Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 4.127
1.
J Neurosci Methods ; 407: 110154, 2024 Jul.
Article En | MEDLINE | ID: mdl-38697518

BACKGROUND: Thanks to its unrivalled spatial and temporal resolutions and signal-to-noise ratio, intracranial EEG (iEEG) is becoming a valuable tool in neuroscience research. To attribute functional properties to cortical tissue, it is paramount to be able to determine precisely the localization of each electrode with respect to a patient's brain anatomy. Several software packages or pipelines offer the possibility to localize manually or semi-automatically iEEG electrodes. However, their reliability and ease of use may leave to be desired. NEW METHOD: Voxeloc (voxel electrode locator) is a Matlab-based graphical user interface to localize and visualize stereo-EEG electrodes. Voxeloc adopts a semi-automated approach to determine the coordinates of each electrode contact, the user only needing to indicate the deep-most contact of each electrode shaft and another point more proximally. RESULTS: With a deliberately streamlined functionality and intuitive graphical user interface, the main advantages of Voxeloc are ease of use and inter-user reliability. Additionally, oblique slices along the shaft of each electrode can be generated to facilitate the precise localization of each contact. Voxeloc is open-source software and is compatible with the open iEEG-BIDS (Brain Imaging Data Structure) format. COMPARISON WITH EXISTING METHODS: Localizing full patients' iEEG implants was faster using Voxeloc than two comparable software packages, and the inter-user agreement was better. CONCLUSIONS: Voxeloc offers an easy-to-use and reliable tool to localize and visualize stereo-EEG electrodes. This will contribute to democratizing neuroscience research using iEEG.


Software , User-Computer Interface , Humans , Electrodes, Implanted , Electroencephalography/methods , Electroencephalography/instrumentation , Brain/physiology , Brain/diagnostic imaging , Electrocorticography/methods , Electrocorticography/instrumentation , Reproducibility of Results
2.
J Integr Neurosci ; 23(5): 93, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38812381

BACKGROUND: Magnetoencephalography (MEG) is a non-invasive imaging technique for directly measuring the external magnetic field generated from synchronously activated pyramidal neurons in the brain. The optically pumped magnetometer (OPM) is known for its less expensive, non-cryogenic, movable and user-friendly custom-design provides the potential for a change in functional neuroimaging based on MEG. METHODS: An array of OPMs covering the opposite sides of a subject's head is placed inside a magnetically shielded room (MSR) and responses evoked from the auditory cortices are measured. RESULTS: High signal-to-noise ratio auditory evoked response fields (AEFs) were detected by a wearable OPM-MEG system in a MSR, for which a flexible helmet was specially designed to minimize the sensor-to-head distance, along with a set of bi-planar coils developed for background field and gradient nulling. Neuronal current sources activated in AEF experiments were localized and the auditory cortices showed the highest activities. Performance of the hybrid optically pumped magnetometer-magnetoencephalography/electroencephalography (OPM-MEG/EEG) system was also assessed. CONCLUSIONS: The multi-channel OPM-MEG system performs well in a custom built MSR equipped with bi-planar coils and detects human AEFs with a flexible helmet. Moreover, the similarities and differences of auditory evoked potentials (AEPs) and AEFs are discussed, while the operation of OPM-MEG sensors in conjunction with EEG electrodes provides an encouraging combination for the exploration of hybrid OPM-MEG/EEG systems.


Auditory Cortex , Electroencephalography , Evoked Potentials, Auditory , Magnetoencephalography , Humans , Magnetoencephalography/instrumentation , Evoked Potentials, Auditory/physiology , Auditory Cortex/physiology , Electroencephalography/instrumentation , Electroencephalography/methods , Adult , Male
3.
J Neural Eng ; 21(3)2024 May 28.
Article En | MEDLINE | ID: mdl-38722308

Objective. This study aims to develop and validate an end-to-end software platform, PyHFO, that streamlines the application of deep learning (DL) methodologies in detecting neurophysiological biomarkers for epileptogenic zones from EEG recordings.Approach. We introduced PyHFO, which enables time-efficient high-frequency oscillation (HFO) detection algorithms like short-term energy and Montreal Neurological Institute and Hospital detectors. It incorporates DL models for artifact and HFO with spike classification, designed to operate efficiently on standard computer hardware.Main results. The validation of PyHFO was conducted on three separate datasets: the first comprised solely of grid/strip electrodes, the second a combination of grid/strip and depth electrodes, and the third derived from rodent studies, which sampled the neocortex and hippocampus using depth electrodes. PyHFO demonstrated an ability to handle datasets efficiently, with optimization techniques enabling it to achieve speeds up to 50 times faster than traditional HFO detection applications. Users have the flexibility to employ our pre-trained DL model or use their EEG data for custom model training.Significance. PyHFO successfully bridges the computational challenge faced in applying DL techniques to EEG data analysis in epilepsy studies, presenting a feasible solution for both clinical and research settings. By offering a user-friendly and computationally efficient platform, PyHFO paves the way for broader adoption of advanced EEG data analysis tools in clinical practice and fosters potential for large-scale research collaborations.


Deep Learning , Electroencephalography , Electroencephalography/methods , Electroencephalography/instrumentation , Animals , Rats , Algorithms , Epilepsy/physiopathology , Epilepsy/diagnosis , Software , Humans , Hippocampus/physiology
4.
Neuroimage ; 294: 120637, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38714216

In recent years, brainprint recognition has emerged as a novel method of personal identity verification. Although studies have demonstrated the feasibility of this technology, some limitations hinder its further development into the society, such as insufficient efficiency (extended wear time for multi-channel EEG cap), complex experimental paradigms (more time in learning and completing experiments), and unclear neurobiological characteristics (lack of intuitive biomarkers and an inability to eliminate the impact of noise on individual differences). Overall, these limitations are due to the incomplete understanding of the underlying neural mechanisms. Therefore, this study aims to investigate the neural mechanisms behind brainwave recognition and simplify the operation process. We recorded prefrontal resting-state EEG data from 40 participants, which is followed up over nine months using a single-channel portable brainwave device. We found that portable devices can effectively and stably capture the characteristics of different subjects in the alpha band (8-13Hz) over long periods, as well as capturing their individual differences (no alpha peak, 1 alpha peak, or 2 alpha peaks). Through correlation analysis, alpha-band activity can reveal the uniqueness of the subjects compared to others within one minute. We further used a descriptive model to dissect the oscillatory and non-oscillatory components in the alpha band, demonstrating the different contributions of fine oscillatory features to individual differences (especially amplitude and bandwidth). Our study validated the feasibility of portable brainwave devices in brainwave recognition and the underlying neural oscillation mechanisms. The fine characteristics of various alpha oscillations will contribute to the accuracy of brainwave recognition, providing new insights for the development of future brainwave recognition technology.


Electroencephalography , Humans , Male , Female , Adult , Electroencephalography/instrumentation , Electroencephalography/methods , Young Adult , Alpha Rhythm/physiology , Brain/physiology , Prefrontal Cortex/physiology
5.
Epilepsy Res ; 202: 107356, 2024 May.
Article En | MEDLINE | ID: mdl-38564925

Implantable brain recording and stimulation devices apply to a broad spectrum of conditions, such as epilepsy, movement disorders and depression. For long-term monitoring and neuromodulation in epilepsy patients, future extracranial subscalp implants may offer a promising, less-invasive alternative to intracranial neurotechnologies. To inform the design and assess the safety profile of such next-generation devices, we estimated extracranial complication rates of deep brain stimulation (DBS), cranial peripheral nerve stimulation (PNS), responsive neurostimulation (RNS) and existing subscalp EEG devices (sqEEG), as proxy for future implants. Pubmed was searched systematically for DBS, PNS, RNS and sqEEG studies from 2000 to February 2024 (48 publications, 7329 patients). We identified seven categories of extracranial adverse events: infection, non-infectious cutaneous complications, lead migration, lead fracture, hardware malfunction, pain and hemato-seroma. We used cohort sizes, demographics and industry funding as metrics to assess risks of bias. An inverse variance heterogeneity model was used for pooled and subgroup meta-analysis. The pooled incidence of extracranial complications reached 14.0%, with infections (4.6%, CI 95% [3.2 - 6.2]), surgical site pain (3.2%, [0.6 - 6.4]) and lead migration (2.6%, [1.0 - 4.4]) as leading causes. Subgroup analysis showed a particularly high incidence of persisting pain following PNS (12.0%, [6.8 - 17.9]) and sqEEG (23.9%, [12.7 - 37.2]) implantation. High rates of lead migration (12.4%, [6.4 - 19.3]) were also identified in the PNS subgroup. Complication analysis of DBS, PNS, RNS and sqEEG studies provides a significant opportunity to optimize the safety profile of future implantable subscalp devices for chronic EEG monitoring. Developing such promising technologies must address the risks of infection, surgical site pain, lead migration and skin erosion. A thin and robust design, coupled to a lead-anchoring system, shall enhance the durability and utility of next-generation subscalp implants for long-term EEG monitoring and neuromodulation.


Deep Brain Stimulation , Humans , Deep Brain Stimulation/adverse effects , Deep Brain Stimulation/instrumentation , Deep Brain Stimulation/methods , Electrodes, Implanted/adverse effects , Electroencephalography/methods , Electroencephalography/instrumentation , Seizures/diagnosis
6.
Sensors (Basel) ; 24(8)2024 Apr 11.
Article En | MEDLINE | ID: mdl-38676053

Wearable Biosensor Technology (WBT) has emerged as a transformative tool in the educational system over the past decade. This systematic review encompasses a comprehensive analysis of WBT utilization in educational settings over a 10-year span (2012-2022), highlighting the evolution of this field to address challenges in education by integrating technology to solve specific educational challenges, such as enhancing student engagement, monitoring stress and cognitive load, improving learning experiences, and providing real-time feedback for both students and educators. By exploring these aspects, this review sheds light on the potential implications of WBT on the future of learning. A rigorous and systematic search of major academic databases, including Google Scholar and Scopus, was conducted in accordance with the PRISMA guidelines. Relevant studies were selected based on predefined inclusion and exclusion criteria. The articles selected were assessed for methodological quality and bias using established tools. The process of data extraction and synthesis followed a structured framework. Key findings include the shift from theoretical exploration to practical implementation, with EEG being the predominant measurement, aiming to explore mental states, physiological constructs, and teaching effectiveness. Wearable biosensors are significantly impacting the educational field, serving as an important resource for educators and a tool for students. Their application has the potential to transform and optimize academic practices through sensors that capture biometric data, enabling the implementation of metrics and models to understand the development and performance of students and professors in an academic environment, as well as to gain insights into the learning process.


Biosensing Techniques , Wearable Electronic Devices , Biosensing Techniques/instrumentation , Humans , Electroencephalography/methods , Electroencephalography/instrumentation , Education , Students , Learning
8.
IEEE Trans Biomed Circuits Syst ; 18(3): 608-621, 2024 Jun.
Article En | MEDLINE | ID: mdl-38261487

The long-term, continuous analysis of electroencephalography (EEG) signals on wearable devices to automatically detect seizures in epileptic patients is a high-potential application field for deep neural networks, and specifically for transformers, which are highly suited for end-to-end time series processing without handcrafted feature extraction. In this work, we propose a small-scale transformer detector, the EEGformer, compatible with unobtrusive acquisition setups that use only the temporal channels. EEGformer is the result of a hardware-oriented design exploration, aiming for efficient execution on tiny low-power micro-controller units (MCUs) and low latency and false alarm rate to increase patient and caregiver acceptance.Tests conducted on the CHB-MIT dataset show a 20% reduction of the onset detection latency with respect to the state-of-the-art model for temporal acquisition, with a competitive 73% seizure detection probability and 0.15 false-positive-per-hour (FP/h). Further investigations on a novel and challenging scalp EEG dataset result in the successful detection of 88% of the annotated seizure events, with 0.45 FP/h.We evaluate the deployment of the EEGformer on three commercial low-power computing platforms: the single-core Apollo4 MCU and the GAP8 and GAP9 parallel MCUs. The most efficient implementation (on GAP9) results in as low as 13.7 ms and 0.31 mJ per inference, demonstrating the feasibility of deploying the EEGformer on wearable seizure detection systems with reduced channel count and multi-day battery duration.


Electroencephalography , Seizures , Signal Processing, Computer-Assisted , Wearable Electronic Devices , Humans , Electroencephalography/instrumentation , Electroencephalography/methods , Seizures/diagnosis , Seizures/physiopathology , Signal Processing, Computer-Assisted/instrumentation , Algorithms , Neural Networks, Computer
9.
IEEE Trans Biomed Circuits Syst ; 18(3): 511-522, 2024 Jun.
Article En | MEDLINE | ID: mdl-38117616

Closed-loop neuromodulation is emerging as a more effective and targeted solution for the treatment of neurological symptoms compared to traditional open-loop stimulation. The majority of the present designs lack the ability to continuously record brain activity during electrical stimulation; hence they cannot fully monitor the treatment's effectiveness. This is due to the large stimulation artifacts that can saturate the sensitive readout circuits. To overcome this challenge, this work presents a rapid-artifact-recovery time-multiplexed neural readout frontend in combination with backend linear interpolation to reconstruct the artifact-corrupted local field potentials' (LFP) features. Our hybrid technique is an alternative approach to avoid power-hungry large-dynamic-range readout architectures or large and complex artifact template subtraction circuits. We discuss the design and measurements of a prototype implementation of the proposed readout frontend in 180-nm CMOS. It combines time multiplexing and time-domain conversion in a novel 13-bit incremental ADC, requiring only 0.0018 mm2/channel of readout area despite the large 180-nm CMOS process used, while consuming only 4.51 µW/channel. This is the smallest reported area for stimulation-voltage-compatible technologies (i.e. ≥ 65 nm). The frontend also yields a best-in-class peak total harmonic distortion of -72.6 dB @2.5-mVpp input, thanks to its implicit DAC mismatch-error shaping property. We employ the chip to measure brain LFP signals corrupted with artifacts, then perform linear interpolation and feature extraction on the measured signals and evaluate the reconstruction quality, using a set of sixteen commonly used features and three stimulation scenarios. The results show relative accuracies above 95% with respect to the situation without artifacts. This work is an ideal candidate for integration in high-channel-count true closed-loop neuromodulation systems.


Artifacts , Brain , Signal Processing, Computer-Assisted , Brain/physiology , Humans , Algorithms , Electroencephalography/instrumentation , Electroencephalography/methods
10.
Sci Rep ; 12(1): 1798, 2022 02 02.
Article En | MEDLINE | ID: mdl-35110665

Interictal High Frequency Oscillations (HFO) are measurable in scalp EEG. This development has aroused interest in investigating their potential as biomarkers of epileptogenesis, seizure propensity, disease severity, and treatment response. The demand for therapy monitoring in epilepsy has kindled interest in compact wearable electronic devices for long-term EEG recording. Spiking neural networks (SNN) have emerged as optimal architectures for embedding in compact low-power signal processing hardware. We analyzed 20 scalp EEG recordings from 11 pediatric focal lesional epilepsy patients. We designed a custom SNN to detect events of interest (EoI) in the 80-250 Hz ripple band and reject artifacts in the 500-900 Hz band. We identified the optimal SNN parameters to detect EoI and reject artifacts automatically. The occurrence of HFO thus detected was associated with active epilepsy with 80% accuracy. The HFO rate mirrored the decrease in seizure frequency in 8 patients (p = 0.0047). Overall, the HFO rate correlated with seizure frequency (rho = 0.90 CI [0.75 0.96], p < 0.0001, Spearman's correlation). The fully automated SNN detected clinically relevant HFO in the scalp EEG. This study is a further step towards non-invasive epilepsy monitoring with a low-power wearable device.


Brain Waves , Brain/physiopathology , Drug Resistant Epilepsy/diagnosis , Electroencephalography , Epilepsies, Partial/diagnosis , Neural Networks, Computer , Signal Processing, Computer-Assisted , Adolescent , Artifacts , Brain/surgery , Child , Child, Preschool , Drug Resistant Epilepsy/physiopathology , Drug Resistant Epilepsy/surgery , Electroencephalography/instrumentation , Epilepsies, Partial/physiopathology , Epilepsies, Partial/surgery , Female , Humans , Infant , Male , Predictive Value of Tests , Reproducibility of Results , Time Factors , Treatment Outcome , Wearable Electronic Devices
11.
J Alzheimers Dis ; 85(4): 1767-1781, 2022.
Article En | MEDLINE | ID: mdl-34974435

BACKGROUND: In healthy older adults, excess theta activity is an electroencephalographic (EEG) predictor of cognitive impairment. In a previous study, neurofeedback (NFB) treatment reinforcing reductions theta activity resulted in EEG reorganization and cognitive improvement. OBJECTIVE: To explore the clinical applicability of this NFB treatment, the present study performed a 1-year follow-up to determine its lasting effects. METHODS: Twenty seniors with excessive theta activity in their EEG were randomly assigned to the experimental or control group. The experimental group received an auditory reward when the theta absolute power (AP) was reduced. The control group received the reward randomly. RESULTS: Both groups showed a significant decrease in theta activity at the training electrode. However, the EEG results showed that only the experimental group underwent global changes after treatment. These changes consisted of delta and theta decreases and beta increases. Although no changes were found in any group during the period between the posttreatment evaluation and follow-up, more pronounced theta decreases and beta increases were observed in the experimental group when the follow-up and pretreatment measures were compared. Executive functions showed a tendency to improve two months after treatment which became significant one year later. CONCLUSION: These results suggest that the EEG and behavioral benefits of this NFB treatment persist for at least one year, which adds up to the available evidence contributing to identifying factors that increase its efficacy level. The relevance of this study lies in its prophylactic features of addressing a clinically healthy population with EEG risk of cognitive decline.


Electroencephalography/instrumentation , Neurocognitive Disorders/diagnosis , Neurofeedback/physiology , Theta Rhythm/physiology , Aged , Cognitive Aging/physiology , Female , Follow-Up Studies , Healthy Volunteers , Humans , Male
12.
Anesth Analg ; 134(2): 380-388, 2022 02 01.
Article En | MEDLINE | ID: mdl-34673658

BACKGROUND: The retrospective analysis of electroencephalogram (EEG) signals acquired from patients under general anesthesia is crucial in understanding the patient's unconscious brain's state. However, the creation of such database is often tedious and cumbersome and involves human labor. Hence, we developed a Raspberry Pi-based system for archiving EEG signals recorded from patients under anesthesia in operating rooms (ORs) with minimal human involvement. METHODS: Using this system, we archived patient EEG signals from over 500 unique surgeries at the Emory University Orthopaedics and Spine Hospital, Atlanta, for about 18 months. For this, we developed a software package that runs on a Raspberry Pi and archives patient EEG signals from a SedLine Root EEG Monitor (Masimo) to a secure Health Insurance Portability and Accountability Act (HIPAA) compliant cloud storage. The OR number corresponding to each surgery was archived along with the EEG signal to facilitate retrospective EEG analysis. We retrospectively processed the archived EEG signals and performed signal quality checks. We also proposed a formula to compute the proportion of true EEG signal and calculated the corresponding statistics. Further, we curated and interleaved patient medical record information with the corresponding EEG signals. RESULTS: We retrospectively processed the EEG signals to demonstrate a statistically significant negative correlation between the relative alpha power (8-12 Hz) of the EEG signal captured under anesthesia and the patient's age. CONCLUSIONS: Our system is a standalone EEG archiver developed using low cost and readily available hardware. We demonstrated that one could create a large-scale EEG database with minimal human involvement. Moreover, we showed that the captured EEG signal is of good quality for retrospective analysis and combined the EEG signal with the patient medical records. This project's software has been released under an open-source license to enable others to use and contribute.


Data Curation/methods , Electroencephalography/instrumentation , Electroencephalography/methods , Monitoring, Intraoperative/instrumentation , Monitoring, Intraoperative/methods , Adult , Aged , Aged, 80 and over , Data Management/instrumentation , Data Management/methods , Female , Humans , Male , Middle Aged , Retrospective Studies , Young Adult
13.
Hum Brain Mapp ; 43(4): 1295-1308, 2022 03.
Article En | MEDLINE | ID: mdl-34796574

High-density electroencephalography (HD-EEG) is currently limited to laboratory environments since state-of-the-art electrode caps require skilled staff and extensive preparation. We propose and evaluate a 256-channel cap with dry multipin electrodes for HD-EEG. We describe the designs of the dry electrodes made from polyurethane and coated with Ag/AgCl. We compare in a study with 30 volunteers the novel dry HD-EEG cap to a conventional gel-based cap for electrode-skin impedances, resting state EEG, and visual evoked potentials (VEP). We perform wearing tests with eight electrodes mimicking cap applications on real human and artificial skin. Average impedances below 900 kΩ for 252 out of 256 dry electrodes enables recording with state-of-the-art EEG amplifiers. For the dry EEG cap, we obtained a channel reliability of 84% and a reduction of the preparation time of 69%. After exclusion of an average of 16% (dry) and 3% (gel-based) bad channels, resting state EEG, alpha activity, and pattern reversal VEP can be recorded with less than 5% significant differences in all compared signal characteristics metrics. Volunteers reported wearing comfort of 3.6 ± 1.5 and 4.0 ± 1.8 for the dry and 2.5 ± 1.0 and 3.0 ± 1.1 for the gel-based cap prior and after the EEG recordings, respectively (scale 1-10). Wearing tests indicated that up to 3,200 applications are possible for the dry electrodes. The 256-channel HD-EEG dry electrode cap overcomes the principal limitations of HD-EEG regarding preparation complexity and allows rapid application by not medically trained persons, enabling new use cases for HD-EEG.


Cerebral Cortex/physiology , Electrodes , Electroencephalography/instrumentation , Evoked Potentials, Visual/physiology , Adult , Electric Impedance , Electroencephalography/methods , Electromyography , Humans , Monitoring, Ambulatory , Wearable Electronic Devices
14.
Comput Math Methods Med ; 2021: 3130747, 2021.
Article En | MEDLINE | ID: mdl-34970329

The outdoor light environment significantly affects aspects of public psychological and physiological health. This study conducted experiments to quantify the effects of the light environment on visitor light comfort in urban park pedestrian space. Nine sets of lighting conditions with different average horizontal illuminance (2 lx, 6 lx, 10 lx) and colour temperatures (5600 K, 4300 K, 3000 K) were established virtual reality scenarios. Subjective light comfort was evaluated, and electroencephalogram (EEG) was measured on 18 subjects to comprehensively study the effects of different light environments on human light comfort. The results of the comprehensive evaluation showed that colour temperature had a very significant impact on subjective light comfort, with warm light being generally more favourable than cool light in enhancing human subjective light comfort. The results of the EEG analysis show that the average horizontal illuminance is an important factor in the level of physiological fatigue, and that physiological fatigue can be maintained in a superior state at an appropriate level of illuminance. Based on the results of both subjective and objective factors, a comprehensive analysis was carried out to propose a range of average horizontal illuminance (4.08 lx, 6.99 lx) and a range of colour temperature (3126 K, 4498 K) for the comprehensive light comfort zone in urban park pedestrian space.


Lighting , Parks, Recreational , Pedestrians , Adult , Color , Computational Biology , Computer Simulation , Darkness , Electroencephalography/instrumentation , Electroencephalography/statistics & numerical data , Female , Humans , Light , Male , Pedestrians/psychology , Urban Health , Virtual Reality , Wearable Electronic Devices , Young Adult
15.
Curr Alzheimer Res ; 18(6): 513-522, 2021.
Article En | MEDLINE | ID: mdl-34598666

OBJECTIVE: Numerous electroencephalography (EEG) studies focus on the alteration of electrical activity in patients with Alzheimer's Disease (AD), but there are no consistent results especially regarding functional connectivity. We supposed that the weighted Phase Lag Index (w- PLI), as phase-based measures of functional connectivity, may be used as an auxiliary diagnostic method for AD. METHODS: We enrolled 30 patients with AD, 30 patients with Mild Cognitive Impairment (MCI), and 30 Healthy Controls (HC). EEGs were recorded in all participants at baseline during relaxed wakefulness. Following EEG preprocessing, Power Spectral Density (PSD) and wPLI parameters were determined to further analyze whether they were correlated to cognitive scores. RESULTS: In the patients with AD, the increased PSD in theta band was presented compared with MCI and HC groups, which was associated with disturbances of the directional, computational, and delayed memory capacity. Furthermore, the wPLI revealed a distinctly lower connection strength between frontal and distant areas in the delta band and a higher connection strength of the central and temporo-occipital region in the theta band for AD patients. Moreover,we found a significant negative correlation between theta functional connectivity and cognitive scores. CONCLUSION: Increased theta PSD and decreased delta wPLI may be one of the earliest changes in AD and associated with disease severity. The parameter wPLI is a novel measurement of phase synchronization and has potentials in understanding underlying functional connectivity and aiding in the diagnostics of AD.


Alzheimer Disease/physiopathology , Cognitive Dysfunction/physiopathology , Electroencephalography/instrumentation , Aged , Brain/physiopathology , Delta Rhythm , Female , Humans , Male , Neuropsychological Tests/statistics & numerical data , Theta Rhythm
16.
PLoS One ; 16(10): e0258647, 2021.
Article En | MEDLINE | ID: mdl-34673803

BACKGROUND: Bispectral index (BIS) monitoring is a widely used non-invasive method to monitor the depth of anesthesia. However, in the event of surgeries requiring a frontal approach, placement of the electrode may be impossible at the designated area to achieve a proper BIS measurement. METHODS: We developed an investigational interface device to connect needle-electrodes to BIS sensors. The safety and clinical performance were investigated in patients who underwent surgery. Direct BIS values from a disposable BIS electrode and indirect values via the interface device were simultaneously recorded from the same areas of electrode placement in a single patient. The agreement between the direct and indirect BIS values was statistically analyzed. RESULTS: The interface device with a silver electrode demonstrated sufficient electric conduction to transmit electroencephalogram signals. The overall BIS curves were similar to those of direct BIS monitoring. Direct and indirect BIS values from 18 patients were statistically analyzed using a linear mixed model and a significant concordance was confirmed (indirect BIS = 7.0405 + 0.8286 * direct BIS, p<0.0001). Most observed data (2582/2787 data points, 92.64%) had BIS unit differences of 10 or less. CONCLUSIONS: The interface device provides an opportunity for intraoperative BIS monitoring of patients, whose clinical situation does not permit the placement of conventional adhesive sensors at the standard location.


Anesthesia, General/methods , Biosensing Techniques/methods , Electrodes , Electroencephalography/drug effects , Electroencephalography/instrumentation , Monitoring, Intraoperative/methods , Neurosurgical Procedures/methods , Adult , Aged , Female , Humans , Male , Middle Aged
17.
Can J Vet Res ; 85(4): 309-311, 2021 Oct.
Article En | MEDLINE | ID: mdl-34602736

Scalp electrode impedance measurements recorded by wired and wireless electroencephalography (EEG) machines in 7 healthy dogs were compared. Eight recordings resulted in 80 impedance readings from subdermal wire electrodes (locations F7/F8, F3/F4, T3/T4, C3/C4, Fz, and Cz). Impedance values were measured first from the wired and then the wireless EEG machine. Wireless impedance measurements were higher than the wired EEG machine in 79/80 readings (P ≤ 0.05), being on average 2.83 kΩ [P ≤ 0.05, 95% confidence interval (CI): 2.51 to 3.14, SD = 1.42] higher. Impedances from the wired machine ranged between < 0.5 and 9 kΩ (mean = 3.09, median = 2.00, SD = 2.15), whereas impedances from the wireless machine ranged between 2.69 and 6.07 kΩ (mean = 5.92, median = 5.05, SD = 2.59). Despite these differences in impedance measurements, both machines measured similar impedance patterns. The wireless EEG machine's impedance measurements, therefore, should be acceptable for veterinary clinical settings.


Les mesures d'impédance des électrodes du cuir chevelu enregistrées par des appareils EEG filaires et sans fil chez sept chiens en bonne santé ont été comparées. Huit enregistrements ont donné 80 lectures d'impédance à partir de fils-électrodes sous-cutanés (emplacements F7/F8, F3/F4, T3/T4, C3/C4, Fz et Cz). Les valeurs d'impédance ont été mesurées d'abord à partir de la machine EEG filaire puis sans fil. Les mesures d'impédance sans fil étaient plus élevées que l'EEG filaire dans 79/80 lectures (P ≤ 0,05), étant en moyenne de 2,83 kΩ [P ≤ 0,05, intervalle de confiance (IC) à 95 % : 2,51 à 3,14, SD = 1,42] plus élevé. Les impédances de la machine filaire étaient comprises entre < 0,5 et 9 kΩ (moyenne = 3,09, médiane = 2,00, SD = 2,15), tandis que les impédances de la machine sans fil étaient comprises entre 2,69 et 6,07 kΩ (moyenne = 5,92, médiane = 5,05, SD = 2,59). Malgré ces différences dans les mesures d'impédance, les deux machines ont mesuré des patrons d'impédance similaires. Les mesures d'impédance de la machine EEG sans fil doivent donc être acceptables pour les paramètres cliniques vétérinaires.(Traduit par Docteur Serge Messier).


Dogs/physiology , Electric Impedance , Electroencephalography/veterinary , Scalp/physiology , Animals , Electrodes , Electroencephalography/instrumentation
18.
PLoS Comput Biol ; 17(9): e1009456, 2021 09.
Article En | MEDLINE | ID: mdl-34570753

A number of neuroimaging techniques have been employed to understand how visual information is transformed along the visual pathway. Although each technique has spatial and temporal limitations, they can each provide important insights into the visual code. While the BOLD signal of fMRI can be quite informative, the visual code is not static and this can be obscured by fMRI's poor temporal resolution. In this study, we leveraged the high temporal resolution of EEG to develop an encoding technique based on the distribution of responses generated by a population of real-world scenes. This approach maps neural signals to each pixel within a given image and reveals location-specific transformations of the visual code, providing a spatiotemporal signature for the image at each electrode. Our analyses of the mapping results revealed that scenes undergo a series of nonuniform transformations that prioritize different spatial frequencies at different regions of scenes over time. This mapping technique offers a potential avenue for future studies to explore how dynamic feedforward and recurrent processes inform and refine high-level representations of our visual world.


Brain Mapping/methods , Electroencephalography/statistics & numerical data , Visual Pathways/physiology , Adolescent , Brain Mapping/instrumentation , Brain Mapping/statistics & numerical data , Computational Biology , Electrodes , Electroencephalography/instrumentation , Female , Functional Neuroimaging/statistics & numerical data , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging/statistics & numerical data , Male , Photic Stimulation , Spatio-Temporal Analysis , Visual Cortex/physiology , Young Adult
19.
Clin Neurophysiol ; 132(11): 2916-2931, 2021 11.
Article En | MEDLINE | ID: mdl-34419344

OBJECTIVE: Interictal discharges (IIDs) and high frequency oscillations (HFOs) are established neurophysiologic biomarkers of epilepsy, while microseizures are less well studied. We used custom poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) microelectrodes to better understand these markers' microscale spatial dynamics. METHODS: Electrodes with spatial resolution down to 50 µm were used to record intraoperatively in 30 subjects. IIDs' degree of spread and spatiotemporal paths were generated by peak-tracking followed by clustering. Repeating HFO patterns were delineated by clustering similar time windows. Multi-unit activity (MUA) was analyzed in relation to IID and HFO timing. RESULTS: We detected IIDs encompassing the entire array in 93% of subjects, while localized IIDs, observed across < 50% of channels, were seen in 53%. IIDs traveled along specific paths. HFOs appeared in small, repeated spatiotemporal patterns. Finally, we identified microseizure events that spanned 50-100 µm. HFOs covaried with MUA, but not with IIDs. CONCLUSIONS: Overall, these data suggest that irritable cortex micro-domains may form part of an underlying pathologic architecture which could contribute to the seizure network. SIGNIFICANCE: These results, supporting the possibility that epileptogenic cortex comprises a mosaic of irritable domains, suggests that microscale approaches might be an important perspective in devising novel seizure control therapies.


Brain Mapping/methods , Brain/physiopathology , Electroencephalography/methods , Epilepsy/physiopathology , Intraoperative Neurophysiological Monitoring/methods , Microelectrodes , Adult , Brain/surgery , Electroencephalography/instrumentation , Epilepsy/diagnosis , Epilepsy/surgery , Female , Humans , Intraoperative Neurophysiological Monitoring/instrumentation , Male , Middle Aged , Young Adult
20.
J Neurophysiol ; 126(4): 1055-1075, 2021 10 01.
Article En | MEDLINE | ID: mdl-34432996

Analysis of electrophysiological data from Purkinje cells (P-cells) of the cerebellum presents unique challenges to spike sorting. Complex spikes have waveforms that vary significantly from one event to the next, raising the problem of misidentification. Even when complex spikes are detected correctly, the simple spikes may belong to a different P-cell, raising the danger of misattribution. To address these identification and attribution problems, we wrote an open-source, semiautomated software called P-sort, and then tested it by analyzing data from P-cells recorded in three species: marmosets, macaques, and mice. Like other sorting software, P-sort relies on nonlinear dimensionality reduction to cluster spikes. However, it also uses the statistical relationship between simple and complex spikes to merge disparate clusters and split a single cluster. In comparison with expert manual curation, occasionally P-sort identified significantly more complex spikes, as well as prevented misattribution of clusters. Three existing automatic sorters performed less well, particularly for identification of complex spikes. To improve the development of analysis tools for the cerebellum, we provide labeled data for 313 recording sessions, as well as statistical characteristics of waveforms and firing patterns of P-cells in three species.NEW & NOTEWORTHY Algorithms that perform spike sorting depend on waveforms to cluster spikes. However, a cerebellar Purkinje-cell produces two types of spikes; simple and complex spikes. A complex spike coincides with the suppression of generating simple spikes. Here, we recorded neurophysiological data from three species and developed a spike analysis software named P-sort that relies on this statistical property to improve both the detection and the attribution of simple and complex spikes in the cerebellum.


Electroencephalography , Electrophysiological Phenomena/physiology , Purkinje Cells/physiology , Software , Animals , Callithrix , Electroencephalography/instrumentation , Electroencephalography/methods , Female , Macaca mulatta , Male , Mice , Mice, Inbred C57BL
...