Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
1.
Sci Rep ; 12(1): 700, 2022 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-35027600

RESUMEN

Venezuelan equine encephalitis virus (VEEV) is a mosquito borne alphavirus which leads to high viremia in equines followed by lethal encephalitis and lateral spread to humans. In addition to naturally occurring outbreaks, VEEV is a potential biothreat agent with no approved human vaccine or therapeutic currently available. Single domain antibodies (sdAb), also known as nanobodies, have the potential to be effective therapeutic agents. Using an immune phage display library derived from a llama immunized with an equine vaccine that included inactivated VEEV, five sdAb sequence families were identified that showed varying ability to neutralize VEEV. One of the sequence families had been identified previously in selections against chikungunya virus, a related alphavirus of public health concern. A key advantage of sdAb is the ability to optimize properties such as neutralization capacity through protein engineering. Neutralization of VEEV was improved by two orders of magnitude by genetically linking sdAb. One of the bivalent constructs showed effective neutralization of both VEEV and chikungunya virus. Several of the bivalent constructs neutralized VEEV in cell-based assays with reductions in the number of plaques by 50% at protein concentrations of 1 ng/mL or lower, making future evaluation of their therapeutic potential compelling.


Asunto(s)
Anticuerpos Neutralizantes/uso terapéutico , Virus de la Encefalitis Equina Venezolana/inmunología , Encefalomielitis Equina Venezolana/prevención & control , Encefalomielitis Equina Venezolana/virología , Enfermedades de los Caballos/prevención & control , Enfermedades de los Caballos/virología , Anticuerpos de Dominio Único/uso terapéutico , Animales , Anticuerpos Neutralizantes/farmacología , Caballos , Humanos , Ingeniería de Proteínas , Anticuerpos de Dominio Único/farmacología
2.
Virology ; 565: 13-21, 2022 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-34626907

RESUMEN

Eastern equine encephalitis virus (EEEV), western equine encephalitis virus (WEEV) and Venezuelan equine encephalitis virus (VEEV) can cause fatal encephalitis in humans and equids. Some MAbs to the E1 glycoprotein are known to be cross-reactive, weakly neutralizing in vitro but can protect from disease in animal models. We investigated the mechanism of neutralization of VEEV infection by the broadly cross-reactive E1-specific MAb 1A4B-6. 1A4B-6 protected 3-week-old Swiss Webster mice prophylactically from lethal VEEV challenge. Likewise, 1A4B-6 inhibited virus growth in vitro at a pre-attachment step after virions were incubated at 37 °C and inhibited virus-mediated cell fusion. Amino acid residue N100 in the fusion loop of E1 protein was identified as critical for binding. The potential to elicit broadly cross-reactive MAbs with limited virus neutralizing activity in vitro but that can inhibit virus entry and protect animals from infection merits further exploration for vaccine and therapeutic developmental research.


Asunto(s)
Anticuerpos Antivirales/inmunología , Virus de la Encefalitis Equina Venezolana/inmunología , Virus de la Encefalitis Equina Venezolana/metabolismo , Encefalomielitis Equina Venezolana/inmunología , Encefalomielitis Equina Venezolana/virología , Proteínas del Envoltorio Viral/inmunología , Replicación Viral/efectos de los fármacos , Alphavirus/inmunología , Infecciones por Alphavirus/inmunología , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Línea Celular , Chlorocebus aethiops , Reacciones Cruzadas , Encefalomielitis Equina Venezolana/terapia , Glicoproteínas/inmunología , Inmunoterapia , Ratones , Unión Proteica , Células Vero , Proteínas del Envoltorio Viral/metabolismo , Virión/inmunología , Virión/metabolismo
3.
J Virol ; 95(15): e0077721, 2021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-34011549

RESUMEN

Venezuelan equine encephalitis virus (VEEV) is a reemerging arthropod-borne virus causing encephalitis in humans and domesticated animals. VEEV possesses a positive single-stranded RNA genome capped at its 5' end. The capping process is performed by the nonstructural protein nsP1, which bears methyl and guanylyltransferase activities. The capping reaction starts with the methylation of GTP. The generated m7GTP is complexed to the enzyme to form an m7GMP-nsP1 covalent intermediate. The m7GMP is then transferred onto the 5'-diphosphate end of the viral RNA. Here, we explore the specificities of the acceptor substrate in terms of length, RNA secondary structure, and/or sequence. Any diphosphate nucleosides but GDP can serve as acceptors of the m7GMP to yield m7GpppA, m7GpppC, or m7GpppU. We show that capping is more efficient on small RNA molecules, whereas RNAs longer than 130 nucleotides are barely capped by the enzyme. The structure and sequence of the short, conserved stem-loop, downstream to the cap, is an essential regulatory element for the capping process. IMPORTANCE The emergence, reemergence, and expansion of alphaviruses (genus of the family Togaviridae) are a serious public health and epizootic threat. Venezuelan equine encephalitis virus (VEEV) causes encephalitis in human and domesticated animals, with a mortality rate reaching 80% in horses. To date, no efficient vaccine or safe antivirals are available for human use. VEEV nonstructural protein 1 (nsP1) is the viral capping enzyme characteristic of the Alphavirus genus. nsP1 catalyzes methyltransferase and guanylyltransferase reactions, representing a good therapeutic target. In the present report, we provide insights into the molecular features and specificities of the cap acceptor substrate for the guanylylation reaction.


Asunto(s)
Virus de la Encefalitis Equina Venezolana/genética , Caperuzas de ARN/genética , ARN Viral/genética , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/genética , Animales , Encefalomielitis Equina Venezolana/patología , Encefalomielitis Equina Venezolana/virología , Caballos , Humanos , Metiltransferasas/metabolismo , Conformación de Ácido Nucleico , Nucleotidiltransferasas/metabolismo , Proteínas no Estructurales Virales/genética
4.
Virulence ; 12(1): 430-443, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33487119

RESUMEN

Venezuelan equine encephalitis virus (VEEV) is an encephalitic alphavirus that can cause debilitating, acute febrile illness and potentially result in encephalitis. Currently, there are no FDA-licensed vaccines or specific therapeutics for VEEV. Previous studies have demonstrated that VEEV infection results in increased blood-brain barrier (BBB) permeability that is mediated by matrix metalloproteinases (MMPs). Furthermore, after subarachnoid hemorrhage in mice, MMP-9 is upregulated in the brain and mediates BBB permeability in a toll-like receptor 4 (TLR4)-dependent manner. Here, we demonstrate that disease in C3H mice during VEEV TC-83 infection is dependent on TLR4 because intranasal infection of C3H/HeN (TLR4 WT ) mice with VEEV TC-83 resulted in mortality as opposed to survival of TLR4-defective C3H/HeJ (TLR4 mut ) mice. In addition, BBB permeability was induced to a lesser extent in TLR4 mut mice compared with TLR4 WT mice during VEEV TC-83 infection as determined by sodium fluorescein and fluorescently-conjugated dextran extravasation. Moreover, MMP-9, MMP-2, ICAM-1, CCL2 and IFN-γ were all induced to significantly lower levels in the brains of infected TLR4 mut mice compared with infected TLR4 WT mice despite the absence of significantly different viral titers or immune cell populations in the brains of infected TLR4 WT and TLR4 mut mice. These data demonstrate the critical role of TLR4 in mediating BBB permeability and disease in C3H mice during VEEV TC-83 infection, which suggests that TLR4 is a potential target for the development of therapeutics for VEEV.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Virus de la Encefalitis Equina Venezolana/patogenicidad , Receptor Toll-Like 4/genética , Animales , Encéfalo/virología , Modelos Animales de Enfermedad , Virus de la Encefalitis Equina Venezolana/inmunología , Encefalomielitis Equina Venezolana/virología , Femenino , Ratones , Ratones Endogámicos C3H , Permeabilidad , Receptor Toll-Like 4/metabolismo , Replicación Viral
5.
Nature ; 588(7837): 308-314, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33208938

RESUMEN

Venezuelan equine encephalitis virus (VEEV) is a neurotropic alphavirus transmitted by mosquitoes that causes encephalitis and death in humans1. VEEV is a biodefence concern because of its potential for aerosol spread and the current lack of sufficient countermeasures. The host factors that are required for VEEV entry and infection remain poorly characterized. Here, using a genome-wide CRISPR-Cas9-based screen, we identify low-density lipoprotein receptor class A domain-containing 3 (LDLRAD3)-a highly conserved yet poorly characterized member of the scavenger receptor superfamily-as a receptor for VEEV. Gene editing of mouse Ldlrad3 or human LDLRAD3 results in markedly reduced viral infection of neuronal cells, which is restored upon complementation with LDLRAD3. LDLRAD3 binds directly to VEEV particles and enhances virus attachment and internalization into host cells. Genetic studies indicate that domain 1 of LDLRAD3 (LDLRAD3(D1)) is necessary and sufficient to support infection by VEEV, and both anti-LDLRAD3 antibodies and an LDLRAD3(D1)-Fc fusion protein block VEEV infection in cell culture. The pathogenesis of VEEV infection is abrogated in mice with deletions in Ldlrad3, and administration of LDLRAD3(D1)-Fc abolishes disease caused by several subtypes of VEEV, including highly virulent strains. The development of a decoy-receptor fusion protein suggests a strategy for the prevention of severe VEEV infection and associated disease in humans.


Asunto(s)
Virus de la Encefalitis Equina Venezolana/metabolismo , Receptores de LDL/metabolismo , Receptores Virales/metabolismo , Animales , Sistemas CRISPR-Cas/genética , Línea Celular , Virus de la Encefalitis Equina Venezolana/patogenicidad , Encefalomielitis Equina Venezolana/metabolismo , Encefalomielitis Equina Venezolana/prevención & control , Encefalomielitis Equina Venezolana/virología , Femenino , Prueba de Complementación Genética , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Unión Proteica , Receptores de LDL/deficiencia , Receptores de LDL/genética , Receptores Virales/genética , Acoplamiento Viral , Internalización del Virus
6.
Ann Clin Microbiol Antimicrob ; 19(1): 19, 2020 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-32429942

RESUMEN

The equine encephalitis viruses, Venezuelan (VEEV), East (EEEV) and West (WEEV), belong to the genus alphavirus, family Togaviridae and still represent a threat for human and animal public health in the Americas. In both, these infections are characterized by high viremia, rash, fever, encephalitis and death. VEEV encephalitis is similar, clinically, to other arboviral diseases, such as dengue, Zika or chikungunya. Most of the alphaviruses are transmitted between vertebrates and mosquitoes. They are able to replicate in a wide number of hosts, including mammals, birds, reptiles, amphibian and arthropods. The VEEV has enzootic and epizootic transmission cycles. At the enzootic one, enzootic strains (subtype I, serotypes D-F and serotypes II-VI) are continuously circulating between mosquitoes and wild rodents in tropical forests and mangroves of the Americas. The main reseroivrs are wild rodent species of the subfamily Sigmodontinae. However, bats can be also accidental reservoirs of VEEV. In this article, we reviewed the main features, epidemiology, clinical aspects and the current perspectives of the VEEV.


Asunto(s)
Virus de la Encefalitis Equina Venezolana/clasificación , Encefalomielitis Equina Venezolana/epidemiología , Encefalomielitis Equina Venezolana/prevención & control , Encefalomielitis Equina Venezolana/fisiopatología , Américas , Animales , Quirópteros/virología , Transmisión de Enfermedad Infecciosa , Vectores de Enfermedades , Encefalomielitis Equina Venezolana/virología , Caballos/virología , Humanos , Roedores/virología , Serogrupo , Vacunas Virales
7.
Arch Virol ; 165(7): 1715-1717, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32417973

RESUMEN

Venezuelan equine encephalitis virus (VEEV) is an important pathogen of medical and veterinary importance in the Americas. In this report, we present the complete genome sequences of five VEEV isolates obtained from pools of Culex (Melanoconion) gnomatos (4) or Culex (Melanoconion) pedroi (1) from Iquitos, Peru. Genetic and phylogenetic analyses showed that all five isolates grouped within the VEEV complex sister to VEEV IIIC and are members of subtype IIID. This is the first report of full-length genomic sequences of VEEV IIID.


Asunto(s)
Culex/virología , Virus de la Encefalitis Equina Venezolana/aislamiento & purificación , Encefalomielitis Equina Venezolana/virología , Genoma Viral , Mosquitos Vectores/virología , Animales , Secuencia de Bases , Virus de la Encefalitis Equina Venezolana/clasificación , Virus de la Encefalitis Equina Venezolana/genética , Encefalomielitis Equina Venezolana/transmisión , Genómica , Caballos , Perú , Filogenia
8.
PLoS Pathog ; 16(3): e1008282, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32150585

RESUMEN

Protein phosphorylation plays an important role during the life cycle of many viruses. Venezuelan equine encephalitis virus (VEEV) capsid protein has recently been shown to be phosphorylated at four residues. Here those studies are extended to determine the kinase responsible for phosphorylation and the importance of capsid phosphorylation during the viral life cycle. Phosphorylation site prediction software suggests that Protein Kinase C (PKC) is responsible for phosphorylation of VEEV capsid. VEEV capsid co-immunoprecipitated with PKCδ, but not other PKC isoforms and siRNA knockdown of PKCδ caused a decrease in viral replication. Furthermore, knockdown of PKCδ by siRNA decreased capsid phosphorylation. A virus with capsid phosphorylation sites mutated to alanine (VEEV CPD) displayed a lower genomic copy to pfu ratio than the parental virus; suggesting more efficient viral assembly and more infectious particles being released. RNA:capsid binding was significantly increased in the mutant virus, confirming these results. Finally, VEEV CPD is attenuated in a mouse model of infection, with mice showing increased survival and decreased clinical signs as compared to mice infected with the parental virus. Collectively our data support a model in which PKCδ mediated capsid phosphorylation regulates viral RNA binding and assembly, significantly impacting viral pathogenesis.


Asunto(s)
Proteínas de la Cápside/metabolismo , Virus de la Encefalitis Equina Venezolana/metabolismo , Encefalomielitis Equina Venezolana/enzimología , Proteína Quinasa C-delta/metabolismo , ARN Viral/metabolismo , Animales , Cápside/metabolismo , Proteínas de la Cápside/genética , Virus de la Encefalitis Equina Venezolana/genética , Encefalomielitis Equina Venezolana/genética , Encefalomielitis Equina Venezolana/virología , Femenino , Caballos , Interacciones Huésped-Patógeno , Ratones , Ratones Endogámicos C3H , Fosforilación , Unión Proteica , Proteína Quinasa C-delta/genética , ARN Viral/genética
9.
Artículo en Inglés | MEDLINE | ID: mdl-33396763

RESUMEN

Venezuelan equine encephalitis virus (VEEV) is an arbovirus transmitted by arthropods, widely distributed in the Americas that, depending on the subtype, can produce outbreaks or yearly cases of encephalitis in horses and humans. The symptoms are similar to those caused by dengue virus and in the worst-case scenario, involve encephalitis, and death. MaxEnt is software that uses climatological, geographical, and occurrence data of a particular species to create a model to estimate possible niches that could have these favorable conditions. We used MaxEnt with a total of 188 registers of VEEV presence, and 20 variables, (19 bioclimatological plus altitude) to determine the niches promising for the presence of VEEV. The area under the ROC curve (AUC) value for the model with all variables was 0.80 for the training data and 0.72 for the test. The variables with the highest contribution to the model were Bio11 (mean temperature of the coldest quarter) 32.5%, Bio17 (precipitation of the driest quarter) 16.9%, Bio2 (annual mean temperature) 15.1%, altitude (m.a.s.l) 6.6%, and Bio18 (precipitation of the warmest quarter) 6.2%. The product of this research will be useful under the one health scheme to animal and human health authorities to forecast areas with high propensity for VEEV cases in the future.


Asunto(s)
Virus de la Encefalitis Equina Venezolana , Encefalomielitis Equina Venezolana , Modelos Biológicos , Animales , Costa Rica/epidemiología , Encefalomielitis Equina Venezolana/epidemiología , Encefalomielitis Equina Venezolana/virología , Caballos
10.
Antiviral Res ; 174: 104674, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31816348

RESUMEN

Venezuelan equine encephalitis virus (VEEV) is an alphavirus that is endemic to the Americas. VEEV outbreaks occur periodically and cause encephalitis in both humans and equids. There are currently no therapeutics or vaccines for treatment of VEEV in humans. Our group has previously reported on the development of a benzamidine VEEV inhibitor, ML336, which shows potent antiviral activity in both in vitro and in vivo models of infection. In cell culture experiments, ML336 inhibits viral RNA synthesis when added 2-4 h post-infection, and mutations conferring resistance occur within the viral nonstructural proteins (nsP2 and nsP4). We hypothesized that ML336 targets an activity of the viral replicase complex and inhibits viral RNA synthesis. To test this hypothesis, we employed various biochemical and cellular assays. Using structural analogues of ML336, we demonstrate that the cellular antiviral activity of these compounds correlates with their inhibition of viral RNA synthesis. For instance, the IC50 of ML336 for VEEV RNA synthesis inhibition was determined as 1.1 nM, indicating potent anti-RNA synthesis activity in the low nanomolar range. While ML336 efficiently inhibited VEEV RNA synthesis, a much weaker effect was observed against the Old World alphavirus Chikungunya virus (IC50 > 4 µM), agreeing with previous data from a cell based assay. Using a tritium incorporation assay, we demonstrated that there was no significant inhibition of cellular transcription. With a combination of fluorography, strand-specific qRT-PCR, and tritium incorporation, we demonstrated that ML336 inhibits the synthesis of the positive sense genomic, negative sense template, and subgenomic RNAs of VEEV. Based on these results, we propose that the mechanism of action for this class of antiviral compounds is inhibition of viral RNA synthesis through interaction with the viral replicase complex.


Asunto(s)
Antivirales/farmacología , Benzamidas/farmacología , Virus de la Encefalitis Equina Venezolana/efectos de los fármacos , Inhibidores de la Síntesis del Ácido Nucleico/farmacología , Piperazinas/farmacología , ARN Viral/antagonistas & inhibidores , Replicación Viral/efectos de los fármacos , Animales , Línea Celular , Chlorocebus aethiops , Cricetinae , Encefalomielitis Equina Venezolana/tratamiento farmacológico , Encefalomielitis Equina Venezolana/virología , Caballos , Interacciones Microbiota-Huesped/efectos de los fármacos , Concentración 50 Inhibidora , Riñón/citología , ARN Viral/biosíntesis , Células Vero
11.
Virology ; 539: 121-128, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31733451

RESUMEN

Venezuelan equine encephalitis virus (VEEV) is a neurotropic virus that causes significant disease in both humans and equines. Here we characterized the impact of VEEV on signaling pathways regulating cell death in human primary astrocytes. VEEV productively infected primary astrocytes and caused an upregulation of early growth response 1 (EGR1) gene expression at 9 and 18 h post infection. EGR1 induction was dependent on extracellular signal-regulated kinase1/2 (ERK1/2) and protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK), but not on p38 mitogen activated protein kinase (MAPK) or phosphoinositide 3-kinase (PI3K) signaling. Knockdown of EGR1 significantly reduced VEEV-induced apoptosis and impacted viral replication. Knockdown of ERK1/2 or PERK significantly reduced EGR1 gene expression, dramatically reduced viral replication, and increased cell survival as well as rescued cells from VEEV-induced apoptosis. These data indicate that EGR1 activation and subsequent cell death are regulated through ERK and PERK pathways in VEEV infected primary astrocytes.


Asunto(s)
Muerte Celular , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Virus de la Encefalitis Equina Venezolana/fisiología , Encefalomielitis Equina Venezolana/virología , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , eIF-2 Quinasa/metabolismo , Apoptosis , Astrocitos/metabolismo , Astrocitos/patología , Astrocitos/virología , Supervivencia Celular , Células Cultivadas , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Virus de la Encefalitis Equina Venezolana/patogenicidad , Encefalomielitis Equina Venezolana/metabolismo , Encefalomielitis Equina Venezolana/patología , Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/genética , Transducción de Señal , Replicación Viral , eIF-2 Quinasa/genética
12.
J Virol ; 94(3)2020 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-31694937

RESUMEN

Venezuelan equine encephalitis virus (VEEV) is one of the important human and animal pathogens. It forms replication enzyme complexes (RCs) containing viral nonstructural proteins (nsPs) that mediate the synthesis of virus-specific RNAs. The assembly and associated functions of RC also depend on the presence of a specific set of host proteins. Our study demonstrates that the hypervariable domain (HVD) of VEEV nsP3 interacts with the members of the FXR family of cellular proteins and also binds the Src homology 3 (SH3) domain-containing proteins CD2AP and SH3KBP1. Interactions with FXR family members are mediated by the C-terminal repeating peptide of HVD. A single short, minimal motif identified in this study is sufficient for driving efficient VEEV replication in the absence of HVD interactions with other host proteins. The SH3 domain-containing proteins bind to another fragment of VEEV HVD. They can promote viral replication in the absence of FXR-HVD interactions albeit less efficiently. VEEV replication can be also switched from an FXR-dependent to a chikungunya virus-specific, G3BP-dependent mode. The described modifications of VEEV HVD have a strong impact on viral replication in vitro and pathogenesis. Their effects on viral pathogenesis depend on mouse age and the genetic background of the virus.IMPORTANCE The replication of alphaviruses is determined by specific sets of cellular proteins, which mediate the assembly of viral replication complexes. Some of these critical host factors interact with the hypervariable domain (HVD) of alphavirus nsP3. In this study, we have explored binding sites of host proteins, which are specific partners of nsP3 HVD of Venezuelan equine encephalitis virus. We also define the roles of these interactions in viral replication both in vitro and in vivo A mechanistic understanding of the binding of CD2AP, SH3KBP1, and FXR protein family members to VEEV HVD uncovers important aspects of alphavirus evolution and determines new targets for the development of alphavirus-specific drugs and directions for viral attenuation and vaccine development.


Asunto(s)
Virus de la Encefalitis Equina Venezolana/genética , Mutación , Dominios y Motivos de Interacción de Proteínas , Proteínas no Estructurales Virales/genética , Replicación Viral/genética , Proteínas Adaptadoras Transductoras de Señales , Animales , Sitios de Unión , Línea Celular , Virus Chikungunya/metabolismo , Proteínas del Citoesqueleto , Modelos Animales de Enfermedad , Encefalomielitis Equina Venezolana/virología , Humanos , Proteínas Intrínsecamente Desordenadas/metabolismo , Ratones , Alineación de Secuencia , Proteínas no Estructurales Virales/química , Dominios Homologos src
13.
Viruses ; 11(12)2019 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-31842327

RESUMEN

Venezuelan equine encephalitis virus (VEEV) is a category B select agent pathogen that can be aerosolized. Infections in murine models and humans can advance to an encephalitic phenotype which may result in long-term neurological complications or death. No specific FDA-approved treatments or vaccines are available for the treatment or prevention of VEEV infection. Neurotropic viral infections have two damaging components: neuronal death caused by viral replication, and damage from the subsequent inflammatory response. Reducing the level of inflammation may lessen neurological tissue damage that often arises following VEEV infection. In this study, three commercially available anti-inflammatory drugs, Celecoxib, Rolipram, and Tofacitinib, were evaluated for antiviral activity in an astrocyte and a microglial model of VEEV infection. The inhibitors were tested against the vaccine strain VEEV TC-83, as well as the wild-type VEEV Trinidad donkey strain. Celecoxib, Tofacitinib, and Rolipram significantly decreased viral titers both after pre-treatment and post-treatment of infected cells. VEEV Trinidad Donkey (TrD) titers were reduced 6.45-fold in cells treated with 50 µM of Celecoxib, 2.45-fold when treated with 50 µM of Tofacitinib, and 1.81-fold when treated with 50 µM of Rolipram. Celecoxib was also shown to decrease inflammatory gene expression in the context of TC-83 infection. Overall, Celecoxib demonstrated potency as a countermeasure strategy that slowed VEEV infection and infection-induced inflammation in an in vitro model.


Asunto(s)
Antiinflamatorios/farmacología , Antivirales/farmacología , Reposicionamiento de Medicamentos , Virus de la Encefalitis Equina Venezolana/efectos de los fármacos , Encefalomielitis Equina Venezolana/tratamiento farmacológico , Encefalomielitis Equina Venezolana/virología , Replicación Viral/efectos de los fármacos , Animales , Astrocitos/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Citocinas/metabolismo , Aprobación de Drogas , Humanos , Microglía/efectos de los fármacos , Estados Unidos , United States Food and Drug Administration
14.
Viruses ; 11(11)2019 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-31766138

RESUMEN

Traditional pathogenesis studies of alphaviruses involves monitoring survival, viremia, and pathogen dissemination via serial necropsies; however, molecular imaging shifts this paradigm and provides a dynamic assessment of pathogen infection. Positron emission tomography (PET) with PET tracers targeted to study neuroinflammation (N,N-diethyl-2-[4-phenyl]-5,7-dimethylpyrazolo[1,5-a]pyrimidine-3-acetamide, [18F]DPA-714), apoptosis (caspase-3 substrate, [18F]CP-18), hypoxia (fluormisonidazole, [18F]FMISO), blood-brain barrier (BBB) integrity ([18F]albumin), and metabolism (fluorodeoxyglucose, [18F]FDG) was performed on C3H/HeN mice infected intranasally with 7000 plaque-forming units (PFU) of Venezuelan equine encephalitis virus (VEEV) TC-83. The main findings are as follows: (1) whole-brain [18F]DPA-714 and [18F]CP-18 uptake increased three-fold demonstrating, neuroinflammation and apoptosis, respectively; (2) [18F]albumin uptake increased by 25% across the brain demonstrating an altered BBB; (3) [18F]FMISO uptake increased by 50% across the whole brain indicating hypoxic regions; (4) whole-brain [18F]FDG uptake was unaffected; (5) [18F]DPA-714 uptake in (a) cortex, thalamus, striatum, hypothalamus, and hippocampus increased through day seven and decreased by day 10 post exposure, (b) olfactory bulb increased at day three, peaked day seven, and decreased day 10, and (c) brain stem and cerebellum increased through day 10. In conclusion, intranasal exposure of C3H/HeN mice to VEEV TC-83 results in both time-dependent and regional increases in brain inflammation, apoptosis, and hypoxia, as well as modest decreases in BBB integrity; however, it has no effect on brain glucose metabolism.


Asunto(s)
Apoptosis , Barrera Hematoencefálica/metabolismo , Virus de la Encefalitis Equina Venezolana , Encefalomielitis Equina Venezolana/diagnóstico , Encefalomielitis Equina Venezolana/metabolismo , Hipoxia/metabolismo , Tomografía de Emisión de Positrones , Animales , Biomarcadores , Barrera Hematoencefálica/patología , Modelos Animales de Enfermedad , Virus de la Encefalitis Equina Venezolana/fisiología , Encefalomielitis Equina Venezolana/virología , Caballos , Procesamiento de Imagen Asistido por Computador , Ratones , Tomografía Computarizada por Tomografía de Emisión de Positrones , Tomografía de Emisión de Positrones/métodos , Radiofármacos/química , Radiofármacos/metabolismo
15.
Antiviral Res ; 171: 104597, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31494195

RESUMEN

The New World alphaviruses Venezuelan, Eastern, and Western equine encephalitis viruses (VEEV, EEEV and WEEV, respectively) commonly cause a febrile disease that can progress to meningoencephalitis, resulting in significant morbidity and mortality. To address the need for a therapeutic agent for the treatment of Alphavirus infections, we identified and pursued preclinical characterization of a ribonucleoside analog EIDD-1931 (ß-D-N4-hydroxycytidine, NHC), which has shown broad activity against alphaviruses in vitro and has a very high genetic barrier for development of resistance. To be truly effective as a therapeutic agent for VEEV infection a drug must penetrate the blood brain barrier and arrest virus replication in the brain. High plasma levels of EIDD-1931 are rapidly achieved in mice after oral dosing. Once in the plasma EIDD-1931 is efficiently distributed into organs, including brain, where it is rapidly converted to its active 5'-triphosphate. EIDD-1931 showed a good safety profile in mice after 7-day repeated dosing with up to 1000 mg/kg/day doses. In mouse model studies, EIDD-1931 was 90-100% effective in protecting mice against lethal intranasal infection when therapeutic treatment was started as late as 24 h post-infection, and partial protection was achieved when treatment was delayed for 48 h post-infection. These results support further preclinical development of EIDD-1931 as a potential anti-alphavirus drug.


Asunto(s)
Antivirales/farmacología , Virus de la Encefalitis Equina Venezolana/efectos de los fármacos , Encefalomielitis Equina Venezolana/virología , Ribonucleósidos/farmacología , Administración Oral , Animales , Antivirales/administración & dosificación , Antivirales/química , Antivirales/farmacocinética , Línea Celular , Cromatografía Liquida , Modelos Animales de Enfermedad , Encefalomielitis Equina Venezolana/tratamiento farmacológico , Caballos , Ratones , Estructura Molecular , Ribonucleósidos/administración & dosificación , Ribonucleósidos/química , Ribonucleósidos/farmacocinética , Espectrometría de Masas en Tándem , Distribución Tisular , Replicación Viral/efectos de los fármacos
16.
Viruses ; 11(9)2019 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-31480472

RESUMEN

Licensure of a vaccine to protect against aerosolized Venezuelan equine encephalitis virus (VEEV) requires use of the U.S. Food and Drug Administration (FDA) Animal Rule to assess vaccine efficacy as human studies are not feasible or ethical. An approach to selecting VEEV challenge strains for use under the Animal Rule was developed, taking into account Department of Defense (DOD) vaccine requirements, FDA Animal Rule guidelines, strain availability, and lessons learned from the generation of filovirus challenge agents within the Filovirus Animal Nonclinical Group (FANG). Initial down-selection to VEEV IAB and IC epizootic varieties was based on the DOD objective for vaccine protection in a bioterrorism event. The subsequent down-selection of VEEV IAB and IC isolates was based on isolate availability, origin, virulence, culture and animal passage history, known disease progression in animal models, relevancy to human disease, and ability to generate sufficient challenge material. Methods for the propagation of viral stocks (use of uncloned (wild-type), plaque-cloned, versus cDNA-cloned virus) to minimize variability in the potency of the resulting challenge materials were also reviewed. The presented processes for VEEV strain selection and the propagation of viral stocks may serve as a template for animal model development product testing under the Animal Rule to other viral vaccine programs. This manuscript is based on the culmination of work presented at the "Alphavirus Workshop" organized and hosted by the Joint Vaccine Acquisition Program (JVAP) on 15 December 2014 at Fort Detrick, Maryland, USA.


Asunto(s)
Modelos Animales de Enfermedad , Virus de la Encefalitis Equina Venezolana/inmunología , Encefalomielitis Equina Venezolana/prevención & control , Vacunas Virales/uso terapéutico , Animales , Virus de la Encefalitis Equina Venezolana/genética , Virus de la Encefalitis Equina Venezolana/patogenicidad , Encefalomielitis Equina Venezolana/virología , Guías como Asunto , Humanos , Programas de Inmunización/métodos , Programas de Inmunización/normas , Virología/métodos
17.
ACS Infect Dis ; 5(12): 2014-2028, 2019 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-31257853

RESUMEN

Alphaviruses are arthropod-transmitted members of the Togaviridae family that can cause severe disease in humans, including debilitating arthralgia and severe neurological complications. Currently, there are no approved vaccines or antiviral therapies directed against the alphaviruses, and care is limited to treating disease symptoms. A phenotypic cell-based high-throughput screen was performed to identify small molecules that inhibit the replication of Venezuelan Equine Encephalitis Virus (VEEV). The compound, 1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-N-(3-fluoro-4-methoxybenzyl)ethan-1-amine (1), was identified as a highly active, potent inhibitor of VEEV with an effective concentration for 90% inhibition of virus (EC90) of 0.89 µM and 7.49 log reduction in virus titers at 10 µM concentration. These data suggest that further investigation of compound 1 as an antiviral therapeutic against VEEV, and perhaps other alphaviruses, is warranted. Experiments suggested that the antiviral activity of compound 1 is directed at an early step in the VEEV replication cycle by blocking viral RNA and protein synthesis.


Asunto(s)
Antivirales/farmacología , Bencilaminas/farmacología , Virus de la Encefalitis Equina Venezolana/efectos de los fármacos , Encefalomielitis Equina Venezolana/virología , Animales , Antivirales/química , Bencilaminas/química , Línea Celular , Chlorocebus aethiops , Relación Dosis-Respuesta a Droga , Encefalomielitis Equina Venezolana/tratamiento farmacológico , Ensayos Analíticos de Alto Rendimiento , Humanos , Estructura Molecular , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/uso terapéutico , Células Vero , Carga Viral/efectos de los fármacos , Replicación Viral/efectos de los fármacos
18.
PLoS Pathog ; 15(4): e1007610, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30947291

RESUMEN

The presence of bottlenecks in the transmission cycle of many RNA viruses leads to a severe reduction of number of virus particles and this occurs multiple times throughout the viral transmission cycle. Viral replication is then necessary for regeneration of a diverse mutant swarm. It is now understood that any perturbation of the mutation frequency either by increasing or decreasing the accumulation of mutations in an RNA virus results in attenuation of the virus. To determine if altering the rate at which a virus accumulates mutations decreases the probability of a successful virus infection due to issues traversing host bottlenecks, a series of mutations in the RNA-dependent RNA polymerase of Venezuelan equine encephalitis virus (VEEV), strain 68U201, were tested for mutation rate changes. All RdRp mutants were attenuated in both the mosquito and vertebrate hosts, while showing no attenuation during in vitro infections. The rescued viruses containing these mutations showed some evidence of change in fidelity, but the phenotype was not sustained following passaging. However, these mutants did exhibit changes in the frequency of specific types of mutations. Using a model of mutation production, these changes were shown to decrease the number of stop codons generated during virus replication. This suggests that the observed mutant attenuation in vivo may be due to an increase in the number of unfit genomes, which may be normally selected against by the accumulation of stop codons. Lastly, the ability of these attenuated viruses to transition through a bottleneck in vivo was measured using marked virus clones. The attenuated viruses showed an overall reduction in the number of marked clones for both the mosquito and vertebrate hosts, as well as a reduced ability to overcome the known bottlenecks in the mosquito. This study demonstrates that any perturbation of the optimal mutation frequency whether through changes in fidelity or by alterations in the mutation frequency of specific nucleotides, has significant deleterious effects on the virus, especially in the presence of host bottlenecks.


Asunto(s)
Culicidae/virología , Virus de la Encefalitis Equina Venezolana/genética , Encefalomielitis Equina Venezolana/virología , Mutación , ARN Polimerasa Dependiente del ARN/genética , Vertebrados/virología , Replicación Viral/genética , Animales , Culicidae/genética , Virus de la Encefalitis Equina Venezolana/fisiología , Fenotipo , ARN Viral/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Vertebrados/genética
19.
Mol Ther ; 27(4): 850-865, 2019 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-30770173

RESUMEN

Venezuelan equine encephalitis virus (VEEV) is a known biological defense threat. A live-attenuated investigational vaccine, TC-83, is available, but it has a high non-response rate and can also cause severe reactogenicity. We generated two novel VEE vaccine candidates using self-amplifying mRNA (SAM). LAV-CNE is a live-attenuated VEE SAM vaccine formulated with synthetic cationic nanoemulsion (CNE) and carrying the RNA genome of TC-83. IAV-CNE is an irreversibly-attenuated VEE SAM vaccine formulated with CNE, delivering a TC-83 genome lacking the capsid gene. LAV-CNE launches a TC-83 infection cycle in vaccinated subjects but eliminates the need for live-attenuated vaccine production and potentially reduces manufacturing time and complexity. IAV-CNE produces a single cycle of RNA amplification and antigen expression without generating infectious viruses in subjects, thereby creating a potentially safer alternative to live-attenuated vaccine. Here, we demonstrated that mice vaccinated with LAV-CNE elicited immune responses similar to those of TC-83, providing 100% protection against aerosol VEEV challenge. IAV-CNE was also immunogenic, resulting in significant protection against VEEV challenge. These studies demonstrate the proof of concept for using the SAM platform to streamline the development of effective attenuated vaccines against VEEV and closely related alphavirus pathogens such as western and eastern equine encephalitis and Chikungunya viruses.


Asunto(s)
Virus de la Encefalitis Equina Venezolana/inmunología , Encefalomielitis Equina Venezolana/tratamiento farmacológico , Amplificación de Genes , Inmunogenicidad Vacunal , ARN Mensajero/genética , Vacunas Atenuadas/uso terapéutico , Vacunas Virales/uso terapéutico , Células A549 , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Modelos Animales de Enfermedad , Emulsiones/química , Encefalomielitis Equina Venezolana/virología , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Transfección , Vacunas Virales/farmacología , Replicación Viral
20.
Antiviral Res ; 164: 106-122, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30742841

RESUMEN

The alphaviral nonstructural protein 2 (nsP2) cysteine proteases (EC 3.4.22.-) are essential for the proteolytic processing of the nonstructural (ns) polyprotein and are validated drug targets. A common secondary role of these proteases is to antagonize the effects of interferon (IFN). After delineating the cleavage site motif of the Venezuelan equine encephalitis virus (VEEV) nsP2 cysteine protease, we searched the human genome to identify host protein substrates. Here we identify a new host substrate of the VEEV nsP2 protease, human TRIM14, a component of the mitochondrial antiviral-signaling protein (MAVS) signalosome. Short stretches of homologous host-pathogen protein sequences (SSHHPS) are present in the nonstructural polyprotein and TRIM14. A 25-residue cyan-yellow fluorescent protein TRIM14 substrate was cleaved in vitro by the VEEV nsP2 protease and the cleavage site was confirmed by tandem mass spectrometry. A TRIM14 cleavage product also was found in VEEV-infected cell lysates. At least ten other Group IV (+)ssRNA viral proteases have been shown to cleave host proteins involved in generating the innate immune responses against viruses, suggesting that the integration of these short host protein sequences into the viral protease cleavage sites may represent an embedded mechanism of IFN antagonism. This interference mechanism shows several parallels with those of CRISPR/Cas9 and RNAi/RISC, but with a protease recognizing a protein sequence common to both the host and pathogen. The short host sequences embedded within the viral genome appear to be analogous to the short phage sequences found in a host's CRISPR spacer sequences. To test this algorithm, we applied it to another Group IV virus, Zika virus (ZIKV), and identified cleavage sites within human SFRP1 (secreted frizzled related protein 1), a retinal Gs alpha subunit, NT5M, and Forkhead box protein G1 (FOXG1) in vitro. Proteolytic cleavage of these proteins suggests a possible link between the protease and the virus-induced phenotype of ZIKV. The algorithm may have value for selecting cell lines and animal models that recapitulate virus-induced phenotypes, predicting host-range and susceptibility, selecting oncolytic viruses, identifying biomarkers, and de-risking live virus vaccines. Inhibitors of the proteases that utilize this mechanism may both inhibit viral replication and alleviate suppression of the innate immune responses.


Asunto(s)
Proteasas de Cisteína/metabolismo , Virus de la Encefalitis Equina Venezolana/enzimología , Proteínas Virales/metabolismo , Virus Zika/enzimología , 5'-Nucleotidasa/metabolismo , Línea Celular , Inhibidores de Cisteína Proteinasa/farmacología , Virus de la Encefalitis Equina Venezolana/patogenicidad , Encefalomielitis Equina Venezolana/virología , Factores de Transcripción Forkhead/metabolismo , Interacciones Huésped-Patógeno , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteolisis , Replicación Viral/efectos de los fármacos , Virus Zika/patogenicidad , Infección por el Virus Zika/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA