Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Viruses ; 13(2)2021 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-33498300

RESUMEN

Alfuy (ALFV) is an attenuated flavivirus related to the Murray Valley encephalitis virus (MVEV). We previously identified markers of attenuation in the envelope (E) protein of the prototype strain (ALFV3929), including the hinge region (E273-277) and lack of glycosylation at E154-156. To further determine the mechanisms of attenuation we assessed ALFV3929 binding to glycosaminoglycans (GAG), a known mechanism of flaviviruses attenuation. Indeed, ALFV3929 exhibited reduced binding to GAG-rich cells in the presence of heparin; however, low-passage ALFV isolates were relatively unaffected. Sequence comparisons between ALFV strains and structural modelling incriminated a positively-charged residue (K327) in ALFV3929 as a GAG-binding motif. Substitution of this residue to the corresponding uncharged residue in MVEV (L), using a previously described chimeric virus containing the prM & E genes of ALFV3929 in the backbone of MVEV (MVEV/ALFV-prME), confirmed a role for K327 in enhanced GAG binding. When the wild type residues at E327, E273-277 and E154-156 of ALFV3929 were replaced with the corresponding residues from virulent MVEV, it revealed each motif contributed to attenuation of ALFV3929, with the E327/E273-277 combination most dominant. These data demonstrate that attenuation of ALFV3929 is multifactorial and provide new insights for the rational design of attenuated flavivirus vaccines.


Asunto(s)
Virus de la Encefalitis del Valle Murray/patogenicidad , Virus de la Encefalitis Japonesa (Subgrupo)/patogenicidad , Encefalitis por Arbovirus/virología , Infecciones por Flavivirus/virología , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/metabolismo , Secuencias de Aminoácidos , Animales , Encéfalo/patología , Encéfalo/virología , Línea Celular , Virus de la Encefalitis del Valle Murray/química , Virus de la Encefalitis del Valle Murray/metabolismo , Virus de la Encefalitis Japonesa (Subgrupo)/química , Virus de la Encefalitis Japonesa (Subgrupo)/crecimiento & desarrollo , Virus de la Encefalitis Japonesa (Subgrupo)/metabolismo , Encefalitis por Arbovirus/patología , Infecciones por Flavivirus/patología , Glicosaminoglicanos/metabolismo , Glicosilación , Heparina/farmacología , Ratones , Mutación , Dominios Proteicos , Pase Seriado , Proteínas del Envoltorio Viral/genética , Ensayo de Placa Viral , Virulencia
2.
RNA ; 27(1): 54-65, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33004436

RESUMEN

During infection by a flavivirus (FV), cells accumulate noncoding subgenomic flavivirus RNAs (sfRNAs) that interfere with several antiviral pathways. These sfRNAs are formed by structured RNA elements in the 3' untranslated region (UTR) of the viral genomic RNA, which block the progression of host cell exoribonucleases that have targeted the viral RNA. Previous work on these exoribonuclease-resistant RNAs (xrRNAs) from mosquito-borne FVs revealed a specific three-dimensional fold with a unique topology in which a ring-like structure protectively encircles the 5' end of the xrRNA. Conserved nucleotides make specific tertiary interactions that support this fold. Examination of more divergent FVs reveals differences in their 3' UTR sequences, raising the question of whether they contain xrRNAs and if so, how they fold. To answer this, we demonstrated the presence of an authentic xrRNA in the 3' UTR of the Tamana bat virus (TABV) and solved its structure by X-ray crystallography. The structure reveals conserved features from previously characterized xrRNAs, but in the TABV version these features are created through a novel set of tertiary interactions not previously seen in xrRNAs. This includes two important A-C interactions, four distinct backbone kinks, several ordered Mg2+ ions, and a C+-G-C base triple. The discovery that the same overall architecture can be achieved by very different sequences and interactions in distantly related flaviviruses provides insight into the diversity of this type of RNA and will inform searches for undiscovered xrRNAs in viruses and beyond.


Asunto(s)
Flaviviridae/ultraestructura , Interacciones Huésped-Patógeno/genética , Pliegue del ARN , ARN no Traducido/química , ARN Viral/química , Regiones no Traducidas 3' , Animales , Emparejamiento Base , Secuencia de Bases , Cationes Bivalentes , Cristalografía por Rayos X , Virus de la Encefalitis del Valle Murray/genética , Virus de la Encefalitis del Valle Murray/metabolismo , Virus de la Encefalitis del Valle Murray/ultraestructura , Exorribonucleasas/química , Exorribonucleasas/metabolismo , Flaviviridae/genética , Flaviviridae/metabolismo , Magnesio/química , Magnesio/metabolismo , ARN no Traducido/genética , ARN no Traducido/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , Virus no Clasificados/genética , Virus no Clasificados/metabolismo , Virus no Clasificados/ultraestructura , Virus Zika/genética , Virus Zika/metabolismo , Virus Zika/ultraestructura
3.
FEBS Lett ; 584(14): 3149-52, 2010 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-20621842

RESUMEN

Murray Valley encephalitis virus (MVEV) is a member of the flavivirus group, a large family of single stranded RNA viruses, which cause serious disease in all regions of the world. Its genome encodes a large polyprotein which is processed by both host proteinases and a virally encoded serine proteinase, non-structural protein 3 (NS3). NS3, an essential viral enzyme, requires another virally encoded protein cofactor, NS2B, for proteolytic activity. The cloning, expression and biochemical characterisation of a stable MVEV NS2B-NS3 fusion protein is described.


Asunto(s)
Endopeptidasas/metabolismo , Flavivirus/metabolismo , Proteínas Virales/metabolismo , Virus de la Encefalitis del Valle Murray/genética , Virus de la Encefalitis del Valle Murray/metabolismo , Endopeptidasas/genética , Flavivirus/genética , Poliproteínas/genética , Poliproteínas/metabolismo , Procesamiento Proteico-Postraduccional , Serina Proteasas , Proteínas Virales/genética
4.
J Virol ; 76(10): 4901-11, 2002 May.
Artículo en Inglés | MEDLINE | ID: mdl-11967307

RESUMEN

The in vivo mechanism for virulence attenuation of laboratory-derived variants of two flaviviruses in the Japanese encephalitis virus (JEV) serocomplex is described. Host cell adaptation of JEV and Murray Valley encephalitis virus (MVE) by serial passage in adenocarcinoma cells selected for variants characterized by (i) a small plaque phenotype, (ii) increased affinity to heparin-Sepharose, (iii) enhanced susceptibility to inhibition of infectivity by heparin, and (iv) loss of neuroinvasiveness in a mouse model for flaviviral encephalitis. We previously suggested that virulence attenuation of the host cell-adapted variants of MVE is a consequence of their increased dependence on cell surface glycosaminoglycans (GAGs) for attachment and entry (E. Lee and M. Lobigs, J. Virol. 74:8867-8875, 2000). In support of this proposition, we find that GAG-binding variants of JEV and MVE were rapidly removed from the bloodstream and failed to spread from extraneural sites of replication into the brain. Thus, the enhanced affinity of the attenuated variants for GAGs ubiquitously present on cells and extracellular matrices most likely prevented viremia of sufficient magnitude and/or duration required for virus entry into the brain parenchyma. This mechanism may also account, in part, for the attenuation of the JEV SA14-14-2 vaccine, given the sensitivity of the virus to heparin inhibition. A pronounced loss of the capacity of the GAG-binding variants to produce disease was also noted in mice defective in the alpha/beta interferon response, a mouse strain shown here to be highly susceptible to infection with JEV serocomplex flaviviruses. Despite the close genetic relatedness of JEV and MVE, the variants selected for the two viruses were altered at different residues in the envelope (E) protein, viz., Glu(306) and Asp(390) for JEV and MVE, respectively. In both cases the substitutions gave the protein an increased net positive charge. The close spatial proximity of amino acids 306 and 390 in the predicted E protein structure strongly suggests that the two residues define a receptor-binding domain involved in virus attachment to sulfated proteoglycans.


Asunto(s)
Virus de la Encefalitis Japonesa (Especie)/patogenicidad , Virus de la Encefalitis del Valle Murray/patogenicidad , Encefalitis por Arbovirus/virología , Encefalitis Japonesa/virología , Glicosaminoglicanos/metabolismo , Sustitución de Aminoácidos , Animales , Modelos Animales de Enfermedad , Virus de la Encefalitis Japonesa (Especie)/efectos de los fármacos , Virus de la Encefalitis Japonesa (Especie)/metabolismo , Virus de la Encefalitis del Valle Murray/efectos de los fármacos , Virus de la Encefalitis del Valle Murray/metabolismo , Heparina/farmacología , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Interferón/deficiencia , Receptores de Interferón/genética , Células Tumorales Cultivadas , Proteínas del Envoltorio Viral/metabolismo , Virulencia/efectos de los fármacos
5.
Virus Res ; 60(1): 67-79, 1999 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-10225275

RESUMEN

The flavivirus non-structural glycoprotein NS1 is often detected in Western blots as a heterogeneous cluster of bands due to glycosylation variations, precursor-product relationships and/or alternative cleavage sites in the viral polyprotein. In this study, we determined the basis of structural heterogeneity of the NS1 protein of Murray Valley encephalitis virus (MVE) by glycosylation analysis, pulse-chase experiments and terminal amino acid sequencing. Inhibition of N-linked glycosylation by tunicamycin revealed that NS1 synthesised in MVE-infected C6/36 cells was derived from two polypeptide backbones of 39 kDa (NS1(o)) and 47 kDa (NS1'). Pulse-chase experiments established that no precursor-product relationship existed between NS1(o) and NS1' and that both were stable end products. Terminal sequencing revealed that the N- and C-termini of NS1(o) were located at amino acid positions 714 and 1145 in the polyprotein respectively, consistent with the predicted sites based upon sequence homology with other flaviviruses. Expression of the NS1 gene alone or in conjunction with NS2A by recombinant baculoviruses demonstrated that the production of NS1' was dependent on the presence of NS2A, indicating that the C-terminus of the larger protein was generated within NS2A. A smaller form (31 kDa) of NS1 (deltaNS1) was also identified in MVE-infected Vero cultures, and amino acid sequencing revealed a 120-residue truncation at the N-terminus of this protein. This corresponds closely with the in-frame 121-codon deletion at the 5' end of the NS1 gene of defective MVE viral RNA (described by Lancaster et al. in 1998), suggesting that deltaNS1 may be a translation product of defective viral RNA.


Asunto(s)
Virus de la Encefalitis del Valle Murray/metabolismo , Proteínas no Estructurales Virales/metabolismo , Aedes/citología , Secuencia de Aminoácidos , Animales , Baculoviridae , Carbohidratos/análisis , Línea Celular , Chlorocebus aethiops , Expresión Génica , Vectores Genéticos , Datos de Secuencia Molecular , Péptidos/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Spodoptera/citología , Células Vero , Proteínas no Estructurales Virales/genética
6.
J Virol ; 72(3): 2141-9, 1998 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-9499070

RESUMEN

Signal peptidase cleavage at the C-prM junction in the flavivirus structural polyprotein is inefficient in the absence of the cytoplasmic viral protease, which catalyzes cleavage at the COOH terminus of the C protein. The signal peptidase cleavage occurs efficiently in circumstances where the C protein is deleted or if the viral protease complex is present. In this study, we used cDNA of Murray Valley encephalitis virus (MVE) to examine features of the structural polyprotein which allow this regulation of a luminal cleavage by a cytoplasmic protease. We found that the inefficiency of signal peptidase cleavage in the absence of the viral protease is not attributable solely to features of the C protein. Inhibition of cleavage still occurred when charged residues in C were mutated to uncharged residues or when an unrelated protein sequence (that of ubiquitin) was substituted for C. Also, fusion of the C protein did not inhibit processing of an alternative adjacent signal sequence. The cleavage region of the flavivirus prM translocation signal is unusually hydrophobic, and we established that altering this characteristic by making three point mutations near the signal peptidase cleavage site in MVE prM dramatically increased the extent of cleavage without requiring removal of the C protein. In addition, we demonstrated that luminal sequences downstream from the signal peptidase cleavage site contributed to the inefficiency of cleavage.


Asunto(s)
Cápside/metabolismo , Virus de la Encefalitis del Valle Murray/metabolismo , Proteínas de la Membrana , Señales de Clasificación de Proteína , Serina Endopeptidasas/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Proteínas no Estructurales Virales/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Células COS , Cápside/genética , Citoplasma , Datos de Secuencia Molecular , Procesamiento Proteico-Postraduccional , ARN Helicasas , Proteínas del Envoltorio Viral/genética , Proteínas no Estructurales Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...