33 cm3 g-1) and specific surface area (1162 m2 g-1), the prepared carbon microsphere has an ultrahigh capacitance of 394 F g-1 @ 1 A g-1 and a high capacitance retention of 62.7 % @ 80 A g-1. The assembled two-electrode device displays good cycle stability after 20,000 cycles and an ultra-high energy density of 11.6 Wh kg-1 @ 250 W kg-1. Moreover, the sample still exhibits a specific capacitance of 165 F g-1 @ 1 A g-1 at a high mass loading of 10 mg cm-2, resulting in a high areal capacitance of 1.65 F cm-2. The strategy proposed in this study, via a low-dose KOH activation process, provides the way for the synthesis of high-performance porous carbon materials.


Carbon , Starch , Carbon/chemistry , Microspheres , Porosity , Electric Capacitance
17.
ACS Appl Mater Interfaces ; 16(6): 6789-6798, 2024 Feb 14.
Article En | MEDLINE | ID: mdl-38297999

Magnetic biomolecule-based bionic magnetic field sensors are anticipated to open up novel pathways for magnetic field detection. The detection range and accuracy of current bionic magnetic field sensors are limited, and little work is based on the capacitive response principle. We successfully developed a biochemical interface with an extralarge target-receptor size ratio, which can be manufactured in a single step for weak magnetic field detection across a wide frequency range, and we used electrochemical capacitance as a magnetic field change conduction strategy. The thickness-controllable nanoscale bovine serum albumin/graphene layer on an indium tin oxide working electrode combines with the one-step preparation method to immobilize the MagR/Cry4 complex. This capacitive bionic magnetic sensor can achieve the detection range of 0-120 mT. This biointerface design strategy obtains the further improvement of the performance of this bionic magnetic field sensor. Furthermore, the biointerface construction and optimization methodology in this proposal has potential applications in the design of other medical biosensors.


Biosensing Techniques , Graphite , Bionics , Electric Capacitance , Electrodes
18.
PLoS One ; 19(2): e0292737, 2024.
Article En | MEDLINE | ID: mdl-38324619

The transition towards renewable energy sources necessitates efficient energy storage systems to meet growing demands. Electrochemical capacitors, particularly electric double-layer capacitors (EDLCs), show promising performance due to their superior properties. However, the presence of resistance limits their performance. This study explores using an external magnetic field to mitigate ion transfer resistance and enhance capacitance in magnetite-reduced graphene oxide (M-rGO) nanocomposites. M-rGO nanocomposites with varying weight ratios of magnetite were synthesized and comprehensively characterized. Characterization highlighted the difference in certain parameters such as C/O ratio, the Id/Ig ratio, surface area and particle size that contribute towards alteration of M-rGO's capacitive behaviour. Electrochemical studies demonstrated that applying a magnetic field increased specific capacitance by approximately 20% and reduced resistance by 33%. Notably, a maximum specific capacitance of 16.36 F/g (at a scan rate of 0.1 V/s) and 27.24 F/g (at a current density of 0.25 A/g) was achieved. These improvements were attributed to enhanced ion transportation and migration at the electrode/electrolyte interface, lowering overall resistance. However, it was also observed that the aforementioned parameters can also limit the M-rGO's performance, resulting in saturated capacitive state despite a reduced resistance. The integration of magnetic fields enhances energy storage in nanocomposite systems, necessitating further investigation into underlying mechanisms and practical applications.


Ferrosoferric Oxide , Graphite , Nanocomposites , Electric Capacitance , Magnetic Fields
19.
Macromol Rapid Commun ; 45(9): e2300668, 2024 May.
Article En | MEDLINE | ID: mdl-38325804

Flexible pressure sensors have drawn considerable attention for their potential applications as electronic skins with both sensitivity and pressure response range. Although the introduction of surface microstructures effectively enhances sensitivity, the confined volume of their compressible structures results in a limited pressure response range. To address this issue, a biomimetic kapok structure is proposed and implemented for constructing the dielectric layer of flexible capacitive pressure sensors employing 3D printing technology. The structure is designed with easily deformable concave and rotational structures, enabling continuous deformation under pressure. This design results in a significant expansion of the pressure response range and improvement in sensitivity. Further, the study purposively analyses crucial parameters of the devised structure that affect its compressibility and stability. These include the concave angle θ, height ratio d1/d2, rotation angle α, and width k. As a result, the ultimate pressure sensors demonstrate remarkable features such as high sensitivity (≈2.38 kPa-1 in the range of 0-10 kPa), broad detection range (734 kPa), fast response time (23 ms), and outstanding pressure resolution (0.4% at 500 kPa). This study confirms the viability of bionic structures for flexible sensors, and their potential to expand the scope of wearable electronic devices.


Pressure , Printing, Three-Dimensional , Wearable Electronic Devices , Electric Capacitance
20.
Chemosphere ; 350: 141080, 2024 Feb.
Article En | MEDLINE | ID: mdl-38163467

The chemical conversion of plastic waste into metal-organic framework (MOF) materials has emerged as a significant research field in addressing issues associated to the environment and the economy. The significant advantages of MOFs as electrode material for energy/supercapacitors arises from their extensive surface area and notable porosity. The present study involved the synthesis of Zirconium-Metal Organic Frameworks (Zr-MOF) by the solvothermal method, utilizing plastic waste in the form of Polyethylene terephthalate (PET) bottles. The morphological and structural characteristics of the Zr-MOF were inspected through several analytical techniques, including scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and Fourier-transform infrared spectroscopy analysis. The as prepared Zr-MOF demonstrated very high specific surface area of 927.567 m2 g-1 with mesoporous nature of the materials estimate by BJH method. The electrochemical characteristics of the Zr-MOF in 3-electrode system exhibited a notable specific capacitance of 822 F g-1 when subjected to a low scan rate of 2 mV S-1, while the specific capacitance estimated through galvanostatic charge-discharge exhibited an enhanced value of 890 F g-1 at a current density of 0.5 A g-1. Additionally, the working electrode composed of Zr-MOF demonstrated noteworthy capacitance retention of 92% after 5000 charge discharge cycles. This research presents novel opportunities for the utilization of waste PET bottles in fabrication of highly functional Zr-MOF, aiming to advance the development of next-generation supercapacitors and environmental remediation.


Environmental Restoration and Remediation , Metal-Organic Frameworks , Polyethylene Terephthalates , Electric Capacitance , Electrodes
...