Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 279
1.
Vector Borne Zoonotic Dis ; 24(4): 245-248, 2024 04.
Article En | MEDLINE | ID: mdl-38441490

Japanese encephalitis virus is mainly prevalent in the tropical and subtropical regions of Asia and Oceania. Through immunoprecipitation-mass spectrometry analysis using monoclonal antibodies targeting JEV E protein, we found that mosquito Histone 2A protein could bind to JEV particles. The binding of H2A and JEV was detected in the salivary gland and supernatant of mosquito cells. Furthermore, RNA interference experiments in vitro and in vivo confirmed that H2A protein promotes JEV infection in mosquitoes. In summary, we found that mosquito H2A is a factor that supports JEV infection and can potentially facilitate cross-species transmission of JEV.


Culex , Culicidae , Encephalitis Virus, Japanese , Encephalitis, Japanese , Animals , Encephalitis Virus, Japanese/genetics , Histones , Encephalitis, Japanese/veterinary , Mosquito Vectors
2.
Zoonoses Public Health ; 71(4): 429-441, 2024 Jun.
Article En | MEDLINE | ID: mdl-38484761

AIMS: Japanese encephalitis (JE) is endemic in India. Although pigs are considered important hosts and sentinels for JE outbreaks in people, limited information is available on JE virus (JEV) surveillance in pigs. METHODS AND RESULTS: We investigated the spatio-temporal distribution of JEV seroprevalence and its association with climate variables in 4451 samples from pigs in 10 districts of eastern Uttar Pradesh, India, over 10 years from 2013 to 2022. The mean seroprevalence of IgG (2013-2022) and IgM (2017-2022) was 14% (95% CI 12.8-15.2) and 10.98% (95% CI 9.8-12.2), respectively. Throughout the region, higher seroprevalence from 2013 to 2017 was observed and was highly variable with no predictable spatio-temporal pattern between districts. Seroprevalence of up to 60.8% in Sant Kabir Nagar in 2016 and 69.5% in Gorakhpur district in 2017 for IgG and IgM was observed, respectively. IgG seroprevalence did not increase with age. Monthly time-series decomposition of IgG and IgM seroprevalence demonstrated annual cyclicity (3-4 peaks) with seasonality (higher, broader peaks in the summer and monsoon periods). However, most variance was due to the overall trend and the random components of the time series. Autoregressive time-series modelling of pigs sampled from Gorakhpur was insufficiently predictive for forecasting; however, an inverse association between humidity (but not rainfall or temperature) was observed. CONCLUSIONS: Detection patterns confirm seasonal epidemic periods within year-round endemicity in pigs in eastern Uttar Pradesh. Lack of increasing age-associated seroprevalence indicates that JEV might not be immunizing in pigs which needs further investigation because models that inform public health interventions for JEV could be inaccurate if assuming long-term immunity in pigs. Although pigs are considered sentinels for human outbreaks, sufficient timeliness using sero-surveillance in pigs to inform public health interventions to prevent JEV in people will require more nuanced modelling than seroprevalence and broad climate variables alone.


Encephalitis Virus, Japanese , Encephalitis, Japanese , Swine Diseases , Animals , Encephalitis, Japanese/epidemiology , Encephalitis, Japanese/veterinary , Encephalitis, Japanese/virology , Swine , India/epidemiology , Swine Diseases/epidemiology , Swine Diseases/virology , Encephalitis Virus, Japanese/immunology , Seroepidemiologic Studies , Immunoglobulin M/blood , Seasons , Antibodies, Viral/blood , Immunoglobulin G/blood , Spatio-Temporal Analysis
3.
Viruses ; 16(2)2024 02 06.
Article En | MEDLINE | ID: mdl-38400034

Japanese encephalitis virus (JEV) causes acute encephalitis in humans and is of major public health concern in most Asian regions. Dogs are suitable sentinels for assessing the risk of JEV infection in humans. A neutralization test (NT) or an enzyme-linked immunosorbent assay (ELISA) is used for the serological detection of JEV in dogs; however, these tests have several limitations, and, thus, a more convenient and reliable alternative test is needed. In this study, a colloidal gold immunochromatographic strip (ICS), using a purified recombinant EDIII protein, was established for the serological survey of JEV infection in dogs. The results show that the ICSs could specifically detect JEV antibodies within 10 min without cross-reactions with antibodies against other canine viruses. The test strips could detect anti-JEV in serum with dilution up to 640 times, showing high sensitivity. The coincidence rate with the NT test was higher than 96.6%. Among 586 serum samples from dogs in Shanghai examined using the ICS test, 179 (29.98%) were found to be positive for JEV antibodies, and the high seropositivity of JEV in dogs in China was significantly correlated with the season and living environment. In summary, we developed an accurate and economical ICS for the rapid detection of anti-JEV in dog serum samples with great potential for the surveillance of JEV in dogs.


Encephalitis Virus, Japanese , Encephalitis, Japanese , Dogs , Animals , Humans , Gold Colloid , China/epidemiology , Encephalitis, Japanese/diagnosis , Encephalitis, Japanese/veterinary , Encephalitis, Japanese/epidemiology , Enzyme-Linked Immunosorbent Assay/methods , Antibodies, Viral , Recombinant Proteins
4.
Vet Microbiol ; 290: 109976, 2024 Mar.
Article En | MEDLINE | ID: mdl-38198922

Birds including domestic and wild birds, as the amplifying or reservoir hosts of JEV, were sensitive to JEV infection and could develop a sufficiently high viremia to infect mosquitoes. However, most of JEV positive reports in birds were based on molecular detection, with few viruses isolated from clinical cases. In this study, one JEV strain, designated duck/2022-SD-1, was first isolated and identified from blood samples of ducks in 2022 in Shandong province of China. The JEV duck/2022-SD-1 strain was classified into genotype I cluster and shared 96.5 to 99.5 % nucleotide sequence identity with other GI JEV strains. Biological characteristics revealed that duck/2022-SD-1 possessed similar replication ability to a virulent strain Beijing/2020-1. Based on the amino acid identity comparison of E protein, amino acid sites responsible for JEV virulence were conserved between duck/2022-SD-1 and other virulence strains. Through virulence assays in mice, we further determined that duck/2022-SD-1 was a highly virulent JEV strain with highly neuroinvasive in mice, which is similar to the virulence of another virulent strain Beijing/2020-1. Thus, the potential threat of JEV strains originating from domestic birds should be brought to people's attention.


Encephalitis Virus, Japanese , Encephalitis, Japanese , Rodent Diseases , Humans , Animals , Mice , Ducks , Encephalitis, Japanese/veterinary , Virulence , Amino Acids/genetics , Genotype , Phylogeny
5.
Zoonoses Public Health ; 71(3): 274-280, 2024 May.
Article En | MEDLINE | ID: mdl-38110840

BACKGROUND AND OBJECTIVE: No autochthonous human cases of Japanese encephalitis (JE) have been reported to date in the European Union (EU). In this study, we assess the likelihood of Japanese encephalitis virus (JEV) introduction and transmission within the EU and propose outbreak response measures. RISK ASSESSMENT: Given the global geographical distribution of JEV, the probability of virus introduction into the EU is currently very low, with viremic bird migration being the most plausible pathway of introduction. However, this likelihood would significantly increase if the virus were to become established in the Middle East, Caucasus, Central Asia or Africa. Considering the environmental conditions that are expected to be conducive for virus circulation, there is a high likelihood of virus transmission within the EU after its introduction in environmentally suitable areas. The spread of the virus within the EU would likely occur through the movement of wild birds, pigs and mosquitoes. MITIGATION: To mitigate or potentially contain the emergence of JE in the EU, early detection of both human and animal cases will be crucial.


Culicidae , Encephalitis Virus, Japanese , Encephalitis, Japanese , Swine Diseases , Animals , Humans , Swine , Encephalitis, Japanese/epidemiology , Encephalitis, Japanese/veterinary , European Union , Birds
6.
Vet Microbiol ; 287: 109913, 2023 Dec.
Article En | MEDLINE | ID: mdl-38006719

Japanese encephalitis virus (JEV) is a flavivirus that is spread through mosquito bites and is the leading cause of viral encephalitis in Asia. JEV can infect a variety of cell types; however, crucial receptor molecules remain unclear. The purpose of this study was to determine whether porcine CD4 protein is a receptor protein that impacts JEV entry into PK15 cells and subsequent viral replication. We confirmed the interaction between the JEV E protein and the CD4 protein through Co-IP, virus binding and internalization, antibody blocking, and overexpression and created a PK-15 cell line with CD4 gene knockdown by CRISPR/Cas9. The results show that CD4 interacts with JEV E and that CD4 knockdown cells altered virus adsorption and internalization, drastically reducing virus attachment. The level of viral transcription in CD4 antibody-blocked cells, vs. control cells, was decreased by 49.1%. Based on these results, we believe that CD4 is a receptor protein for JEVs. Furthermore, most viral receptors appear to be associated with lipid rafts, and colocalization studies demonstrate the presence of CD4 protein on lipid rafts. RT‒qPCR and WB results show that virus replication was suppressed in PK-15-CD4KD cells. The difference in viral titer between KD and WT PK-15 cells peaked at 24 h, and the viral titer in WT PK-15 cells was 5.6 × 106, whereas in PK-15-CD4KD cells, it was only 1.8 × 106, a 64% drop, demonstrating that CD4 deficiency has an effect on the process of viral replication. These findings suggest that JEV enters porcine kidney cells via lipid raft-colocalized CD4, and the proliferation process is positively correlated with CD4.


Encephalitis Virus, Japanese , Encephalitis, Japanese , Receptors, Virus , Swine Diseases , Animals , Asia , Cell Line , Encephalitis Virus, Japanese/physiology , Encephalitis, Japanese/metabolism , Encephalitis, Japanese/veterinary , Encephalitis, Japanese/virology , Receptors, Virus/metabolism , Swine , Swine Diseases/virology , Virus Attachment , Virus Replication
7.
Vet Microbiol ; 287: 109887, 2023 Dec.
Article En | MEDLINE | ID: mdl-37925877

N6-methyladenosine (m6A), the most common modification in mammalian mRNA and viral RNA, regulates mRNA structure, stability, translation, and nuclear export. The Japanese encephalitis virus (JEV) is a mosquito-borne flavivirus causing severe neurologic disease in humans. To date, the role of m6A modification in JEV infection remains unclear. Herein, we aimed to determine the impact of m6A methylation modification on JEV replication in vitro and in vivo. Our results demonstrated that the overexpression of the m6A reader protein YTHDF1 in vitro significantly inhibits JEV proliferation. Additionally, YTHDF1 negatively regulates JEV proliferation in YTHDF1 knockdown cells and YTHDF1 knockout mice. MeRIP-seq analysis indicated that YTHDF1 interacts with several interferon-stimulated genes (ISGs), especially in IFIT3. Overall, our data showed that YTHDF1 played a vital role in inhibiting JEV replication. These findings bring novel insights into the specific mechanisms involved in the innate immune response to infection with JEV. They can be used in the development of novel therapeutics for controlling JEV infection.


Encephalitis Virus, Japanese , Encephalitis, Japanese , Humans , Mice , Animals , Encephalitis Virus, Japanese/genetics , Host-Pathogen Interactions , Encephalitis, Japanese/veterinary , Cell Line , RNA, Messenger , Virus Replication , Mammals , RNA-Binding Proteins/genetics
8.
PLoS Negl Trop Dis ; 17(10): e0011422, 2023 Oct.
Article En | MEDLINE | ID: mdl-37856569

Japanese encephalitis virus (JEV) continues to circulate throughout Southeast Asia and the Western Pacific where approximately 3 billion people in 24 countries are at risk of infection. Surveillance targeting the mosquito vectors of JEV was conducted at four military installations on Okinawa, Japan, between 2016 and 2021. Out of a total of 10,426 mosquitoes from 20 different species, zero were positive for JEV. The most abundant mosquito species collected were Aedes albopictus (36.4%) followed by Culex sitiens (24.3%) and Armigeres subalbatus (19%). Statistically significant differences in mosquito species populations according to location were observed. Changes in land use over time appear to be correlated with the species and number of mosquitoes trapped in each location. JEV appears to be absent from mosquito populations on Okinawa, but further research on domestic pigs and ardeid birds is warranted.


Aedes , Culex , Encephalitis Virus, Japanese , Encephalitis, Japanese , Military Personnel , Humans , Animals , Swine , Encephalitis, Japanese/diagnosis , Encephalitis, Japanese/epidemiology , Encephalitis, Japanese/veterinary , Sus scrofa , Mosquito Vectors
9.
J Vector Borne Dis ; 60(3): 292-299, 2023.
Article En | MEDLINE | ID: mdl-37843240

BACKGROUND & OBJECTIVES: Swine is a good sentinel for forecast of Japanese encephalitis virus (JEV) outbreaks in humans. The present study was envisaged with objectives to know the sero-conversion period of JEV and to assess the prevalence of JEV in swine population of western Uttar Pradesh state of India. METHODS: A total of 252 swine serum samples were screened using IgM ELISA over the period of one year to determine the sero-conversion rate and compared seasonally to check the transmission peak of virus. Further, 321 swine blood and serum samples were collected from all seven divisions of western Uttar Pradesh to determine prevalence of JEV using real time RT-PCR and ELISA. RESULTS: Seasonal sero-conversion rate was high during monsoon and post-monsoon (32%) followed by winter (22.91%) and summer (10.71%) seasons. The sero-conversion was observed in all months indicating viral activity throughout the year in the region. The low degree of correlation was found between meteorological variables (day temperature, rainfall) and sero-conversion rate. A total of 52 samples (16.19%) were found positive by real time RT-PCR while sero-positivity of 29.91% was observed using IgG and IgM ELISA(s). The overall prevalence of JEV was 39.25%. INTERPRETATION & CONCLUSION: The presence of JEV was recorded throughout the year with peak occurrence during monsoon and post-monsoon season indicating that virus has spread its realm to western region of the state. The information generated in the present study will aid in initiating timely vector control measures and human vaccination program to mitigate risk of JEV infection in the region.


Encephalitis Virus, Japanese , Encephalitis, Japanese , Animals , Humans , Swine , Encephalitis Virus, Japanese/genetics , Molecular Epidemiology , Encephalitis, Japanese/epidemiology , Encephalitis, Japanese/veterinary , India/epidemiology , Immunoglobulin M
10.
Vector Borne Zoonotic Dis ; 23(12): 645-652, 2023 Dec.
Article En | MEDLINE | ID: mdl-37672628

Background: Japanese encephalitis virus (JEV) is a mosquito-borne zoonotic flavivirus and the leading cause of pediatric encephalitis in the Asian Pacific region. The transmission cycle primarily involves Culex spp. mosquitoes and Ardeid birds, with domestic pigs (Sus scrofa domestica) being the source of infectious viruses for the spillover of JEV from the natural endemic transmission cycle into the human population. Although many studies have concluded that domestic pigs play an important role in the transmission cycle of JEV, and infection of humans, the role of feral pigs in the transmission of JEV remains unclear. Since domestic and feral pigs are the same species, and because feral pig populations in the United States are increasing and expanding geographically, the current study aimed to test the hypothesis that if JEV were introduced into the United States, feral pigs might play a role in the transmission cycle. Materials and Methods: Sinclair miniature pigs, that exhibit the feral phenotype, were intradermally inoculated with JEV genotype Ib. These pigs were derived from crossing miniature domestic pig with four strains of feral pigs and were used since obtaining feral swine was not possible. Results: The Sinclair miniature pigs became viremic and displayed pathological outcomes similar to those observed in domestic swine. Conclusion: Based on these findings, we conclude that in the event of JEV being introduced into the United States, feral pig populations could contribute to establishment and maintenance of a transmission cycle of JEV and could lead to the virus becoming endemic in the United States.


Culex , Culicidae , Encephalitis Virus, Japanese , Encephalitis, Japanese , Animals , Swine , Humans , Child , Encephalitis Virus, Japanese/genetics , Encephalitis, Japanese/epidemiology , Encephalitis, Japanese/veterinary , Swine, Miniature , Birds , Phenotype
11.
Vet Microbiol ; 284: 109843, 2023 Sep.
Article En | MEDLINE | ID: mdl-37540998

Japanese encephalitis virus (JEV) is a flavivirus that cause severe neurological deficits. The guanylate-binding protein 1 (GBP1) gene is an interferon-stimulated gene and exerts antiviral functions on many RNA and DNA viruses via diverse mechanisms, however, the roles and the action modes of GBP1 in the antiviral effect on the production of JEV RNA and infectious virions remain to be clarified. In this study, we found that the RNA levels of swine GBP1 (sGBP1) in PK15 cells were up-regulated at the late stage of JEV infection. The overexpression of sGBP1 significantly inhibited the production of JEV while the knockdown of sGBP1 promoted the production of JEV. The GTPase activity and isoprenylation of sGBP1 both are critical for anti-JEV activity. The GTPase activity of sGBP1 is responsible for inhibiting the production of JEV genomic RNA. The isoprenylation of sGBP1 inhibited the expression and cleavage of JEV prM to decrease the yields of infectious virions, which may be associated with the interaction between sGBP1 and cellular proprotein convertase furin. Taken together, the study dissected the action modes of sGBP1with potent anti-JEV activity in more details.


Encephalitis Virus, Japanese , Encephalitis, Japanese , Swine Diseases , Swine , Animals , Encephalitis Virus, Japanese/genetics , Cell Line , Encephalitis, Japanese/veterinary , Antiviral Agents/pharmacology , GTP Phosphohydrolases/pharmacology , Prenylation , RNA , Virus Replication
12.
Med Vet Entomol ; 37(4): 737-744, 2023 12.
Article En | MEDLINE | ID: mdl-37404158

In Southeast Asia, despite the use of Japanese encephalitis vaccines and vaccination coverage, Japanese encephalitis (JE) transmission is still a major public health issue. The main vectors of this virus are mosquitoes from the genus Culex, which diversity and density are important in Southeast Asia. The main vector species of Japanese encephalitis virus (JEV) in Cambodia belong to the Vishnui subgroup. However, their morphological identification solely based on the adult stage remains challenging, making their segregation and detection difficult. In order to identify and describe the distribution of the three main JEV vector species in Cambodia, namely Culex vishnui, Cx. pseudovishnui and Cx. tritaeniorhynchus, mosquito samplings were carried out throughout the country in different environments. Phylogenetic analysis of the cytochrome c oxidase subunit I (coI) gene using maximum-likelihood tree with ultrafast bootstrap and phylogeographic analysis were performed. The three main Culex species are phylogenetically separated, and represent two distinct clades, one with Cx. tritaeniorhynchus and the second with Cx. vishnui and Cx. pseudovishnui, the latter appearing as a subgroup of Cx. vishnui. The phylogeographic analysis shows a distribution of the Vishnui subgroup on the entire Cambodian territory with an overlapped distribution areas leading to a sympatric distribution of these species. The three JEV vector species are geographically well-defined with a strong presence of Cx. pseudovishnui in the forest. Combined with the presence of Cx. tritaeniorhynchus and Cx. vishnui in rural, peri-urban, and urban areas, the presence of JEV-competent vectors is widespread in Cambodia.


Culex , Culicidae , Encephalitis Virus, Japanese , Encephalitis, Japanese , Animals , Phylogeny , Cambodia , Encephalitis, Japanese/veterinary , Mosquito Vectors
13.
Viruses ; 15(5)2023 05 09.
Article En | MEDLINE | ID: mdl-37243211

Japanese encephalitis virus (JEV) is a member of the Flaviviridae family and one of Asia's most common causes of encephalitis. JEV is a zoonotic virus that is transmitted to humans through the bite of infected mosquitoes of the Culex species. While humans are dead-end hosts for the virus, domestic animals such as pigs and birds are amplification hosts. Although JEV naturally infected monkeys have been reported in Asia, the role of non-human primates (NHPs) in the JEV transmission cycle has not been intensively investigated. In this study, we demonstrated neutralizing antibodies against JEV in NHPs (Macaca fascicularis) and humans living in proximity in two provinces located in western and eastern Thailand by using Plaque Reduction Neutralization Test (PRNT). We found a 14.7% and 5.6% seropositive rate in monkeys and 43.7% and 45.2% seropositive rate in humans living in west and east Thailand, respectively. This study observed a higher seropositivity rate in the older age group in humans. The presence of JEV neutralizing antibodies in NHPs that live in proximity to humans shows the occurrence of natural JEV infection, suggesting the endemic transmission of this virus in NHPs. According to the One Health concept, regular serological studies should be conducted especially at the animal-human interface.


Encephalitis Virus, Japanese , Encephalitis, Japanese , Humans , Animals , Swine , Aged , Thailand/epidemiology , Haplorhini , Encephalitis, Japanese/epidemiology , Encephalitis, Japanese/veterinary , Antibodies, Neutralizing , Antibodies, Viral
14.
Viruses ; 15(3)2023 02 24.
Article En | MEDLINE | ID: mdl-36992334

Japanese encephalitis virus (JEV), which uses a mosquito primary vector and swine as a reservoir host, poses a significant risk to human and animal health. JEV can be detected in cattle, goats and dogs. A molecular epidemiological survey of JEV was conducted in 3105 mammals from five species, swine, fox, racoon dog, yak and goat, and 17,300 mosquitoes from 11 Chinese provinces. JEV was detected in pigs from Heilongjiang (12/328, 3.66%), Jilin (17/642, 2.65%), Shandong (14/832, 1.68%), Guangxi (8/278, 2.88%) and Inner Mongolia (9/952, 0.94%); in goats (1/51, 1.96%) from Tibet; and mosquitoes (6/131, 4.58%) from Yunnan. A total of 13 JEV envelope (E) gene sequences were amplified in pigs from Heilongjiang (5/13), Jilin (2/13) and Guangxi (6/13). Swine had the highest JEV infection rate of any animal species, and the highest infection rates were found in Heilongjiang. Phylogenetic analysis indicated that the predominant strain in Northern China was genotype I. Mutations were found at residues 76, 95, 123, 138, 244, 474 and 475 of E protein but all sequences had predicted glycosylation sites at 'N154. Three strains lacked the threonine 76 phosphorylation site from non-specific (unsp) and protein kinase G (PKG) site predictions; one lacked the threonine 186 phosphorylation site from protein kinase II (CKII) prediction; and one lacked the tyrosine 90 phosphorylation site from epidermal growth factor receptor (EGFR) prediction. The aim of the current study was to contribute to JEV prevention and control through the characterization of its molecular epidemiology and prediction of functional changes due to E-protein mutations.


Culicidae , Encephalitis Virus, Japanese , Encephalitis Viruses, Japanese , Encephalitis, Japanese , Cattle , Animals , Humans , Swine , Dogs , Encephalitis Virus, Japanese/genetics , Phylogeny , China/epidemiology , Genotype , Encephalitis, Japanese/epidemiology , Encephalitis, Japanese/veterinary , Threonine/genetics , Mammals
15.
Viruses ; 15(2)2023 02 06.
Article En | MEDLINE | ID: mdl-36851664

Japanese encephalitis virus (JEV) is an arboviral, encephalitogenic, zoonotic flavivirus characterized by its complex epidemiology whose transmission cycle involves reservoir and amplifying hosts, competent vector species and optimal environmental conditions. Although typically endemic in Asia and parts of the Pacific Islands, unprecedented outbreaks in both humans and domestic pigs in southeastern Australia emphasize the virus' expanding geographical range. To estimate areas at highest risk of JEV transmission in Australia, ecological niche models of vectors and waterbirds, a sample of piggery coordinates and feral pig population density models were combined using mathematical and geospatial mapping techniques. These results highlight that both coastal and inland regions across the continent are estimated to have varying risks of enzootic and/or epidemic JEV transmission. We recommend increased surveillance of waterbirds, feral pigs and mosquito populations in areas where domestic pigs and human populations are present.


Encephalitis Virus, Japanese , Encephalitis Viruses, Japanese , Encephalitis, Japanese , Epidemics , Humans , Animals , Encephalitis, Japanese/epidemiology , Encephalitis, Japanese/veterinary , Mosquito Vectors , Australia/epidemiology
16.
Int J Infect Dis ; 130: 101-107, 2023 May.
Article En | MEDLINE | ID: mdl-36623793

OBJECTIVES: The annual incidence of Japanese encephalitis (JE) has increased markedly in South Korea since 2010. We hypothesized that this increase was associated with higher frequencies of JE virus in animals. METHODS: We analyzed 5201 serum samples collected from even-toed hoofed mammals (Artiodactyla species) across South Korea from 2008 to 2012 using a stratified two-stage probability approach. RESULTS: The highest annual incidence of human JE cases and deaths occurred in 2010. Cases increased from six (no deaths) in 2008-2009 to 26 cases (seven deaths) in 2010. The JE virus seroprevalence in deer and elk fawns increased from 2.4% in 2008 to 24.1% in 2009, and in wild boars, it increased from 19.3% to 55.0% in the same period, which preceded the surge of human cases. Furthermore, the seroprevalence in calves increased from 15.3% in 2008 to 35.8% in 2010, and that in lambs and goat kids, increased from 8.5% in 2009 to 26.2% in 2010, which coincided with the surge in humans. CONCLUSION: Our findings show that the increased incidence of human JE in South Korea was temporally associated with an increasing seroprevalence in the Artiodactyla species. Surveillance of sentinel animals may be useful to predict the emergence of JE in humans.


Deer , Encephalitis Virus, Japanese , Encephalitis, Japanese , Humans , Animals , Sheep , Seroepidemiologic Studies , Encephalitis, Japanese/epidemiology , Encephalitis, Japanese/veterinary , Republic of Korea/epidemiology , Goats
17.
Jpn J Infect Dis ; 76(2): 151-154, 2023 Mar 24.
Article En | MEDLINE | ID: mdl-36450570

Japanese encephalitis virus (JEV) is a mosquito-borne virus belonging to the JEV serocomplex within the genus Flavivirus, family Flaviviridae. It has 5 genotypes, G1-G5, based on the envelope (E) protein nucleotide sequence. JEV G3 circulated in Japan until the early 1990s when it was replaced by G1. JEV G3 was isolated from swine serum samples (sw/Kochi/1/2004) in the Kochi Prefecture, western Japan, in 2004. In addition, the 2018 isolates from pigs and cows (sw/Kochi/492/2018 and bo/Kochi/211/2018) in the same prefecture were identified as G3. The nucleotide sequencing results of the sw/Kochi/492/2018 and bo/Kochi/211/2018 polyprotein region differed from those of the sw/Kochi/1/2004 strain described in our previous report. Seven JEV isolates were identified as G1 in the same geographical area as that in this study. This result indicates that both JEV G1 and G3 are present in the Kochi area.


Encephalitis Virus, Japanese , Encephalitis, Japanese , Swine Diseases , Female , Animals , Swine , Cattle , Encephalitis, Japanese/epidemiology , Encephalitis, Japanese/veterinary , Japan/epidemiology , Genotype , Swine Diseases/epidemiology , Phylogeny
18.
Virus Genes ; 59(1): 67-78, 2023 Feb.
Article En | MEDLINE | ID: mdl-36357764

Swine is considered as a suitable sentinel to predict Japanese encephalitis virus (JEV) outbreaks in humans. The present study was undertaken to determine the circulating genotypes of JEV in swine population of India. A total of 702 swine serum samples from four states of western, northern, northern-temperate, and north-eastern zones of India were screened by real-time RT-PCR targeting envelope gene of JEV, which showed positivity of 35.33%. The viral copy number ranged from 3 copies to 6.3 × 104 copies/reaction. Subsequently, the capsid/prM structural gene region of JEV positive samples was amplified by nested RT-PCR, sequenced, and genetically characterized. The phylogenetic analysis of the partial sequences of the capsid gene of 42 JEV positive samples showed that they all belonged to genotype-III (G-III) of JEV. Notably, JEV positive swine samples showed high nucleotide identity with human isolates from China and Nepal which explains the probable spillover of infection between neighboring countries probably by migratory birds. The novel mutations were observed in JEV positive sample B8 at C54 position (Phe → Ser), and JEV positive sample K50 at C62 (Thr → Ala) and C65 (Leu → Pro) positions which were absent from other JEV isolates reported till now. The mutation at the C66 position (Leu → Ser) observed in live attenuated vaccine SA14-14-2 strain was not found in JEV positive samples of our study. The detection of the G-III JE virus from climatically diverse states of India reinforces the need to continue the ongoing human vaccination program in India by extending vaccine coverage in temperate states.


Encephalitis Virus, Japanese , Encephalitis, Japanese , Humans , Animals , Swine , Encephalitis Virus, Japanese/genetics , Encephalitis, Japanese/epidemiology , Encephalitis, Japanese/veterinary , Phylogeny , Genotype , India/epidemiology , Vaccines, Attenuated , Capsid Proteins/genetics
19.
Vet Ital ; 59(4)2023 12 31.
Article En | MEDLINE | ID: mdl-38756025

Japanese encephalitis virus (JEV) is a zoonotic arbovirus that causes abortion, stillbirth, and congenital defects in pigs, and epidemic encephalitis in humans. Currently, there is scarcity of information on JEV infection in pigs in Nigeria. Since the Culex tritaeniorhynchus vector of JEV is present in Nigeria and considering recent anecdotal reports of abortions and birth of weak piglets in some pig farms in southwestern Nigeria, there is a need for studies on the presence of the virus and its true burden among pig populations in the country. Serum samples (n=368) obtained from farm-reared pigs in four States of southwestern Nigeria were screened for JEV-specific IgG antibodies using a commercial ELISA kit. An overall JEV seropositivity of 35.1% (95% CI: 30.18 - 39.93%) was obtained, with detectable antibodies in pigs of all age groups, breeds, sex, and locations. Our results suggest natural exposure of these unvaccinated intensively reared pigs to JEV circulating silently in the swine population with significant association of the seropositivity with location (state/community in which the pig farms exist) and breed of the pigs studied. This first report of detection of anti-JEV antibodies in pigs in Nigeria indicates that JEV circulated among these pigs and underscores the need for active surveillance for JEV in humans, pigs, and mosquitoes to provide valuable epidemiological data for the design of effective control strategies against the virus, thus forestalling potential future outbreaks of the infection.


Encephalitis Virus, Japanese , Encephalitis, Japanese , Swine Diseases , Animals , Nigeria/epidemiology , Swine , Encephalitis Virus, Japanese/immunology , Encephalitis, Japanese/veterinary , Encephalitis, Japanese/epidemiology , Encephalitis, Japanese/blood , Swine Diseases/epidemiology , Swine Diseases/virology , Swine Diseases/blood , Female , Seroepidemiologic Studies , Male , Antibodies, Viral/blood
20.
Viruses ; 14(12)2022 11 28.
Article En | MEDLINE | ID: mdl-36560666

Japanese encephalitis virus (JEV) is an important arbovirus in Asia that can cause serious neurological disease. JEV is transmitted by mosquitoes in an enzootic cycle involving porcine and avian reservoirs, in which humans are accidental, dead-end hosts. JEV is currently not endemic in Singapore, after pig farming was abolished in 1992; the last known human case was reported in 2005. However, due to its location along the East-Asian Australasian Flyway (EAAF), Singapore is vulnerable to JEV re-introduction from the endemic regions. Serological and genetic evidence in the last decade suggests JEV's presence in the local fauna. In the present study, we report the genetic characterization and the first isolation of JEV from 3214 mosquito pools consisting of 41,843 Culex mosquitoes, which were trapped from April 2014 to May 2021. The findings demonstrated the presence of genotype I of JEV (n = 10), in contrast to the previous reports of the presence of genotype II of JEV in Singapore. The genetic analyses also suggested that JEV has entered Singapore on several occasions and has potentially established an enzootic cycle in the local fauna. These observations have important implications in the risk assessment and the control of Japanese encephalitis in non-endemic countries, such as Singapore, that are at risk for JEV transmission.


Culex , Culicidae , Encephalitis Virus, Japanese , Encephalitis, Japanese , Swine , Animals , Humans , Encephalitis Virus, Japanese/genetics , Singapore/epidemiology , Encephalitis, Japanese/epidemiology , Encephalitis, Japanese/veterinary , Encephalitis, Japanese/prevention & control , Genotype
...