Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 5.111
1.
Analyst ; 149(11): 3078-3084, 2024 May 28.
Article En | MEDLINE | ID: mdl-38717228

This study is the first to identify bovine blastocysts through in vitro fertilization (IVF) of matured oocytes with a large quantity of high-quality sperm separated from a biomimetic cervix environment. We obtained high-quality sperm in large quantities using an IVF sperm sorting chip (SSC), which could mimic the viscous environment of the bovine cervix during ovulation and facilitates isolation of progressively motile sperm from semen. The viscous environment-on-a-chip was realized by formulating and implementing polyvinylpyrrolidone (PVP)-based solutions for the SSC medium. Sperm separated from the IVF-SSC containing PVP 1.5% showed high motility, normal morphology and high DNA integrity. As a result of IVF, a higher rate of hatching blastocysts, which is the pre-implantation stage, were observed, compared to the conventional swim-up method. Our results may significantly contribute to improving livestock with superior male and female genetic traits, thus overcoming the limitation of artificial insemination based on the superior genetic traits of existing males.


Embryonic Development , Fertilization in Vitro , Spermatozoa , Animals , Cattle , Male , Spermatozoa/cytology , Spermatozoa/chemistry , Female , Fertilization in Vitro/methods , Embryonic Development/physiology , Biomimetics/methods , Cervix Uteri/cytology , Povidone/chemistry , Blastocyst/cytology , Sperm Motility/drug effects
2.
PLoS One ; 19(5): e0299602, 2024.
Article En | MEDLINE | ID: mdl-38696439

PURPOSE: The purposes of this study were to determine whether biomechanical properties of mature oocytes could predict usable blastocyst formation better than morphological information or maternal factors, and to demonstrate the safety of the aspiration measurement procedure used to determine the biomechanical properties of oocytes. METHODS: A prospective split cohort study was conducted with patients from two IVF clinics who underwent in vitro fertilization. Each patient's oocytes were randomly divided into a measurement group and a control group. The aspiration depth into a micropipette was measured, and the biomechanical properties were derived. Oocyte fertilization, day 3 morphology, and blastocyst development were observed and compared between measured and unmeasured cohorts. A predictive classifier was trained to predict usable blastocyst formation and compared to the predictions of four experienced embryologists. RESULTS: 68 patients and their corresponding 1252 oocytes were included in the study. In the safety analyses, there was no significant difference between the cohorts for fertilization, while the day 3 and 5 embryo development were not negatively affected. Four embryologists predicted usable blastocyst development based on oocyte morphology with an average accuracy of 44% while the predictive classifier achieved an accuracy of 71%. Retaining the variables necessary for normal fertilization, only data from successfully fertilized oocytes were used, resulting in a classifier an accuracy of 81%. CONCLUSIONS: To date, there is no standard guideline or technique to aid in the selection of oocytes that have a higher likelihood of developing into usable blastocysts, which are chosen for transfer or vitrification. This study provides a comprehensive workflow of extracting biomechanical properties and building a predictive classifier using these properties to predict mature oocytes' developmental potential. The classifier has greater accuracy in predicting the formation of usable blastocysts than the predictions provided by morphological information or maternal factors. The measurement procedure did not negatively affect embryo culture outcomes. While further analysis is necessary, this study shows the potential of using biomechanical properties of oocytes to predict embryo developmental outcomes.


Blastocyst , Embryonic Development , Fertilization in Vitro , Oocytes , Humans , Blastocyst/physiology , Blastocyst/cytology , Female , Oocytes/physiology , Oocytes/cytology , Adult , Biomechanical Phenomena , Fertilization in Vitro/methods , Embryonic Development/physiology , Prospective Studies
3.
Aging (Albany NY) ; 16(9): 8378-8395, 2024 May 06.
Article En | MEDLINE | ID: mdl-38713165

According to birth certificates, the life of a child begins once their body comes out of the mother's womb. But when does their organismal life begin? Science holds a palette of answers-depending on how one defines a human life. In 1984, a commission on the regulatory framework for human embryo experimentation opted not to answer this question, instead setting a boundary, 14 days post-fertilization, beyond which any experiments were forbidden. Recently, as the reproductive technologies developed and the demand for experimentation grew stronger, this boundary may be set aside leaving the ultimate decision to local oversight committees. While science has not come closer to setting a zero point for human life, there has been significant progress in our understanding of early mammalian embryogenesis. It has become clear that the 14-day stage does in fact possess features, which make it a foundational time point for a developing human. Importantly, this stage defines the separation of soma from the germline and marks the boundary between rejuvenation and aging. We explore how different levels of life organization emerge during human development and suggest a new meaning for the 14-day stage in organismal life that is grounded in recent mechanistic advances and insights from aging studies.


Aging , Humans , Aging/physiology , Embryonic Development/physiology , Beginning of Human Life , Animals
4.
Mol Reprod Dev ; 91(5): e23747, 2024 May.
Article En | MEDLINE | ID: mdl-38785307

The objective of this study was to investigate the impact of sperm source on embryo morphokinetics and the clinical outcomes of intracytoplasmic sperm injection (ICSI) cycles by considering the clustering of data (multiple embryos per patient that share a comparable developmental timing). This matched cohort study was performed at a private university-affiliated in vitro fertilization center. Women who underwent ICSI with epididymal sperm between January 2019 and December 2020 (the percutaneous epididymal sperm aspiration group, n = 32 cycles) were matched with women who underwent ICSI with ejaculated sperm because of idiopathic male factor infertility (the male factor infertility [MFI] group, n = 32 cycles) or female infertility (the control group, n = 32 cycles). Embryos were cultured in a time-lapse imaging incubator, and morphokinetic development was recorded and compared among the groups. Significantly slower divisions were observed in embryos derived from epididymal sperm than in those derived from the MFI and control groups. Embryos derived from epididymal sperm had a significantly lower KIDScore (3.1 ± 0.2) than did those derived from ejaculated spermatozoa from the MFI (5.4 ± 0.1) and control (5.6 ± 0.2, p < 0.001) groups. Epididymal sperm-derived embryos showed a significantly greater occurrence of multinucleation (23.2%) than did those derived from ejaculated sperm from the MFI and control groups (2.8% and 3.7%, p < 0.001, respectively). Epididymal sperm-derived embryos were significantly more likely to undergo direct or reverse cleavage (11.1%) than ejaculated sperm-derived embryos in the control group (4.3%, p = 0.001). In conclusion, delayed cell cleavage and increased incidences of blastomere multinucleation and abnormal cleavage patterns are observed when epididymal-derived sperm are used for ICSI.


Embryonic Development , Epididymis , Sperm Injections, Intracytoplasmic , Spermatozoa , Time-Lapse Imaging , Male , Humans , Female , Epididymis/cytology , Spermatozoa/cytology , Embryonic Development/physiology , Adult , Pregnancy , Infertility, Male/pathology , Pregnancy Rate
5.
Reprod Biol Endocrinol ; 22(1): 55, 2024 May 14.
Article En | MEDLINE | ID: mdl-38745305

The role of cytoplasmic fragmentation in human embryo development and reproductive potential is widely recognized, albeit without standard definition nor agreed upon implication. While fragmentation is best understood to be a natural process across species, the origin of fragmentation remains incompletely understood and likely multifactorial. Several factors including embryo culture condition, gamete quality, aneuploidy, and abnormal cytokinesis seem to have important role in the etiology of cytoplasmic fragmentation. Fragmentation reduces the volume of cytoplasm and depletes embryo of essential organelles and regulatory proteins, compromising the developmental potential of the embryo. While it has been shown that degree of fragmentation and embryo implantation potential are inversely proportional, the degree, pattern, and distribution of fragmentation as it relates to pregnancy outcome is debated in the literature. This review highlights some of the challenges in analysis of fragmentation, while revealing trends in our evolving knowledge of how fragmentation may relate to functional development of the human embryos, implantation, and pregnancy outcome.


Cytoplasm , Embryonic Development , Pregnancy Outcome , Humans , Female , Pregnancy , Embryonic Development/physiology , Cytoplasm/metabolism , Cytoplasm/physiology , Embryo Implantation/physiology
6.
Theriogenology ; 223: 74-88, 2024 Jul 15.
Article En | MEDLINE | ID: mdl-38692037

Mammalian embryos produced in vitro have poor embryo quality and low developmental ability compared with in vivo embryos. The main manifestations are the low number of blastocysts, the low ratio of the number of inner cell mass cells to the number of trophoblastic cells, and the high apoptosis rate of blastocysts, resulting in low embryo implantation rate. Therefore, optimizing in vitro culture conditions has become a key technology to im-prove the quality of preimplantation embryos. Oviduct Epithelial cells exosomes (OEVs) can be absorbed and internalized by embryos to improve the blastocyst rate and blastocyst quality of embryos in vitro. As a special nuclear structure, Paraspeckles are involved in the fate determination of mammalian early embryonic mammalian cells. However, the regulation of embryonic cell differentiation by OEVs remains unknown. We aimed to investigate the effects of OEVs on paraspeckle formation and cell fate determination in yak in vitro fertilization (IVF) of em-bryos. To simulate the in vivo oviduct environment after ovulation, we used follicular fluid exosomes (FEVs) to stimulate yak oviduct epithelial cells and collect OEVs. OEVs were added to the yak IVF embryo culture system. Paraspeckle formation, cell differentiation, and blastocyst quality in yak embryos were determined. Our results show that, development of yak embryos is unique compared to other bovine species, and OEVs can be used as a supplement to the in vitro culture system of yak embryos to improve embryonic development and blas-tocyst quality. And also Paraspeckles/CARM1 mediated the regulation of OEVs on cell differentiation during in vitro yak embryo production. These results provide new insights into the study of yak embryonic development and the role of OEVs in embryonic development.


Cell Differentiation , Embryo Culture Techniques , Embryonic Development , Epithelial Cells , Exosomes , Animals , Female , Embryonic Development/physiology , Cattle/embryology , Epithelial Cells/physiology , Epithelial Cells/metabolism , Embryo Culture Techniques/veterinary , Exosomes/metabolism , Fertilization in Vitro/veterinary , Fallopian Tubes/cytology , Blastocyst/physiology , Oviducts
7.
Development ; 151(10)2024 May 15.
Article En | MEDLINE | ID: mdl-38742434

During mouse development, presomitic mesoderm cells synchronize Wnt and Notch oscillations, creating sequential phase waves that pattern somites. Traditional somitogenesis models attribute phase waves to a global modulation of the oscillation frequency. However, increasing evidence suggests that they could arise in a self-organizing manner. Here, we introduce the Sevilletor, a novel reaction-diffusion system that serves as a framework to compare different somitogenesis patterning hypotheses. Using this framework, we propose the Clock and Wavefront Self-Organizing model that considers an excitable self-organizing region where phase waves form independent of global frequency gradients. The model recapitulates the change in relative phase of Wnt and Notch observed during mouse somitogenesis and provides a theoretical basis for understanding the excitability of mouse presomitic mesoderm cells in vitro.


Receptors, Notch , Somites , Animals , Mice , Somites/embryology , Somites/metabolism , Receptors, Notch/metabolism , Receptors, Notch/genetics , Mesoderm/embryology , Mesoderm/metabolism , Models, Biological , Body Patterning/genetics , Wnt Proteins/metabolism , Wnt Proteins/genetics , Embryonic Development/genetics , Embryonic Development/physiology , Biological Clocks/physiology
8.
Front Endocrinol (Lausanne) ; 15: 1377780, 2024.
Article En | MEDLINE | ID: mdl-38745955

Objective: Multiple morphological abnormalities of the sperm flagella (MMAF) is characterized by abnormal flagellar phenotypes, which is a particular kind of asthenoteratozoospermia. Previous studies have reported a comparable intracytoplasmic sperm injection (ICSI) outcome in terms of fertilization rate and clinical pregnancy rate in patients with MMAF compared with those with no MMAF; however, others have conflicting opinions. Assisted reproductive technology (ART) outcomes in individuals with MMAF are still controversial and open to debate. Methods: A total of 38 patients with MMAF treated at an academic reproductive center between January 2014 and July 2022 were evaluated in the current retrospective cohort study and followed up until January 2023. Propensity score matching was used to adjust for the baseline clinical characteristics of the patients and to create a comparable control group. The genetic pathogenesis of MMAF was confirmed by whole exome sequencing. The main outcomes were the embryo developmental potential, the cumulative pregnancy rate (CLPR), and the cumulative live birth rate (CLBR). Results: Pathogenic variants in known genes of DNAH1, DNAH11, CFAP43, FSIP2, and SPEF2 were identified in patients with MMAF. Laboratory outcomes, including the fertilization rate, 2PN cleavage rate, blastocyst formation rate, and available blastocyst rate, followed a trend of decline in the MMAF group (p < 0.05). Moreover, according to the embryo transfer times and complete cycles, the CLPR in the cohort of MMAF was lower compared with the oligoasthenospermia pool (p = 0.033 and p = 0.020, respectively), while no statistical differences were observed in the neonatal outcomes. Conclusion: The current study presented decreased embryo developmental potential and compromised clinical outcomes in the MMAF cohort. These findings may provide clinicians with evidence to support genetic counseling and clinical guidance in specific patients with MMAF.


Embryonic Development , Pregnancy Rate , Sperm Injections, Intracytoplasmic , Sperm Tail , Humans , Male , Female , Pregnancy , Adult , Retrospective Studies , Sperm Tail/pathology , Embryonic Development/physiology , Asthenozoospermia/genetics , Asthenozoospermia/pathology , Infertility, Male/genetics , Infertility, Male/pathology , Spermatozoa/pathology
9.
Cell Mol Life Sci ; 81(1): 242, 2024 May 30.
Article En | MEDLINE | ID: mdl-38811420

Cell fate determination, a vital process in early development and adulthood, has been the focal point of intensive investigation over the past decades. Its importance lies in its critical role in shaping various and diverse cell types during embryonic development and beyond. Exploration of cell fate determination started with molecular and genetic investigations unveiling central signaling pathways and molecular regulatory networks. The molecular studies into cell fate determination yielded an overwhelming amount of information invoking the notion of the complexity of cell fate determination. However, recent advances in the framework of biomechanics have introduced a paradigm shift in our understanding of this intricate process. The physical forces and biochemical interplay, known as mechanotransduction, have been identified as a pivotal drive influencing cell fate decisions. Certainly, the integration of biomechanics into the process of cell fate pushed our understanding of the developmental process and potentially holds promise for therapeutic applications. This integration was achieved by identifying physical forces like hydrostatic pressure, fluid dynamics, tissue stiffness, and topography, among others, and examining their interplay with biochemical signals. This review focuses on recent advances investigating the relationship between physical cues and biochemical signals that control cell fate determination during early embryonic development.


Cell Differentiation , Embryonic Development , Mechanotransduction, Cellular , Animals , Embryonic Development/physiology , Humans , Cell Lineage , Biomechanical Phenomena , Signal Transduction
10.
Theriogenology ; 224: 119-133, 2024 Aug.
Article En | MEDLINE | ID: mdl-38762919

Lysine-specific demethylase 1 (LSD1) stands as the pioneering histone demethylase uncovered, proficient in demethylating H3K4me1/2 and H3K9me1/2, thereby governing transcription and participating in cell apoptosis, proliferation, or differentiation. Nevertheless, the complete understanding of LSD1 during porcine early embryonic development and the underlying molecular mechanism remains unclear. Thus, we investigated the mechanism by which LSD1 plays a regulatory role in porcine early embryos. This study revealed that LSD1 inhibition resulted in parthenogenetic activation (PA) and in vitro fertilization (IVF) embryo arrested the development, and decreased blastocyst quality. Meanwhile, H3K4me1/2 and H3K9me1/2 methylase activity was increased at the 4-cell embryo stage. RNA-seq results revealed that autophagy related biological processes were highly enriched through GO and KEGG pathway analyses when LSD1 inhibition. Further studies showed that LSD1 depletion in porcine early embryos resulted in low mTOR and p-mTOR levels and high autophagy and apoptosis levels. The LSD1 deletion-induced increases in autophagy and apoptosis could be reversed by addition of mTOR activators. We further demonstrated that LSD1 inhibition induced mitochondrial dysfunction and mitophagy. In summary, our research results indicate that LSD1 may regulate autophagy and apoptosis through the mTOR pathway and affect early embryonic development of pigs.


Apoptosis , Autophagy , Embryonic Development , Histone Demethylases , Signal Transduction , TOR Serine-Threonine Kinases , Animals , Histone Demethylases/metabolism , Histone Demethylases/genetics , Swine/embryology , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/genetics , Embryonic Development/physiology , Autophagy/physiology , Gene Expression Regulation, Developmental , Fertilization in Vitro/veterinary
11.
Anim Biotechnol ; 35(1): 2337760, 2024 Nov.
Article En | MEDLINE | ID: mdl-38656923

Although the knee joint (KNJ) and temporomandibular joint (TMJ) all belong to the synovial joint, there are many differences in developmental origin, joint structure and articular cartilage type. Studies of joint development in embryos have been performed, mainly using poultry and rodents. However, KNJ and TMJ in poultry and rodents differ from those in humans in several ways. Very little work has been done on the embryonic development of KNJ and TMJ in large mammals. Several studies have shown that pigs are ideal animals for embryonic development research. Embryonic day 30 (E30), E35, E45, E55, E75, E90, Postnatal day 0 (P0) and Postnatal day 30 (P30) embryos/fetuses from the pigs were used for this study. The results showed that KNJ develops earlier than TMJ. Only one mesenchymal condensate of KNJ is formed on E30, while two mesenchymal condensates of TMJ are present on E35. All structures of KNJ and TMJ were formed on E45. The growth plate of KNJ begins to develop on E45 and becomes more pronounced from E55 to P30. From E75 to E90, more and more vascular-rich cartilage canals form in the cartilage regions of both joints. The cartilaginous canal of the TMJ divides the condyle into sections along the longitudinal axis of the condyle. This arrangement of cartilaginous canal was not found in the KNJ. The chondrification of KNJ precedes that of TMJ. Ossification of the knee condyle occurs gradually from the middle to the periphery, while that of the TMJ occurs gradually from the base of the mandibular condyle. In the KNJ, the ossification of the articular condyle is evident from P0 to P30, and the growth plate is completely formed on P30. In the TMJ, the cartilage layer of condyle becomes thinner from P0 to P30. There is no growth plate formation in TMJ during its entire development. There is no growth plate formation in the TMJ throughout its development. The condyle may be the developmental center of the TMJ. The chondrocytes and hypertrophic chondrocytes of the growth plate are densely arranged. The condylar chondrocytes of TMJ are scattered, while the hypertrophic chondrocytes are arranged. Embryonic development of KNJ and TMJ in pigs is an important bridge for translating the results of rodent studies to medical applications.


Knee Joint , Temporomandibular Joint , Animals , Swine/embryology , Temporomandibular Joint/embryology , Temporomandibular Joint/growth & development , Knee Joint/embryology , Knee Joint/growth & development , Cartilage, Articular/embryology , Cartilage, Articular/growth & development , Female , Embryonic Development/physiology , Embryo, Mammalian
12.
Development ; 151(7)2024 Apr 01.
Article En | MEDLINE | ID: mdl-38603796

Embryonic diapause is a special reproductive phenomenon in mammals that helps embryos to survive various harsh stresses. However, the mechanisms of embryonic diapause induced by the maternal environment is still unclear. Here, we uncovered that nutrient deficiency in uterine fluid was essential for the induction of mouse embryonic diapause, shown by a decreased concentration of arginine, leucine, isoleucine, lysine, glucose and lactate in the uterine fluid of mice suffering from maternal starvation or ovariectomy. Moreover, mouse blastocysts cultured in a medium with reduced levels of these six components could mimic diapaused blastocysts. Our mechanistic study indicated that amino acid starvation-dependent Gator1 activation and carbohydrate starvation-dependent Tsc2 activation inhibited mTORC1, leading to induction of embryonic diapause. Our study elucidates the essential environmental factors in diapause induction.


Diapause , Nutrients , Animals , Female , Mice , Blastocyst/metabolism , Diapause/physiology , Embryonic Development/physiology
13.
Dev Biol ; 511: 84-91, 2024 Jul.
Article En | MEDLINE | ID: mdl-38648924

We established a normal embryonic development table for the Anji salamander Hynobius amjiensis, a critically endangered tailed amphibian of the family Hynobiidae with a very limited distribution in East China, following the standards set by the early developmental table of vertebrates. Put together 32 embryonic stages for the Anji salamander was defined. The total embryonic period from oviposition to hatching is approximately 30 days at 9 °C. Stages 1-16 represent early development from cleavage to neurulation. Stages 17-32 represent organogenesis documenting later developmental events such as tail, gill, and limb formation, and hatching (Stage 32). We provided a detailed description of the external morphology and color changes of the head, trunk, limbs, tail, external gills, and balancers at various stages from egg-laying to hatching. We also described several cases of abnormal embryonic development. The establishment of the embryonic development table in H. amjiensis contributes to better understanding of the ontogeny in tailed amphibians, distinguishing closely related species, and identifying abnormal embryonic amphibians.


Embryo, Nonmammalian , Embryonic Development , Urodela , Animals , Urodela/embryology , Embryonic Development/physiology , Embryo, Nonmammalian/embryology , Female , Organogenesis/physiology , Tail/embryology , China
14.
Cell Reprogram ; 26(2): 57-66, 2024 Apr.
Article En | MEDLINE | ID: mdl-38598277

Handmade Cloning (HMC) is a pivotal technique for cloning pig embryos. Despite its significance, the low efficiency of this method hampers its widespread application. Although numerous factors and signaling pathways influencing embryo development have been studied, the mechanisms underlying low developmental capacity and insufficient reprogramming of cloned embryos remain elusive. In the present study, we sought to elucidate key regulatory factors involved in the development of pig HMC embryos by comparing and analyzing the gene expression profiles of HMC embryos with those of naturally fertilized (NF) embryos at the 4-cell, 8-cell, and 16-cell stages. The results showed that ZFP42 expression is markedly higher in NF embryos than in cloned counterparts. Subsequent experiments involving the injection of ZFP42 messenger RNA (mRNA) into HMC embryos showed that ZFP42 could enhance the blastocyst formation rate, upregulate pluripotent genes and metabolic pathways. This highlights the potential of ZFP42 as a critical factor in improving the development of pig HMC embryos.


Cloning, Organism , Nuclear Transfer Techniques , Swine , Animals , Cloning, Organism/methods , Embryonic Development/physiology , Transcriptome , Cloning, Molecular , Blastocyst/metabolism
15.
Reproduction ; 168(1)2024 Jul 01.
Article En | MEDLINE | ID: mdl-38670153

In brief: Proper early embryonic development in mammals relies on precise cellular signaling pathways. This study reveals that NSUN5 is crucial for the regulation of the Hippo pathway, ensuring normal proliferation and differentiation in mouse preimplantation embryos. Abstract: NOL1/NOP2/Sun domain family, member 5 (NSUN5) is an enzyme belonging to the 5-methylcytosine (m5C) writer family that modifies rRNA and mRNA. Our data revealed an upregulation of Nsun5 at the two-cell stage of mouse preimplantation development, suggesting its significance in early embryonic development. Given m5C's important role in stabilizing rRNA and mRNA and the Hippo signaling pathway's critical function in lineage segregation during embryogenesis, we hypothesized that NSUN5 controls cell differentiation by regulating the expression of components of the Hippo signaling pathway in mouse early embryos. To examine this hypothesis, we employed Nsun5-specific small interfering RNAs for targeted gene silencing in mouse preimplantation embryos. Nsun5 knockdown resulted in significant developmental impairments including reduced blastocyst formation, smaller size of blastocysts, and impaired hatching from the zona pellucida. Nsun5 knockdown also led to decreased cell numbers and increased apoptosis in embryos. We also observed diminished nuclear translocation of yes-associated protein 1 (YAP1) in Nsun5 knockdown embryos at the morula stage, indicating disrupted cell differentiation. This disruption was further evidenced by an altered ratio of CDX2-positive to OCT4-positive cells. Furthermore, Nsun5 depletion was found to upregulate the Hippo signaling-related key genes, Lats1 and Lats2 at the morula stage. Our findings underscore the essential role of Nsun5 in early embryonic development by affecting cell proliferation, YAP1 nuclear translocation, and the Hippo pathway.


Blastocyst , Cell Differentiation , Cell Proliferation , Embryonic Development , Gene Expression Regulation, Developmental , Hippo Signaling Pathway , Protein Serine-Threonine Kinases , Signal Transduction , Animals , Blastocyst/metabolism , Blastocyst/cytology , Mice , Female , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Embryonic Development/physiology , YAP-Signaling Proteins/metabolism , Methyltransferases/metabolism , Methyltransferases/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Pregnancy
16.
Hum Reprod ; 39(6): 1256-1274, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38670547

STUDY QUESTION: Are sperm phospholipase C zeta (PLCζ) profiles linked to the quality of embryogenesis and pregnancy? SUMMARY ANSWER: Sperm PLCζ levels in both mouse and humans correlate with measures of ideal embryogenesis whereby minimal levels seem to be required to result in successful pregnancy. WHAT IS KNOWN ALREADY: While causative factors underlying male infertility are multivariable, cases are increasingly associated with the efficacy of oocyte activation, which in mammals occurs in response to specific profiles of calcium (Ca2+) oscillations driven by sperm-specific PLCζ. Although sperm PLCζ abrogation is extensively linked with human male infertility where oocyte activation is deficient, less is clear as to whether sperm PLCζ levels or localization underlies cases of defective embryogenesis and failed pregnancy following fertility treatment. STUDY DESIGN, SIZE, DURATION: A cohort of 54 couples undergoing fertility treatment were recruited at the assisted reproductive technology laboratory at the King Faisal Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia. The recruitment criteria for males was a minimum sperm concentration of 5×106 sperm/ml, while all female patients had to have at least five oocytes. Sperm PLCζ analysis was performed in research laboratories, while semen assessments were performed, and time-lapse morphokinetic data were obtained, in the fertility clinic as part of routine treatment. The CRISPR/Cas9 system was concurrently used to induce indels and single-nucleotide mutations within the Plcζ gene to generate strains of Plcζ mutant mice. Sperm PLCζ was evaluated using immunofluorescence and immunoblotting with an antibody of confirmed consistent specificity against PLCζ. PARTICIPANTS/MATERIALS, SETTING, METHODS: We evaluated PLCζ profiles in sperm samples from 54 human couples undergoing fertility treatment in the context of time-lapse morphokinetic analysis of resultant embryos, correlating such profiles to pregnancy status. Concurrently, we generated two strains of mutant Plcζ mice using CRISPR/Cas9, and performed IVF with wild type (WT) oocytes and using WT or mutant Plcζ sperm to generate embryos. We also assessed PLCζ status in WT and mutant mice sperm in the context of time-lapse morphokinetic analysis and breeding outcomes. MAIN RESULTS AND THE ROLE OF CHANCE: A significant (P ≤ 0.05) positive relationship was observed between both PLCζ relative fluorescence and relative density with the times taken for both the second cell division (CC2) (r = 0.26 and r = 0.43, respectively) and the third cell division (S2) (r = 0.26). Examination of localization patterns also indicated significant correlations between the presence or absence of sperm PLCζ and CC2 (r = 0.27 and r = -0.27, respectively; P ≤ 0.025). Human sperm PLCζ levels were at their highest in the ideal times of CC2 (8-12 h) compared to time ranges outside the ideal timeframe (<8 and >12 h) where levels of human sperm PLCζ were lower. Following assignment of PLCζ level thresholds, quantification revealed a significantly higher (P ≤ 0.05) rate of successful pregnancy in values larger than the assigned cut-off for both relative fluorescence (19% vs 40%, respectively) and relative density (8% vs 54%, respectively). Immunoblotting indicated a single band for PLCζ at 74 kDa in sperm from WT mice, while a single band was also observed in sperm from heterozygous of Plcζ mutant mouse sperm, but at a diminished intensity. Immunofluorescent analysis indicated the previously reported (Kashir et al., 2021) fluorescence patterns in WT sperm, while sperm from Plcζ mutant mice exhibited a significantly diminished and dispersed pattern at the acrosomal region of the sperm head. Breeding experiments indicated a significantly reduced litter size of mutant Plcζ male mice compared to WT mice, while IVF-generated embryos using sperm from mutant Plcζ mice exhibited high rates of polyspermy, and resulted in significantly reduced numbers of these embryos reaching developmental milestones. LIMITATIONS, REASONS FOR CAUTION: The human population examined was relatively small, and should be expanded to examine a larger multi-centre cohort. Infertility conditions are often multivariable, and it was not possible to evaluate all these in human patients. However, our mutant Plcζ mouse experiments do suggest that PLCζ plays a significant role in early embryo development. WIDER IMPLICATIONS OF THE FINDINGS: We found that minimal levels of PLCζ within a specific range were required for optimal early embryogenesis, correlating with increased pregnancy. Levels of sperm PLCζ below specific thresholds were associated with ineffective embryogenesis and lower pregnancy rates, despite eliciting successful fertilization in both mice and humans. To our knowledge, this represents the first time that PLCζ levels in sperm have been correlated to prognostic measures of embryogenic efficacy and pregnancy rates in humans. Our data suggest for the first time that the clinical utilization of PLCζ may stand to benefit not just a specific population of male infertility where oocyte activation is completely deficient (wherein PLCζ is completely defective/abrogated), but also perhaps the larger population of couples seeking fertility treatment. STUDY FUNDING/COMPETING INTEREST(S): J.K. is supported by a faculty start up grant awarded by Khalifa University (FSU-2023-015). This study was also supported by a Healthcare Research Fellowship Award (HF-14-16) from Health and Care Research Wales (HCRW) to J.K., alongside a National Science, Technology, and Innovation plan (NSTIP) project grant (15-MED4186-20) awarded by the King Abdulaziz City for Science and Technology (KACST) for J.K. and A.M.A. The authors declare no conflicts of interest. TRIAL REGISTRATION NUMBER: N/A.


Embryonic Development , Phosphoinositide Phospholipase C , Spermatozoa , Female , Animals , Male , Phosphoinositide Phospholipase C/genetics , Phosphoinositide Phospholipase C/metabolism , Mice , Humans , Pregnancy , Embryonic Development/physiology , Infertility, Male/genetics , Oocytes , Adult
17.
Theriogenology ; 221: 31-37, 2024 Jun.
Article En | MEDLINE | ID: mdl-38537319

Embryo quality is strongly associated with subsequent embryonic developmental efficiency. However, the detailed function of lysine acetyltransferase 8 (KAT8) during early embryonic development in mice remains elusive. In this study, we reported that KAT8 played a pivotal role in the first cleavage of mouse embryos. Immunostaining results revealed that KAT8 predominantly accumulated in the nucleus throughout the entire embryonic developmental process. Kat8 overexpression (Kat8-OE) was correlated with early developmental potential of embryos to the blastocyst stage. We also found that Kat8-OE embryos showed spindle-assembly defects and chromosomal misalignment, and that Kat8-OE in embryos led to increased levels of reactive oxygen species (ROS), accumulation of phosphorylated γH2AX by affecting the expression of critical genes related to mitochondrial respiratory chain and antioxidation pathways. Subsequently, cellular apoptosis was activated as confirmed by TUNEL (Terminal Deoxynucleotidyl Transferase mediated dUTP Nick-End Labeling) assay. Furthermore, we revealed that KAT8 was related to regulating the acetylation status of H4K16 in mouse embryos, and Kat8-OE induced the hyperacetylation of H4K16, which might be a key factor for the defective spindle/chromosome apparatus. Collectively, our data suggest that KAT8 constitutes an important regulator of spindle assembly and redox homeostasis during early embryonic development in mice.


Blastocyst , Embryonic Development , Pregnancy , Female , Animals , Mice , Embryonic Development/physiology , Blastocyst/metabolism , Embryo, Mammalian , Apoptosis , In Situ Nick-End Labeling/veterinary
18.
Anim Reprod Sci ; 264: 107405, 2024 May.
Article En | MEDLINE | ID: mdl-38547815

The aim of this study was to investigate the growth and development of animals produced from demi-embryos and compare them with whole embryos from fetus to adult life. To achieve this, calves produced from fresh demi-embryos and whole embryos were individually transferred and monitored from 60 days of pregnancy until slaughter at 550 days. Ultrasound scans were conducted on fetuses at 60 and 90 days to evaluate the biparietal, abdominal, umbilical cord, orbital, and aorta diameters. Subsequently, morphological traits of newborn calves were measured at 0, 7, and 21 days (N = 18). Live weight was recorded at birth, weaning, and every 30 days thereafter until slaughter at 550 days. The growth curve of each group was modeled using logistic regression, and the factors of the respective functions were compared. As early as 60 days of pregnancy, ultrasound evaluations revealed no morphometric differences between fetuses produced from demi-embryos and those from whole embryos. This lack of differentiation persisted in the morphometric evaluations of newborns up to 21 days of age, as well as in live weight and the growth curve from birth to slaughter. Moreover, there were no significant differences between the groups in terms of rib eye area and fat thickness evolution. Consequently, individuals from demi-embryos exhibited no discernible disparities to those whole embryos in growth and development from 60 days of gestation, through birth, and into adulthood.


Animals, Newborn , Animals , Cattle/embryology , Female , Pregnancy , Fetal Development/physiology , Embryo Transfer/veterinary , Ultrasonography, Prenatal/veterinary , Fertilization in Vitro/veterinary , Embryonic Development/physiology
19.
Adv Sci (Weinh) ; 11(18): e2306901, 2024 May.
Article En | MEDLINE | ID: mdl-38447155

Eggs and embryo manipulation is an important biotechnological challenge to enable positioning, entrapment, and selection of reproductive cells to advance into a new era of nature-like assisted reproductive technologies. Oviductin (OVGP1) is an abundant protein in the oviduct that binds reversibly to the zona pellucida, an extracellular matrix that surrounds eggs and embryos. Here, the study reports a new method coupling OVGP1 to magnetic nanoparticles (NP) forming a complex (NPOv). NPOv specifically surrounds eggs and embryos in a reversible manner. Eggs/embryos bound to NPOv can be moved or retained when subjected to a magnetic force, and interestingly only mature-competent eggs are attracted. This procedure is compatible with normal development following gametes function, in vitro fertilization, embryo development and resulting in the birth of healthy offspring. The results provide in vitro proof-of-concept that eggs and embryos can be precisely guided in the absence of physical contact by the use of magnets.


Zona Pellucida , Zona Pellucida/metabolism , Animals , Female , Mice , Nanoparticles/chemistry , Embryo, Mammalian , Fertilization in Vitro/methods , Ovum , Embryonic Development/physiology , Reproductive Techniques, Assisted
20.
Hum Reprod ; 39(5): 923-935, 2024 May 02.
Article En | MEDLINE | ID: mdl-38503486

STUDY QUESTION: Is morphologic development of the first-trimester utero-placental vasculature associated with embryonic growth and development, fetal growth, and birth weight percentiles? SUMMARY ANSWER: Using the utero-placental vascular skeleton (uPVS) as a new imaging marker, this study reveals morphologic development of the first-trimester utero-placental vasculature is positively associated with embryonic growth and development, fetal growth, and birth weight percentiles. WHAT IS KNOWN ALREADY: First-trimester development of the utero-placental vasculature is associated with placental function, which subsequently impacts embryonic and fetal ability to reach their full growth potential. The attribution of morphologic variations in the utero-placental vascular development, including the vascular structure and branching density, on prenatal growth remains unknown. STUDY DESIGN, SIZE, DURATION: This study was conducted in the VIRTUAL Placental study, a subcohort of 214 ongoing pregnancies, embedded in the prospective observational Rotterdam Periconception Cohort (Predict study). Women were included before 10 weeks gestational age (GA) at a tertiary referral hospital in The Netherlands between January 2017 and March 2018. PARTICIPANTS/MATERIALS, SETTING, METHODS: We obtained three-dimensional power Doppler volumes of the gestational sac including the embryo and the placenta at 7, 9, and 11 weeks of gestation. Virtual Reality-based segmentation and a recently developed skeletonization algorithm were applied to the power Doppler volumes to generate the uPVS and to measure utero-placental vascular volume (uPVV). Absolute vascular morphology was quantified by assigning a morphologic characteristic to each voxel in the uPVS (i.e. end-, bifurcation-crossing-, or vessel point). Additionally, total vascular length (mm) was calculated. The ratios of the uPVS characteristics to the uPVV were calculated to determine the density of vascular branching. Embryonic growth was estimated by crown-rump length and embryonic volume. Embryonic development was estimated by Carnegie stages. Fetal growth was measured by estimated fetal weight in the second and third trimester and birth weight percentiles. Linear mixed models were used to estimate trajectories of longitudinal measurements. Linear regression analysis with adjustments for confounders was used to evaluate associations between trajectories of the uPVS and prenatal growth. Groups were stratified for conception method (natural/IVF-ICSI conceptions), fetal sex (male/female), and the occurrence of placenta-related complications (yes/no). MAIN RESULTS AND THE ROLE OF CHANCE: Increased absolute vascular morphologic development, estimated by positive random intercepts of the uPVS characteristics, is associated with increased embryonic growth, reflected by crown-rump length (endpoints ß = 0.017, 95% CI [0.009; 0.025], bifurcation points ß = 0.012, 95% CI [0.006; 0.018], crossing points ß = 0.017, 95% CI [0.008; 0.025], vessel points ß = 0.01, 95% CI [0.002; 0.008], and total vascular length ß = 0.007, 95% CI [0.003; 0.010], and similarly with embryonic volume and Carnegie stage, all P-values ≤ 0.01. Density of vascular branching was negatively associated with estimated fetal weight in the third trimester (endpoints: uPVV ß = -94.972, 95% CI [-185.245; -3.698], bifurcation points: uPVV ß = -192.601 95% CI [-360.532; -24.670]) and birth weight percentiles (endpoints: uPVV ß = -20.727, 95% CI [-32.771; -8.683], bifurcation points: uPVV ß -51.097 95% CI [-72.257; -29.937], and crossing points: uPVV ß = -48.604 95% CI [-74.246; -22.961])), all P-values < 0.05. After stratification, the associations were observed in natural conceptions specifically. LIMITATION, REASONS FOR CAUTION: Although the results of this prospective observational study clearly demonstrate associations between first-trimester utero-placental vascular morphologic development and prenatal growth, further research is required before we can draw firm conclusions about a causal relationship. WIDER IMPLICATIONS OF THE FINDINGS: Our findings support the hypothesis that morphologic variations in utero-placental vascular development play a role in the vascular mechanisms involved in embryonic and fetal growth and development. Application of the uPVS could benefit our understanding of the pathophysiology underlying placenta-related complications. Future research should focus on the clinical applicability of the uPVS as an imaging marker for the early detection of fetal growth restriction. STUDY FUNDING/COMPETING INTEREST(S): This research was funded by the Department of Obstetrics and Gynecology of the Erasmus MC, University Medical Centre, Rotterdam, The Netherlands. There are no conflicts of interest. TRIAL REGISTRATION NUMBER: Registered at the Dutch Trial Register (NTR6854).


Birth Weight , Fetal Development , Placenta , Pregnancy Trimester, First , Ultrasonography, Prenatal , Humans , Female , Pregnancy , Placenta/blood supply , Placenta/diagnostic imaging , Adult , Netherlands , Prospective Studies , Embryonic Development/physiology , Uterus/blood supply , Uterus/diagnostic imaging , Gestational Age , Placentation , Cohort Studies
...