Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 747
1.
Curr Microbiol ; 81(7): 207, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38831110

The current study aimed to evaluate the plant growth-promoting (PGP) potential of endophytic strain Bacillus subtilis KU21 isolated from the roots of Rosmarinus officinalis. The strain exhibited multiple traits of plant growth promotion viz., phosphate (P) solubilization, nitrogen fixation, indole-3-acetic acid (IAA), siderophore, hydrogen cyanide (HCN), lytic enzymes production, and 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity. The isolate also exhibited antagonistic activity against phytopathogenic fungi, i.e., Fusarium oxysporum, Fusarium graminiarum, and Rhizoctonia solani. The P-solubilization activity of B. subtilis KU21 was further elucidated via detection of glucose dehydrogenase (gdh) gene involved in the production of gluconic acid which is responsible for P-solubilization. Further, B. subtilis KU21 was evaluated for in vivo growth promotion studies of tomato (test crop) under net house conditions. A remarkable increase in seed germination, plant growth parameters, nutrient acquisition, and soil quality parameters (NPK) was observed in B. subtilis KU21-treated plants over untreated control. Hence, the proposed module could be recommended for sustainable tomato production in the Northwest Himalayan region without compromising soil health and fertility.


Bacillus subtilis , Endophytes , Plant Roots , Rosmarinus , Bacillus subtilis/genetics , Bacillus subtilis/growth & development , Bacillus subtilis/isolation & purification , Bacillus subtilis/metabolism , Endophytes/isolation & purification , Endophytes/metabolism , Endophytes/genetics , Endophytes/classification , Rosmarinus/chemistry , Rosmarinus/microbiology , Plant Roots/microbiology , Plant Roots/growth & development , Solanum lycopersicum/microbiology , Solanum lycopersicum/growth & development , Fusarium/growth & development , Fusarium/genetics , Fusarium/metabolism , Soil Microbiology , Plant Development , Germination , Indoleacetic Acids/metabolism , Rhizoctonia/growth & development , Rhizoctonia/drug effects , Nitrogen Fixation , Phosphates/metabolism
2.
BMC Microbiol ; 24(1): 195, 2024 Jun 07.
Article En | MEDLINE | ID: mdl-38849736

BACKGROUND: Rhizosphere and endophytic fungi play important roles in plant health and crop productivity. However, their community dynamics during the continuous cropping of Knoxia valerianoides have rarely been reported. K. valerianoides is a perennial herb of the family Rubiaceae and has been used in herbal medicines for ages. Here, we used high-throughput sequencing technology Illumina MiSeq to study the structural and functional dynamics of the rhizosphere and endophytic fungi of K. valerianoides. RESULTS: The findings indicate that continuous planting has led to an increase in the richness and diversity of rhizosphere fungi, while concomitantly resulting in a decrease in the richness and diversity of root fungi. The diversity of endophytic fungal communities in roots was lower than that of the rhizosphere fungi. Ascomycota and Basidiomycota were the dominant phyla detected during the continuous cropping of K. valerianoides. In addition, we found that root rot directly affected the structure and diversity of fungal communities in the rhizosphere and the roots of K. valerianoides. Consequently, both the rhizosphere and endophyte fungal communities of root rot-infected plants showed higher richness than the healthy plants. The relative abundance of Fusarium in two and three years old root rot-infected plants was significantly higher than the control, indicating that continuous planting negatively affected the health of K. valerianoides plants. Decision Curve Analysis showed that soil pH, organic matter (OM), available K, total K, soil sucrase (S_SC), soil catalase (S_CAT), and soil cellulase (S_CL) were significantly related (p < 0.05) to the fungal community dynamics. CONCLUSIONS: The diversity of fungal species in the rhizosphere and root of K. valerianoides was reported for the first time. The fungal diversity of rhizosphere soil was higher than that of root endophytic fungi. The fungal diversity of root rot plants was higher than that of healthy plants. Soil pH, OM, available K, total K, S_CAT, S_SC, and S_CL were significantly related to the fungal diversity. The occurrence of root rot had an effect on the community structure and diversity of rhizosphere and root endophytic fungi.


Biodiversity , Endophytes , Fungi , Plant Roots , Rhizosphere , Soil Microbiology , Endophytes/classification , Endophytes/genetics , Endophytes/isolation & purification , Fungi/classification , Fungi/genetics , Fungi/isolation & purification , Plant Roots/microbiology , DNA, Fungal/genetics , High-Throughput Nucleotide Sequencing , Plant Diseases/microbiology , Ascomycota/genetics , Ascomycota/classification , Ascomycota/growth & development , Ascomycota/isolation & purification , Phylogeny , Mycobiome
3.
Microbiologyopen ; 13(3): e1422, 2024 Jun.
Article En | MEDLINE | ID: mdl-38847331

The root nodules of actinorhizal plants are home to nitrogen-fixing bacterial symbionts, known as Frankia, along with a small percentage of other microorganisms. These include fungal endophytes and non-Frankia bacteria. The taxonomic and functional diversity of the microbial consortia within these root nodules is not well understood. In this study, we surveyed and analyzed the cultivable, non-Frankia fungal and bacterial endophytes of root nodules from red and Sitka alder trees that grow together. We examined their taxonomic diversity, co-occurrence, differences between hosts, and potential functional roles. For the first time, we are reporting numerous fungal endophytes of alder root nodules. These include Sporothrix guttuliformis, Fontanospora sp., Cadophora melinii, an unclassified Cadophora, Ilyonectria destructans, an unclassified Gibberella, Nectria ramulariae, an unclassified Trichoderma, Mycosphaerella tassiana, an unclassified Talaromyces, Coniochaeta sp., and Sistotrema brinkmanii. We are also reporting several bacterial genera for the first time: Collimonas, Psychrobacillus, and Phyllobacterium. Additionally, we are reporting the genus Serratia for the second time, with the first report having been recently published in 2023. Pseudomonas was the most frequently isolated bacterial genus and was found to co-inhabit individual nodules with both fungi and bacteria. We found that the communities of fungal endophytes differed by host species, while the communities of bacterial endophytes did not.


Alnus , Bacteria , Endophytes , Fungi , Root Nodules, Plant , Endophytes/classification , Endophytes/isolation & purification , Endophytes/genetics , Alnus/microbiology , Fungi/classification , Fungi/isolation & purification , Fungi/genetics , Bacteria/classification , Bacteria/isolation & purification , Bacteria/genetics , Root Nodules, Plant/microbiology , Biodiversity , Symbiosis , Phylogeny
4.
Curr Microbiol ; 81(7): 218, 2024 Jun 10.
Article En | MEDLINE | ID: mdl-38856763

Atractylodes macrocephala Koidz (AMK) is a perennial herb from the plant family Asteraceae (formerly Compositae). This herb is mainly distributed in mountainous wetlands in Zhejiang, Sichuan, Yunnan, and Hunan provinces of China. Its medicinal production and quality, however, are severely impacted by root rot disease. In our previous study, endophytic bacterium designated AM201 exerted a high biocontrol effect on the root rot disease of AMK. However, the molecular mechanisms underlying this effect remain unclear. In this study, the identity of strain AM201 as Rhodococcus sp. was determined through analysis of its morphology, physiological and biochemical characteristics, as well as 16S rDNA sequencing. Subsequently, we performed transcriptome sequencing and bioinformatics analysis to compare and analyze the transcriptome profiles of root tissues from two groups: AM201 (AMK seedlings inoculated with Fusarium solani [FS] and AM201) and FS (AMK seedlings inoculated with FS alone). We also conducted morphological, physiological, biochemical, and molecular identification analyses for the AM201 strain. We obtained 1,560 differentially expressed genes, including 187 upregulated genes and 1,373 downregulated genes. We screened six key genes (GOLS2, CIPK25, ABI2, egID, PG1, and pgxB) involved in the resistance of AM201 against AMK root rot disease. These genes play a critical role in reactive oxygen species (ROS) clearance, Ca2+ signal transduction, abscisic acid signal inhibition, plant root growth, and plant cell wall defense. The strain AM201 was identified as Rhodococcus sp. based on its morphological characteristics, physiological and biochemical properties, and 16S rDNA sequencing results. The findings of this study could enable to prevent and control root rot disease in AMK and could offer theoretical guidance for the agricultural production of other medicinal herbs.


Atractylodes , Endophytes , Gene Expression Profiling , Plant Diseases , Plant Roots , Rhodococcus , Rhodococcus/genetics , Rhodococcus/metabolism , Rhodococcus/physiology , Atractylodes/microbiology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Plant Roots/microbiology , Endophytes/genetics , Endophytes/metabolism , Endophytes/classification , Endophytes/physiology , Endophytes/isolation & purification , Transcriptome , Fusarium/genetics , Fusarium/physiology , China , RNA, Ribosomal, 16S/genetics
5.
Curr Microbiol ; 81(8): 223, 2024 Jun 14.
Article En | MEDLINE | ID: mdl-38874598

Two endophytic actinobacteria, strains MK5T and MK7, were isolated from the surface-sterilized root of Jasmine rice (Oryza sativa KDML 105). These strains were aerobic actinobacteria with a well-developed substrate and aerial mycelia that formed spiral spore chains. The type strains that shared the high 16S rRNA gene sequence similarity with both strains were Streptomyces naganishii NBRC 12892T (99.4%), "Streptomyces griseicoloratus" TRM S81-3T (99.2%), and Streptomyces spiralis NBRC 14215T (98.9%). Strains MK5T and MK7 are the same species sharing a digital DNA-DNA hybridization (dDDH) value of 95.3% and a 16S rRNA gene sequence similarity of 100%. Chemotaxonomic data confirmed the affiliation of strains MK5T and MK7 to the genus Streptomyces. Strains MK5T and MK7 contained MK-9(H4) as a major menaquinone; the whole-cell sugar of both strains was galactose and glucose. The strain MK5T shared 93.4% average nucleotide identity (ANI)-Blast, 95.5% ANI-MUMmer, 93% average amino acid identity, and 61.3% dDDH with S. spiralis NBRC 14215T. The polyphasic approach confirmed that strain MK5T represents a novel species, and the name Streptomyces mahasarakhamensis sp. nov. is proposed. The type strain is MK5T (= TBRC 17754 = NRRL B-65683). Genome mining, using an in silico approach and searching biosynthesis gene clusters of strains MK5T and MK7, revealed that the genomes contained genes encoding proteins relating to plant growth promotion, bioactive compounds, and beneficial enzymes. Strains MK5T and MK7 could produce indole acetic acid and solubilize phosphate in vitro.


DNA, Bacterial , Endophytes , Oryza , Phylogeny , RNA, Ribosomal, 16S , Streptomyces , Oryza/microbiology , Streptomyces/genetics , Streptomyces/isolation & purification , Streptomyces/classification , Streptomyces/metabolism , RNA, Ribosomal, 16S/genetics , Endophytes/genetics , Endophytes/classification , Endophytes/isolation & purification , Endophytes/metabolism , DNA, Bacterial/genetics , Plant Roots/microbiology , Plant Growth Regulators/metabolism , Vitamin K 2/analogs & derivatives , Bacterial Typing Techniques , Sequence Analysis, DNA , Nucleic Acid Hybridization , Fatty Acids/metabolism , Base Composition
6.
Fungal Biol ; 128(4): 1815-1826, 2024 Jun.
Article En | MEDLINE | ID: mdl-38876534

Endophytic fungi, pivotal in facilitating plant co-evolution, significantly enhance plant growth, stress resistance, and environmental adaptability. Despite their importance, the spatial distribution of stem endophytic fungi (SEF) within host plants remains poorly characterized. Here, we employed high-throughput sequencing to conduct a comparative analysis of SEF communities in Mussaenda pubescens on a regional scale. Our findings reveal that whole-SEF communities were overwhelmingly dominated by members of the phylum Ascomycota, accounting for 85.9 %, followed by Basidiomycota at 13.9 %, and that alpha diversity within the whole-SEF community of M. pubescens remains relatively consistent across sampling sites. However, significant variation was observed within conditionally abundant taxa (CAT), conditionally rare or abundant taxa (CRAT), and conditionally rare taxa (CRT). Climatic factors emerged as the primary influence on SEF community distribution, followed by spatial distance and stem chemical properties. Neutral community modeling results suggested that both stochastic and deterministic processes play a role in shaping whole-SEF communities, with deterministic processes having a stronger influence on CRT subcommunities. Furthermore, the CRT co-occurrence network exhibited a more complex structure, characterized by higher values of network betweenness and degree relative to CAT and CRAT subcommunities. These findings enhance our understanding of community assembly and ecological interactions between stem fungal endophytes, presenting opportunities for harnessing fungal resources for the benefit of humanity.


Endophytes , Plant Stems , Endophytes/classification , Endophytes/isolation & purification , Endophytes/genetics , Plant Stems/microbiology , Ascomycota/classification , Ascomycota/genetics , Ascomycota/isolation & purification , Fungi/classification , Fungi/isolation & purification , Fungi/genetics , High-Throughput Nucleotide Sequencing , Basidiomycota/classification , Basidiomycota/genetics , Basidiomycota/isolation & purification , Biodiversity
7.
Fungal Biol ; 128(4): 1847-1858, 2024 Jun.
Article En | MEDLINE | ID: mdl-38876537

Post-harvest decay of fresh agricultural produce is a major threat to food security globally. Synthetic fungicides, commonly used in practice for managing the post-harvest losses, have negative impacts on consumers' health. Studies have reported the effectiveness of fungal isolates from plants as biocontrol agents of post-harvest diseases, although this is still poorly established in tomatoes (Solanum lycopersicum L. cv. Jasmine). In this study, 800 endophytic fungi were isolated from mature green and ripe untreated and fungicide-treated tomato fruits grown in open soil and hydroponics systems. Of these, five isolates (Aureobasidium pullulans SUG4.1, Coprinellus micaceus SUG4.3, Epicoccum nigrum SGT8.6, Fusarium oxysporum HTR8.4, Preussia africana SUG3.1) showed antagonistic properties against selected post-harvest pathogens of tomatoes (Alternaria alternata, Fusarium solani, Fusarium oxysporum, Geotrichum candidum, Rhizopus stolonifera, Rhizoctonia solani), with Lactiplantibacillus plantarum as a positive control. P. africana SUG3.1 and C. micaceus SUG4.3 significantly inhibited growth of all the pathogens, with antagonistic capabilities comparable to that exhibited by L. plantarum. Furthermore, the isolates produced an array of enzymes, including among others, amylase, cellulose and protease; and were able to utilize several carbohydrates (glucose, lactose, maltose, mannitol, sucrose). In conclusion, P. africana SUG3.1 and C. micaceus SUG4.3 may complement L. plantarum as biocontrol agents against post-harvest pathogens of tomatoes.


Endophytes , Fruit , Fungi , Plant Diseases , Solanum lycopersicum , Solanum lycopersicum/microbiology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Fruit/microbiology , Endophytes/isolation & purification , Endophytes/physiology , Endophytes/classification , Fungi/isolation & purification , Fungi/physiology , Fungi/classification , Fungi/drug effects , Antibiosis , Biological Control Agents , Fungicides, Industrial/pharmacology
8.
Fungal Biol ; 128(4): 1836-1846, 2024 Jun.
Article En | MEDLINE | ID: mdl-38876536

Fungal endophytes inhabit a similar ecological niche to that occupied by many phytopathogens, with several pathogens isolated from healthy tissues in their latent phase. This study aimed to evaluate the pathogenicity, the colonisation ability, and the enzyme activity of 37 endophytic fungal isolates recovered from apparently healthy apple shoot and leaf tissues. The pathogenicity of the isolates was assessed on 'Royal Gala' and 'Braeburn' fruit and detached 'Royal Gala' shoots. For the non-pathogenic isolates, their ability to endophytically colonise detached 'Royal Gala' shoots was evaluated. Enzyme activity assays were undertaken to determine whether the pathogenicity of the endophytes was related to the production of the extracellular enzymes, amylase, cellulase, pectinase, protease, and xylanase. Of the 37 isolates studied, eight isolates, representing the genera Colletotrichum, Diaporthe, Fusarium, and Penicillium, were shown to be pathogenic on both apple shoots and fruit. Two isolates identified as Trichoderma atroviride, were pathogenic only on shoots, and three isolates, representing the genus Diaporthe, were pathogenic only on fruit. Of the remaining 24 isolates, 22 (Biscogniauxia (n = 8), Chaetomium (n = 4), Trichoderma (n = 3), Epicoccum (n = 2), Neosetophoma (n = 2), Xylaria (n = 1), Daldinia (n = 1), and Paraphaeosphaeria (n = 1)) were recovered from the inoculated apple shoots but two failed to colonise the shoot tissues. Of the isolates tested, 20 produced amylase, 15 cellulase, 25 pectinase, 26 protease, and 13 xylanase. There was no correlation between the range and type of enzymes produced by the isolates and their pathogenicity or ability to endophytically colonise the shoot tissue. The study showed that approximately one-third (13/37) of the isolates recovered from the apparently healthy apple shoot tissues were observed as latent pathogens. The isolates that did not cause disease symptoms may have the ability to reduce colonisation of apple tissues by pathogens including Neonectria ditissima associated with European canker of apple.


Endophytes , Fungi , Malus , Plant Leaves , Malus/microbiology , Endophytes/isolation & purification , Endophytes/classification , Endophytes/genetics , Plant Leaves/microbiology , Fungi/isolation & purification , Fungi/classification , Fungi/genetics , Fungi/pathogenicity , Plant Diseases/microbiology , Plant Shoots/microbiology , Fruit/microbiology
9.
World J Microbiol Biotechnol ; 40(7): 215, 2024 May 28.
Article En | MEDLINE | ID: mdl-38802663

Withanolides are steroidal lactones with diverse bioactive potential and their production from plant sources varies with genotype, age, culture conditions, and geographical region. Endophytic fungi serve as an alternative source to produce withanolides, like their host plant, Withania somnifera (L.) Dunal. The present study aimed to isolate endophytic fungi capable of producing withanolides, characterization and investigation of biological activities of these molecules. The methanolic fungal crude extract of one of the fungal isolates WSE16 showed maximum withanolide production (219 mg/L). The fungal isolate WSE16 was identified as Penicillium oxalicum based on its morphological and internal transcribed spacer (ITS) sequence analysis and submitted in NCBI (accession number OR888725). The methanolic crude extract of P. oxalicum was further purified by column chromatography, and collected fractions were assessed for the presence of withanolides. Fractions F3 and F4 showed a higher content of withanolides (51.8 and 59.1 mg/L, respectively) than other fractions. Fractions F3 and F4 exhibited antibacterial activity against Staphylococcus aureus with an IC50 of 23.52 and 17.39 µg/ml, respectively. These fractions also showed antioxidant activity (DPPH assay with IC50 of 39.42 and 38.71 µg/ml, superoxide anion scavenging assay with IC50 of 41.10 and 38.84 µg/ml, and reducing power assay with IC50 of 42.61 and 41.40 µg/ml, respectively) and acetylcholinesterase inhibitory activity (IC50 of 30.34 and 22.05 µg/ml, respectively). The withanolides present in fraction 3 and fraction 4 were identified as (20S, 22R)-1a-Acetoxy-27-hydroxywitha-5, 24-dienolide-3b-(O-b-D-glucopyranoside) and withanamide A, respectively, using UV, FTIR, HRMS, and NMR analysis. These results suggest that P. oxalicum, an endophytic fungus isolated from W. somnifera, is a potential source for producing bioactive withanolides.


Endophytes , Penicillium , Withania , Withanolides , Withania/microbiology , Withania/chemistry , Withanolides/metabolism , Withanolides/isolation & purification , Withanolides/pharmacology , Penicillium/metabolism , Penicillium/genetics , Endophytes/metabolism , Endophytes/isolation & purification , Endophytes/genetics , Endophytes/classification , Antioxidants/pharmacology , Antioxidants/metabolism , Antioxidants/isolation & purification , Antioxidants/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/biosynthesis , Anti-Bacterial Agents/isolation & purification , Phylogeny , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/isolation & purification , Microbial Sensitivity Tests
10.
Fungal Biol ; 128(3): 1780-1789, 2024 May.
Article En | MEDLINE | ID: mdl-38796262

Anthracnose caused by Colletotrichum is the most severe and widely occurring cashew disease in Brazil. Colletotrichum species are commonly found as pathogens, endophytes and occasionally as saprophytes in a wide range of hosts. The endophytic species associated with cashew trees are poorly studied. In this study, we report the Colletotrichum endophytic species associated with cashew trees in two locations in the state of Pernambuco, their prevalence in different plant organs (leaves, veins, branches and inflorescences), and compare the species in terms of pathogenicity and aggressiveness using different inoculation methods (wounded × unwounded). Six species of Colletotrichum were identified according to multilocus phylogenetic analyses, including Colletotrichum asianum, Colletotrichum chrysophilum, Colletotrichum karsti, Colletotrichum siamense, Colletotrichum theobromicola, and Colletotrichum tropicale. There were differences in the percentage of isolation in relation to the prevalence of colonized tissues and collection locations. C. tropicale was the prevalent species in both geographic areas and plant tissues collected, with no pattern of distribution of species between areas and plant tissues. All isolates were pathogenic in injured tissues of cashew plants. The best method to test the pathogenicity of Colletotrichum species was utilizing the combination of leaves + presence of wounds + conidial suspension, as it better represents the natural infection process. C. siamense was the most aggressive species.


Anacardium , Colletotrichum , Endophytes , Phylogeny , Plant Diseases , Colletotrichum/genetics , Colletotrichum/classification , Colletotrichum/isolation & purification , Brazil , Anacardium/microbiology , Endophytes/classification , Endophytes/genetics , Endophytes/isolation & purification , Plant Diseases/microbiology , DNA, Fungal/genetics , Multilocus Sequence Typing
11.
Article En | MEDLINE | ID: mdl-38809239

Strain HUAS 3-15T was isolated from the leaves of Cathaya argyrophylla collected from Chenzhou, Hunan Province, PR China. The main fatty acids (>5.0 %) of the strain were anteiso-C15 : 0, C16 : 0, C18 : 1 ω9c, iso-C16 : 0, summed feature 5 (C18 : 2 ω6,9c/C18 : 0 ante), iso-C15 : 0 and anteiso-C17 : 0. MK-9(H6), MK-9(H8) and MK-9(H4) were detected as respiratory quinones. The diagnostic cell-wall diamino acid was meso-diaminopimelic acid. Galactose, glucose and ribose were also present in the cell wall. The major polar lipids consisted of diphosphatidylglycerol, phosphatidyl ethanolamine, phosphatidylinositol mannosides and unidentified phospholipids. The DNA G+C content of the genome sequence, consisting of 8 860 963 bp, is 72.4 mol%. blast analysis based on 16S rRNA gene sequences revealed that the strain belongs to the genus Kitasatospora, with 99.37, 99.03, 98.95, 98.68 and 98.67 % sequence similarity to Kitasatospora aureofaciens ATCC 10762T, Kitasatospora viridis DSM 44826T, Kitasatospora xanthocidica NBRC 13469T, Kitasatospora aburaviensis NRRL B-2218T and Kitasatospora kifunensis IFO 15206T, respectively. Phylogenetic trees based on 16S rRNA gene and whole-genome sequences demonstrated that strain HUAS 3-15T formed a well-supported cluster with K. aureofaciens ATCC 10762T. Further genomic characterization through average nucleotide identity (ANIb/m) and digital DNA-DNA hybridization analysis between strain HUAS 3-15T and K. aureofaciens ATCC 10762T showed values of 90.62/92.55 % and 45.3 %, respectively, lower than the 95-96 % ANI threshold and 70.0 % cutoff used as guideline values for species delineation in bacteria. Furthermore, the differences between the strain and its phylogenomic neighbour in terms of physiological (e.g. sole carbon source growth) and chemotaxonomic (e.g. cellular fatty composition) characteristics further supported this conclusion. Consequently, we concluded that strain HUAS 3-15T represents a novel species of the genus Kitasatospora, for which the name Kitasatospora cathayae sp. nov. is proposed. The type strain is HUAS 3-15T (=MCCC 1K08542T=JCM 36274T).


Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Endophytes , Fatty Acids , Phospholipids , Phylogeny , Plant Leaves , RNA, Ribosomal, 16S , Sequence Analysis, DNA , RNA, Ribosomal, 16S/genetics , Fatty Acids/chemistry , Plant Leaves/microbiology , DNA, Bacterial/genetics , China , Endophytes/isolation & purification , Endophytes/genetics , Endophytes/classification , Phospholipids/chemistry , Vitamin K 2/analogs & derivatives , Cell Wall/chemistry , Diaminopimelic Acid , Nucleic Acid Hybridization , Actinomycetales/isolation & purification , Actinomycetales/genetics , Actinomycetales/classification
12.
Antonie Van Leeuwenhoek ; 117(1): 77, 2024 May 08.
Article En | MEDLINE | ID: mdl-38717550

The "Shadegan International Wetland" (SIW) is one of the wetlands internationally recognized in the Ramsar convention. The vegetation of this wetland ecosystem consists of mostly grasses and shrubs that host a large number of fungi including endophytes. In this study, Nigrospora isolates were obtained from healthy plants of this wetland and its surrounding salt marshes and identified based on morphological features and multilocus phylogenetic analyses based on three DNA loci, namely the internal transcribed spacer regions 1 and 2 including the intervening 5.8S nuclear ribosomal DNA (ITS), ß-tubulin (tub2), and elongation factor 1-α (tef1-α). Accordingly, the following Nigrospora species were identified: N. lacticolonia, N. oryzae, N. osmanthi, N. pernambucoensis and a novel taxon N. shadeganensis sp. nov., which is described and illustrated. To the best of our knowledge, 10 new hosts for Nigrospora species are here reported, namely Aeluropus lagopoides, Allenrolfea occidentalis, Anthoxanthum monticola, Arthrocnemum macrostachyum, Cressa cretica, Halocnemum strobilaceum, Seidlitzia rosmarinus, Suaeda vermiculata, Tamarix passerinoides, and Typha latifolia. Moreover, the species N. lacticolonia and N. pernambucoensis are new records for the mycobiota of Iran.


Ascomycota , Endophytes , Phylogeny , Poaceae , Wetlands , Iran , Endophytes/classification , Endophytes/genetics , Endophytes/isolation & purification , Poaceae/microbiology , Ascomycota/genetics , Ascomycota/classification , Ascomycota/isolation & purification , DNA, Fungal/genetics , DNA, Ribosomal Spacer/genetics , Tubulin/genetics
13.
Article En | MEDLINE | ID: mdl-38695275

We isolated and described a yellow-pigmented strain of bacteria (strain 9143T), originally characterized as an endohyphal inhabitant of an endophytic fungus in the Ascomycota. Although the full-length sequence of its 16S rRNA gene displays 99 % similarity to Luteibacter pinisoli, genomic hybridization demonstrated <30 % genomic similarity between 9143T and its closest named relatives, further supported by average nucleotide identity results. This and related endohyphal strains form a well-supported clade separate from L. pinisoli and other validly named species including the most closely related Luteibacter rhizovicinus. The name Luteibacter mycovicinus sp. nov. is proposed, with type strain 9143T (isolate DBL433), for which a genome has been sequenced and is publicly available from the American Type Culture Collection (ATCC TSD-257T) and from the Leibniz Institute DSMZ (DSM 112764T). The type strain reliably forms yellow colonies across diverse media and growth conditions (lysogeny broth agar, King's Medium B, potato dextrose agar, trypticase soy agar and Reasoner's 2A (R2A) agar). It forms colonies readily at 27 °C on agar with a pH of 6-8, and on salt (NaCl) concentrations up to 2 %. It lacks the ability to utilize sulphate as a sulphur source and thus only forms colonies on minimal media if supplemented with alternative sulphur sources. It is catalase-positive and oxidase-negative. Although it exhibits a single polar flagellum, motility was only clearly visible on R2A agar. Its host range and close relatives, which share the endohyphal lifestyle, are discussed.


Ascomycota , Bacterial Typing Techniques , DNA, Bacterial , Endophytes , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Symbiosis , RNA, Ribosomal, 16S/genetics , Ascomycota/genetics , Ascomycota/classification , Ascomycota/isolation & purification , DNA, Bacterial/genetics , Endophytes/genetics , Endophytes/classification , Endophytes/isolation & purification , Nucleic Acid Hybridization , Fatty Acids , Base Composition , Pigments, Biological/metabolism
14.
Environ Microbiol Rep ; 16(2): e13259, 2024 Apr.
Article En | MEDLINE | ID: mdl-38649235

The seed-endophytic bacterial community is a potentially beneficial and heritable fraction of the plant microbiome. Its utilization as a sustainable crop improvement strategy could be especially valuable for species such as hemp, where production is being scaled up and new challenges will be faced in managing crop productivity and health. However, little is known about the makeup and variation of the hemp seed microbiome. This study profiled the endophytic bacterial communities harboured by 16 hemp cultivars sourced from commercial suppliers in Europe. A 16S rDNA amplicon sequencing approach identified 917 amplicon sequence variants across samples. Taxonomic classification of sequences revealed 4 phyla and 87 genera to be represented in the dataset. Several genera were widespread while some were specific to one or a few cultivars. Flavobacterium, Pseudomonas, and Pantoea were notable in their high overall abundance and prevalence, but community composition was variable and no one taxon was universally abundant, suggesting a high degree of flexibility in community assembly. Taxonomic composition and alpha diversity differed among cultivars, though further work is required to understand the relative influence of hemp genetic factors on community structure. The taxonomic profiles presented here can be used to inform further work investigating the functional characteristics and potential plant-growth-promoting traits of seed-borne bacteria in hemp.


Bacteria , Cannabis , Endophytes , RNA, Ribosomal, 16S , Seeds , Cannabis/microbiology , Cannabis/genetics , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Seeds/microbiology , Endophytes/genetics , Endophytes/classification , Endophytes/isolation & purification , RNA, Ribosomal, 16S/genetics , Microbiota , Phylogeny , Biodiversity , Europe , DNA, Bacterial/genetics
15.
Braz J Microbiol ; 55(2): 1477-1487, 2024 Jun.
Article En | MEDLINE | ID: mdl-38319531

The mangrove ecosystem plays a crucial role in preserving the biodiversity of plants, animals, and microorganisms that are essential for materials cycles. However, the exploration of endophytic fungi isolated from mangroves, particulary in Santa Catarina (SC, Brazil), remains limited. Therefore, the purpose of this study was to assess the biodiversity of endophytic fungi found in Avicennia schaueriana, Laguncularia racemosa, Rhizophora mangle, and Spartina alterniflora from two mangroves on the Island of Santa Catarina: one impacted by anthropic action (Itacorubi mangrove) and the other environmentally preserved (Ratones mangrove). Samplings were carried out between January 2020 and May 2021. Fungi were isolated from leaves, stems, and roots, identified, and clustered into groups through morphological characteristics. Further, a representative strain of each group was identified through ITS1 sequencing. A total of 373 isolates were obtained from plant tissues, of which 96 and 277 isolates were obtained from Itacorubi and Ratones mangroves, respectively. Molecular identification showed that the endophytic fungal community comprised at least 19 genera. The data on fungal community diversity revealed comparable diversity indices for genera in both mangroves. However, we observed differences in the total frequency of fungal genera between impacted (27.38%) and non-impacted (72.62%) mangroves. These findings suggest that anthropic activities in and around the Santa Catarina mangroves have had negative impact on the frequency of endophytic fungi. This emphasizes the reinforcing the significance of preserving these environments to ensure the maintenance of fungal community diversity.


Biodiversity , Endophytes , Fungi , Phylogeny , Rhizophoraceae , Wetlands , Endophytes/classification , Endophytes/isolation & purification , Endophytes/genetics , Brazil , Fungi/classification , Fungi/isolation & purification , Fungi/genetics , Rhizophoraceae/microbiology , Avicennia/microbiology , Islands , Plant Roots/microbiology , Mycobiome , Plant Leaves/microbiology
16.
Int. microbiol ; 26(3): 651-662, Ene-Agos, 2023. graf
Article En | IBECS | ID: ibc-223990

Aconitum heterophyllum is a rare perennial herb from Kashmir Himalayas. Due to its threatened status and dependence on its environment, the plant was examined for any potential endophytes, which is of utmost importance for bioprospection. In the current study, endophytic fungal diversity associated with A. heterophyllum was examined, and 328 fungal isolates were found in the plant’s leaf, stem, and root tissues. Twelve (12) endophytic fungal species were identified utilizing, molecular analysis of the nuclear ribosomal DNA Internal Transcribes Spacer (ITS), rLSU, and rSSU sequences. Maximum likelihood analysis was used to determine the phylogenetic connection between each isolate. The genera Arthrinium, Chaetomium, Purpureocillium, Alternaria, Penicillium, Aspergillus, Cladosporium, and Bjerkandera species dominated the ascomycete and basidiomycete fungal endophytes.(AU)


Humans , Endophytes/classification , Aconitum , Plants, Medicinal , Fungi , Phaseolus , India , Microbiology , Microbiological Techniques
17.
Microbiol Res ; 254: 126889, 2022 Jan.
Article En | MEDLINE | ID: mdl-34689101

Strains DS1-2T and AZ1-7, which were isolated from roots of plants, were taxonomically characterized based on polyphasic taxonomic and taxogenomic approaches. Both strains were Gram-stain-positive and filamentous bacteria which contained LL-diaminopimelic acid in cell-wall peptidoglycan and glucose and ribose in whole-cell hydrolysates. MK-9(H6), MK-10(H6), MK-9(H8), MK-10(H8) and MK-10(H4) were major menaquinones; iso-C16:0 and iso-C16:1G were predominant cellular fatty acids; diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and phosphatidylinositol mannoside presented as major phospholipids; and the DNA G+C contents of 73.2 mol%. Strains DS1-2T and AZ1-7 showed 97.6-98.0 % 16S rRNA gene sequence similarity, 81.0-82.0 % ANIb, 84.8-85.3 % ANIm and 22.0-23.1 % digital DDH to their related type strains: S. specialis GW41-1564T and S. hoynatensis S1412T. Comparative genomics results of these strains and their related type strains also revealed the differences and distributions of key genes associated with stress responses, environmental variables, plant interactions and bioactive metabolites. Based on the phenotypic, chemotaxonomic and genomic data, strains DS1-2T and AZ1-7 could be assigned to the novel species within the genus Streptomyces for which the name Streptomyces radicis sp. nov. is proposed. The type strain is DS1-2T (=JCM 32152T =KCTC 39738T =TISTR 2403T).


Endophytes , Genome, Bacterial , Plant Roots , Plants , Streptomyces , Endophytes/classification , Endophytes/genetics , Genome, Bacterial/genetics , Genomics , Plant Roots/microbiology , Plants/microbiology , RNA, Ribosomal, 16S/genetics , Streptomyces/classification , Streptomyces/genetics , Thailand
18.
World J Microbiol Biotechnol ; 38(1): 16, 2021 Dec 13.
Article En | MEDLINE | ID: mdl-34897563

The use of halotolerant beneficial plant-growth-promoting (PGP) bacteria is considered as a promising eco-friendly approach to improve the salt tolerance of cash crops. One strategy to enhance the possibility of obtaining stress-alleviating bacteria is to screen salt impacted soils. In this study, amongst the 40 endophytic bacteria isolated from the roots of Sahara-inhabiting halophytes Atriplex halimus L. and Lygeum spartum L., 8 showed interesting NaCl tolerance in vitro. Their evaluation, through different tomato plant trials, permitted the isolate IS26 to be distinguished as the most effective seed inoculum for both plant growth promotion and mitigation of salt stress. On the basis of 16S rRNA gene sequence, the isolate was closely related to Stenotrophomonas rhizophila. It was then screened in vitro for multiple PGP traits and the strain-complete genome was sequenced and analysed to further decipher the genomic basis of the putative mechanisms underlying its osmoprotective and plant growth abilities. A remarkable number of genes putatively involved in mechanisms responsible for rhizosphere colonization, plant association, strong competition for nutrients, and the production of important plant growth regulator compounds, such as AIA and spermidine, were highlighted, as were substances protecting against stress, including different osmolytes like trehalose, glucosylglycerol, proline, and glycine betaine. By having genes related to complementary mechanisms of osmosensing, osmoregulation and osmoprotection, the strain confirmed its great capacity to adapt to highly saline environments. Moreover, the presence of various genes potentially related to multiple enzymatic antioxidant processes, able to reduce salt-induced overproduction of ROS, was also detected.


Endophytes/physiology , Plant Development , Plant Roots/microbiology , Poaceae/microbiology , Salt Tolerance , Solanum lycopersicum/growth & development , Solanum lycopersicum/microbiology , Africa, Northern , Amino Acids, Cyclic/metabolism , Endophytes/classification , Host Microbial Interactions , RNA, Ribosomal, 16S , Reactive Oxygen Species/metabolism , Rhizosphere , Salinity , Salt Stress , Salt-Tolerant Plants/microbiology , Sequence Analysis, DNA , Soil Microbiology
19.
Int J Syst Evol Microbiol ; 71(12)2021 Dec.
Article En | MEDLINE | ID: mdl-34878379

A Gram-stain-positive, facultatively anaerobic, spore-forming, motile with unipolar biflagella, rod-shaped, indole acetic acid-producing bacterium, named LD4P30T, was isolated from a root of Suaeda salsa collected in Inner Mongolia, northern China. Strain LD4P30T grew at pH 6.0-11.0 (optimum, pH 7.0), 10-40 °C (35 °C) and in the presence of 1-15% (w/v) NaCl (5%). The strain was positive for oxidase and negative for catalase. The major cellular fatty acids of strain LD4P30T were iso-C15:0, C15:1 ω5c and anteiso-C15:0; the major polar lipids were diphosphatidylglycerol and phosphatidylglycerol; and menaquinone-7 was the only respiratory quinone. The genomic DNA G+C content was 36.7 mol%. A phylogenetic tree based on 16S rRNA gene sequences showed that strain LD4P30T clustered with Gracilibacillus thailandensis TP2-8T, Gracilibacillus saliphilus YIM 91119T and Gracilibacillus lacisalsi BH312T, and showed 99.0, 98.9, 98.0 and <97.7% 16S rRNA gene similarity to G. thailandensis TP2-8T, G. saliphilus YIM 91119T, G. lacisalsi BH312T and all other current type strains, respectively. The digital DNA-DNA hybridization and average nucleotide identity based on blast values between strain LD4P30T and G. saliphilus YIM 91119T, G. thailandensis TP2-8T and G. lacisalsi BH312T were 44.9, 44.7 and 44.4%, and 91.1, 91.0 and 90.8%, respectively. Based on its phenotypic, physiological and phylogenetic characteristics, strain LD4P30T represents a novel species, for which the name Gracilibacillus suaedae is proposed. The type strain is LD4P30T (=CGMCC 1.17697T=KCTC 82375T).


Bacillaceae/classification , Chenopodiaceae , Phylogeny , Bacillaceae/isolation & purification , Bacterial Typing Techniques , Base Composition , Chenopodiaceae/microbiology , DNA, Bacterial/genetics , Endophytes/classification , Endophytes/isolation & purification , Fatty Acids/chemistry , Indoleacetic Acids/metabolism , Mongolia , Nucleic Acid Hybridization , Phospholipids/chemistry , Plant Roots/microbiology , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Vitamin K 2/analogs & derivatives , Vitamin K 2/chemistry
20.
BMC Microbiol ; 21(1): 335, 2021 12 07.
Article En | MEDLINE | ID: mdl-34876006

BACKGROUND: The native potatoes (Solanum tuberosum subsp. tuberosum L.) grown in Chile (Chiloé) represent a new, unexplored source of endophytes to find potential biological control agents for the prevention of bacterial diseases, like blackleg and soft rot, in potato crops. RESULT: The objective of this study was the selection of endophytic actinobacteria from native potatoes for antagonistic activity against Pectobacterium carotovorum subsp. carotovorum and Pectobacterium atrosepticum, and their potential to suppress tissue maceration symptoms in potato tubers. This potential was determined through the quorum quenching activity using a Chromobacterium violaceaum ATCC 12472 Wild type (WT) bioassay and its colonization behavior of the potato plant root system (S. tuberosum) by means of the Double labeling of oligonucleotide probes for fluorescence in situ hybridization (DOPE-FISH) targeting technique. The results showed that although Streptomyces sp. TP199 and Streptomyces sp. A2R31 were able to inhibit the growth of the pathogens, only the Streptomyces sp. TP199 isolate inhibited Pectobacterium sp. growth and diminished tissue maceration in tubers (p ≤ 0.05). Streptomyces sp. TP199 had metal-dependent acyl homoserine lactones (AHL) quorum quenching activity in vitro and was able to colonize the root endosphere 10 days after inoculation. CONCLUSIONS: We concluded that native potatoes from southern Chile possess endophyte actinobacteria that are potential agents for the disease management of soft rot and blackleg.


Actinobacteria/physiology , Antibiosis/physiology , Endophytes/physiology , Solanum tuberosum/microbiology , Actinobacteria/classification , Actinobacteria/genetics , Actinobacteria/isolation & purification , Biological Control Agents/isolation & purification , Chile , Endophytes/classification , Endophytes/genetics , Endophytes/isolation & purification , Pectobacterium/physiology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Plant Tubers/microbiology , Quorum Sensing , Streptomyces/classification , Streptomyces/genetics , Streptomyces/isolation & purification , Streptomyces/physiology
...