Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 776
1.
Planta ; 260(1): 19, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38839605

MAIN CONCLUSION: A mutation was first found to cause the great generation of glutelin precursors (proglutelins) in rice (Oryza sativa L.) endosperm, and thus referred to as GPGG1. The GPGG1 was involved in synthesis and compartmentation of storage proteins. The PPR-like gene in GPGG1-mapped region was determined as its candidate gene. In the wild type rice, glutelins and prolamins are synthesized on respective subdomains of rough endoplasmic reticulum (ER) and intracellularly compartmentalized into different storage protein bodies. In this study, a storage protein mutant was obtained and characterized by the great generation of proglutelins combining with the lacking of 13 kD prolamins. A dominant genic-mutation, referred to as GPGG1, was clarified to result in the proteinous alteration. Novel saccular composite-ER was shown to act in the synthesis of proglutelins and 14 kD prolamins in the mutant. Additionally, a series of organelles including newly occurring several compartments were shown to function in the transfer, trans-plasmalemmal transport, delivery, deposition and degradation of storage proteins in the mutant. The GPGG1 gene was mapped to a 67.256 kb region of chromosome 12, the pentatricopeptide repeat (PPR)-like gene in this region was detected to contain mutational sites.


Endosperm , Glutens , Mutation , Oryza , Oryza/genetics , Oryza/metabolism , Endosperm/genetics , Endosperm/metabolism , Glutens/genetics , Glutens/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Prolamins/genetics , Prolamins/metabolism , Seed Storage Proteins/genetics , Seed Storage Proteins/metabolism , Endoplasmic Reticulum/metabolism , Chromosome Mapping , Genome, Plant/genetics
2.
New Phytol ; 243(1): 213-228, 2024 Jul.
Article En | MEDLINE | ID: mdl-38715414

Arabidopsis lamin analogs CROWDED NUCLEIs (CRWNs) are necessary to maintain nuclear structure, genome function, and proper plant growth. However, whether and how CRWNs impact reproduction and genome-wide epigenetic modifications is unknown. Here, we investigate the role of CRWNs during the development of gametophytes, seeds, and endosperm, using genomic and epigenomic profiling methods. We observed defects in crwn mutant seeds including seed abortion and reduced germination rate. Quadruple crwn null genotypes were rarely transmitted through gametophytes. Because defects in seeds often stem from abnormal endosperm development, we focused on crwn1 crwn2 (crwn1/2) endosperm. These mutant seeds exhibited enlarged chalazal endosperm cysts and increased expression of stress-related genes and the MADS-box transcription factor PHERES1 and its targets. Previously, it was shown that PHERES1 expression is regulated by H3K27me3 and that CRWN1 interacts with the PRC2 interactor PWO1. Thus, we tested whether crwn1/2 alters H3K27me3 patterns. We observed a mild loss of H3K27me3 at several hundred loci, which differed between endosperm and leaves. These data indicate that CRWNs are necessary to maintain the H3K27me3 landscape, with tissue-specific chromatin and transcriptional consequences.


Arabidopsis Proteins , Arabidopsis , Endosperm , Gene Expression Regulation, Plant , Histones , Mutation , Reproduction , Arabidopsis/genetics , Arabidopsis/physiology , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Histones/metabolism , Endosperm/genetics , Endosperm/metabolism , Mutation/genetics , Seeds/genetics , Seeds/growth & development , Cell Nucleus/metabolism , Methylation
3.
BMC Plant Biol ; 24(1): 458, 2024 May 27.
Article En | MEDLINE | ID: mdl-38797860

BACKGROUND: The endosperm serves as the primary source of nutrients for maize (Zea mays L.) kernel embryo development and germination. Positioned at the base of the endosperm, the transfer cells (TCs) of the basal endosperm transfer layer (BETL) generate cell wall ingrowths, which enhance the connectivity between the maternal plant and the developing kernels. These TCs play a crucial role in nutrient transport and defense against pathogens. The molecular mechanism underlying BETL development in maize remains unraveled. RESULTS: This study demonstrated that the MYB-related transcription factor ZmMYBR29, exhibited specific expression in the basal cellularized endosperm, as evidenced by in situ hybridization analysis. Utilizing the CRISPR/Cas9 system, we successfully generated a loss-of-function homozygous zmmybr29 mutant, which presented with smaller kernel size. Observation of histological sections revealed abnormal development and disrupted morphology of the cell wall ingrowths in the BETL. The average grain filling rate decreased significantly by 26.7% in zmmybr29 mutant in comparison to the wild type, which impacted the dry matter accumulation within the kernels and ultimately led to a decrease in grain weight. Analysis of RNA-seq data revealed downregulated expression of genes associated with starch synthesis and carbohydrate metabolism in the mutant. Furthermore, transcriptomic profiling identified 23 genes that expressed specifically in BETL, and the majority of these genes exhibited altered expression patterns in zmmybr29 mutant. CONCLUSIONS: In summary, ZmMYBR29 encodes a MYB-related transcription factor that is expressed specifically in BETL, resulting in the downregulation of genes associated with kernel development. Furthermore, ZmMYBR29 influences kernels weight by affecting the grain filling rate, providing a new perspective for the complementation of the molecular regulatory network in maize endosperm development.


Edible Grain , Endosperm , Gene Expression Regulation, Plant , Plant Proteins , Transcription Factors , Zea mays , Zea mays/genetics , Zea mays/growth & development , Zea mays/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Edible Grain/genetics , Edible Grain/growth & development , Edible Grain/metabolism , Endosperm/genetics , Endosperm/growth & development , Endosperm/metabolism , Cell Wall/metabolism , Cell Wall/genetics , Seeds/genetics , Seeds/growth & development , Seeds/metabolism , CRISPR-Cas Systems
4.
J Biosci Bioeng ; 138(1): 44-53, 2024 Jul.
Article En | MEDLINE | ID: mdl-38614830

Kopyor is a coconut with unique characteristics from Indonesia, one of the largest coconut producers in the world. Kopyor is an edible mature coconut with soft endosperm. Although this fruit is one of the most popular coconuts in the world, there are limited studies on its properties, including its sensory attributes and metabolite profiles. This study investigates the characteristics of kopyor using sensory evaluation, a widely targeted metabolomics approach, and multivariate analysis. The liquid (water) and solid (flesh) endosperms were collected as the samples. The results showed that kopyor has characteristics that distinguish it from normal mature and young coconuts. Kopyor water has a milky, creamy, nutty, bitter, and astringent taste with an oily aftertaste and mouthfeel. Kopyor flesh is soft and moist and gives a sandy mouth feel. This study analyzed the sensory attributes of the kopyor endosperm for the first time and compared it with those of normal mature and young coconuts. A gas chromatography mass spectrometry analysis showed that kopyor contained wider variety of metabolites than normal coconuts of the same age. Based on the differential analysis and orthogonal projections to latent structures-regression, kopyor water was characterized by the accumulation of flavor-related metabolites, such as amino acids and organic acids, which contributed to its sensory complexity. This study solidified the effects of maturation and endosperm type on metabolite accumulation in kopyor endosperm. This pioneering information will lead to the future use of kopyor and other unique coconuts worldwide for food, contributing to the sustainability of the coconut industry.


Cocos , Gas Chromatography-Mass Spectrometry , Metabolomics , Taste , Cocos/chemistry , Metabolomics/methods , Indonesia , Endosperm/metabolism , Endosperm/chemistry , Humans
5.
New Phytol ; 242(6): 2635-2651, 2024 Jun.
Article En | MEDLINE | ID: mdl-38634187

Endosperm is the main storage organ in cereal grain and determines grain yield and quality. The molecular mechanisms of heat shock proteins in regulating starch biosynthesis and endosperm development remain obscure. Here, we report a rice floury endosperm mutant flo24 that develops abnormal starch grains in the central starchy endosperm cells. Map-based cloning and complementation test showed that FLO24 encodes a heat shock protein HSP101, which is localized in plastids. The mutated protein FLO24T296I dramatically lost its ability to hydrolyze ATP and to rescue the thermotolerance defects of the yeast hsp104 mutant. The flo24 mutant develops more severe floury endosperm when grown under high-temperature conditions than normal conditions. And the FLO24 protein was dramatically induced at high temperature. FLO24 physically interacts with several key enzymes required for starch biosynthesis, including AGPL1, AGPL3 and PHO1. Combined biochemical and genetic evidence suggests that FLO24 acts cooperatively with HSP70cp-2 to regulate starch biosynthesis and endosperm development in rice. Our results reveal that FLO24 acts as an important regulator of endosperm development, which might function in maintaining the activities of enzymes involved in starch biosynthesis in rice.


Endosperm , Gene Expression Regulation, Plant , Mutation , Oryza , Plant Proteins , Starch , Oryza/genetics , Oryza/metabolism , Oryza/growth & development , Endosperm/metabolism , Endosperm/growth & development , Starch/metabolism , Starch/biosynthesis , Plant Proteins/metabolism , Plant Proteins/genetics , Mutation/genetics , Protein Binding , Plastids/metabolism , Genetic Complementation Test , Adenosine Triphosphate/metabolism , Adenosine Triphosphate/biosynthesis , Thermotolerance , Transcription Factors
6.
Mol Plant ; 17(5): 788-806, 2024 May 06.
Article En | MEDLINE | ID: mdl-38615195

During maize endosperm filling, sucrose not only serves as a source of carbon skeletons for storage-reserve synthesis but also acts as a stimulus to promote this process. However, the molecular mechanisms underlying sucrose and endosperm filling are poorly understood. In this study, we found that sucrose promotes the expression of endosperm-filling hub gene Opaque2 (O2), coordinating with storage-reserve accumulation. We showed that the protein kinase SnRK1a1 can attenuate O2-mediated transactivation, but sucrose can release this suppression. Biochemical assays revealed that SnRK1a1 phosphorylates O2 at serine 41 (S41), negatively affecting its protein stability and transactivation ability. We observed that mutation of SnRK1a1 results in larger seeds with increased kernel weight and storage reserves, while overexpression of SnRK1a1 causes the opposite effect. Overexpression of the native O2 (O2-OE), phospho-dead (O2-SA), and phospho-mimetic (O2-SD) variants all increased 100-kernel weight. Although O2-SA seeds exhibit smaller kernel size, they have higher accumulation of starch and proteins, resulting in larger vitreous endosperm and increased test weight. O2-SD seeds display larger kernel size but unchanged levels of storage reserves and test weight. O2-OE seeds show elevated kernel dimensions and nutrient storage, like a mixture of O2-SA and O2-SD seeds. Collectively, our study discovers a novel regulatory mechanism of maize endosperm filling. Identification of S41 as a SnRK1-mediated phosphorylation site in O2 offers a potential engineering target for enhancing storage-reserve accumulation and yield in maize.


Endosperm , Plant Proteins , Sucrose , Zea mays , Zea mays/metabolism , Zea mays/genetics , Endosperm/metabolism , Phosphorylation , Plant Proteins/metabolism , Plant Proteins/genetics , Sucrose/metabolism , Gene Expression Regulation, Plant , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Seeds/metabolism , Seeds/genetics , Seeds/growth & development
7.
Int J Biol Macromol ; 267(Pt 2): 131663, 2024 May.
Article En | MEDLINE | ID: mdl-38636760

Palm seedlings are visually selected from mature fruits in a slow process that leads to nonuniform germination and high embryo mortality. In this study, we determined the levels of monosaccharides, their crystallinity, and their role in the formation of Euterpe edulis endosperm during seed maturation. Seeds harvested from 108 to 262 days after anthesis (DAA) were analyzed morphologically, physiologically, and chemically to measure soluble and insoluble lignins, ashes, structural carbohydrates, degree of crystallinity, and endo-ß-mannanase. The seeds achieved maximum germination and vigor at 164 DAA. During the early stages, only compounds with a low structural order were formed. The contents of soluble and insoluble lignins, ashes, glucans, and galactans decreased during maturation. Those of mannans, the main structural carbohydrate in the endosperm, increased along with the degree of crystallinity, as suggested by a mannan-I-type X-ray diffraction pattern. Similarly, endo-ß-mannanase activity peaked at 262 DAA. The superior physiological outcome of seeds and seedlings at 164 DAA implies a 98-day shorter harvesting time. The state of mannans during seed maturation could be used as a marker to improve seedling production by E. edulis.


Arecaceae , Germination , Mannans , Seeds , Seeds/growth & development , Seeds/chemistry , Mannans/chemistry , Arecaceae/chemistry , Arecaceae/growth & development , Trees , Lignin/chemistry , Lignin/metabolism , Endosperm/chemistry , Endosperm/metabolism , Seedlings/growth & development
8.
Plant Physiol ; 195(2): 1365-1381, 2024 May 31.
Article En | MEDLINE | ID: mdl-38471799

Several starch synthesis regulators have been identified, but these regulators are situated in the terminus of the regulatory network. Their upstream regulators and the complex regulatory network formed between these regulators remain largely unknown. A previous study demonstrated that NAM, ATAF, and CUC (NAC) transcription factors, OsNAC20 and OsNAC26 (OsNAC20/26), redundantly and positively regulate the accumulation of storage material in rice (Oryza sativa) endosperm. In this study, we detected OsNAC25 as an upstream regulator and interacting protein of OsNAC20/26. Both OsNAC25 mutation and OE resulted in a chalky seed phenotype, decreased starch content, and reduced expression of starch synthesis-related genes, but the mechanisms were different. In the osnac25 mutant, decreased expression of OsNAC20/26 resulted in reduced starch synthesis; however, in OsNAC25-overexpressing plants, the OsNAC25-OsNAC20/26 complex inhibited OsNAC20/26 binding to the promoter of starch synthesis-related genes. In addition, OsNAC20/26 positively regulated OsNAC25. Therefore, the mutual regulation between OsNAC25 and OsNAC20/26 forms a positive regulatory loop to stimulate the expression of starch synthesis-related genes and meet the great demand for starch accumulation in the grain filling stage. Simultaneously, a negative regulatory loop forms among the 3 proteins to avoid the excessive expression of starch synthesis-related genes. Collectively, our findings demonstrate that both promotion and inhibition mechanisms between OsNAC25 and OsNAC20/26 are essential for maintaining stable expression of starch synthesis-related genes and normal starch accumulation.


Gene Expression Regulation, Plant , Oryza , Plant Proteins , Starch , Transcription Factors , Oryza/genetics , Oryza/metabolism , Starch/metabolism , Starch/biosynthesis , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Endosperm/metabolism , Endosperm/genetics
9.
Plant J ; 118(6): 2124-2140, 2024 Jun.
Article En | MEDLINE | ID: mdl-38551088

The basal region of maize (Zea mays) kernels, which includes the pedicel, placenta-chalazal, and basal endosperm transfer layers, serves as the maternal/filial interface for nutrient transfer from the mother plant to the developing seed. However, transcriptome dynamics of this maternal/filial interface remain largely unexplored. To address this gap, we conducted high-temporal-resolution RNA sequencing of the basal and upper kernel regions between 4 and 32 days after pollination and deeply analyzed transcriptome dynamics of the maternal/filial interface. Utilizing 790 specifically and highly expressed genes in the basal region, we performed the gene ontology (GO) term and weighted gene co-expression network analyses. In the early-stage basal region, we identified five MADS-box transcription factors (TFs) as hubs. Their homologs have been demonstrated as pivotal regulators at the maternal/filial interface of rice or Arabidopsis, suggesting their potential roles in maize kernel development. In the filling-stage basal region, numerous GO terms associated with transcriptional regulation and transporters are significantly enriched. Furthermore, we investigated the molecular function of three hub TFs. Through genome-wide DNA affinity purification sequencing combined with promoter transactivation assays, we suggested that these three TFs act as regulators of 10 basal-specific transporter genes involved in the transfer of sugars, amino acids, and ions. This study provides insights into transcriptomic dynamic and regulatory modules of the maternal/filial interface. In the future, genetic investigation of these hub regulators must advance our understanding of maternal/filial interface development and function.


Gene Expression Regulation, Plant , Plant Proteins , Seeds , Transcriptome , Zea mays , Zea mays/genetics , Zea mays/growth & development , Zea mays/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Seeds/genetics , Seeds/growth & development , Seeds/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Endosperm/genetics , Endosperm/growth & development , Endosperm/metabolism , Gene Regulatory Networks , Gene Expression Profiling
10.
J Mol Graph Model ; 129: 108761, 2024 06.
Article En | MEDLINE | ID: mdl-38552302

ADP-glucose pyrophosphorylase plays a pivotal role as an allosteric enzyme, essential for starch biosynthesis in plants. The higher plant AGPase comparises of a pair of large and a pair of small subunits to form a heterotetrameric complex. Growing evidence indicates that each subunit plays a distinct role in regulating the underlying mechanism of starch biosynthesis. In the rice genome, there are four large subunit genes (OsL1-L4) and three small subunit genes (OsS1, OsS2a, and OsS2b). While the structural assembly of cytosolic rice AGPase subunits (OsL2:OsS2b) has been elucidated, there is currently no such documented research available for plastidial rice AGPases (OsL1:OsS1). In this study, we employed protein modeling and MD simulation approaches to gain insights into the structural association of plastidial rice AGPase subunits. Our results demonstrate that the heterotetrameric association of OsL1:OsS1 is very similar to that of cytosolic OsL2:OsS2b and potato AGPase heterotetramer (StLS:StSS). Moreover, the yeast-two-hybrid results on OsL1:OsS1, which resemble StLS:StSS, suggest a differential protein assembly for OsL2:OsS2b. Thus, the regulatory and catalytic mechanisms for plastidial AGPases (OsL1:OsS1) could be different in rice culm and developing endosperm compared to those of OsL2:OsS2b, which are predominantly found in rice endosperm.


Oryza , Glucose-1-Phosphate Adenylyltransferase/genetics , Glucose-1-Phosphate Adenylyltransferase/chemistry , Glucose-1-Phosphate Adenylyltransferase/metabolism , Oryza/genetics , Endosperm/genetics , Endosperm/metabolism , Computer Simulation , Starch/metabolism , Protein Subunits/metabolism
11.
BMC Plant Biol ; 24(1): 196, 2024 Mar 18.
Article En | MEDLINE | ID: mdl-38494545

BACKGROUND: Chalkiness is a common phenotype induced by various reasons, such as abiotic stress or the imbalance of starch synthesis and metabolism during the development period. However, the reason mainly for one gene losing its function such as NAC (TFs has a large family in rice) which may cause premature is rarely known to us. RESULTS: The Ko-Osnac02 mutant demonstrated an obviously early maturation stage compared to the wild type (WT) with 15 days earlier. The result showed that the mature endosperm of Ko-Osnac02 mutant exhibited chalkiness, characterized by white-core and white-belly in mature endosperm. As grain filling rate is a crucial factor in determining the yield and quality of rice (Oryza sativa, ssp. japonica), it's significant that mutant has a lower amylose content (AC) and higher soluble sugar content in the mature endosperm. Interestingly among the top DEGs in the RNA sequencing of N2 (3DAP) and WT seeds revealed that the OsBAM2 (LOC_Os10g32810) expressed significantly high in N2 mutant, which involved in Maltose up-regulated by the starch degradation. As Prediction of Protein interaction showed in the chalky endosperm formation in N2 seeds (3 DAP), seven genes were expressed at a lower-level which should be verified by a heatmap diagrams based on DEGs of N2 versus WT. The Tubulin genes controlling cell cycle are downregulated together with the MCM family genes MCM4 ( ↓), MCM7 ( ↑), which may cause white-core in the early endosperm development. In conclusion, the developing period drastically decreased in the Ko-Osnac02 mutants, which might cause the chalkiness in seeds during the early endosperm development. CONCLUSIONS: The gene OsNAC02 which controls a great genetic co-network for cell cycle regulation in early development, and KO-Osnac02 mutant shows prematurity and white-core in endosperm.


Endosperm , Oryza , Endosperm/metabolism , Starch/metabolism , Seeds/genetics , Edible Grain/genetics , Homeostasis , Oryza/metabolism , Gene Expression Regulation, Plant
12.
Transgenic Res ; 33(1-2): 47-57, 2024 Apr.
Article En | MEDLINE | ID: mdl-38451380

Cellobiohydrolase II (CBH II) is an exo-glucanase that is part of a fungal mixture of enzymes from a wood-rot fungus, Trichoderma reesei. It is therefore difficult to purify and to establish a specific activity assay. The gene for this enzyme, driven by the rice Os glutelin promoter, was transformed into High II tissue culture competent corn, and the enzyme accumulated in the endosperm of the seed. The transgenic line recovered from tissue culture was bred into male and female elite Stine inbred corn lines, stiff stalk 16083-025 (female) and Lancaster MSO411 (male), for future production in their hybrid. The enzyme increases its accumulation throughout its 6 generations of back crosses, 27-266-fold between T1 and T2, and 2-10-fold between T2 and T3 generations with lesser increases in T4-T6. The germplasm of the inbred lines replaces the tissue culture corn variety germplasm with each generation, with the ultimate goal of producing a high-yielding hybrid with the transgene. The CBH II enzyme was purified from T5 inbred male grain 10-fold to homogeneity with 47.5% recovery. The specific activity was determined to be 1.544 units per µg protein. The corn-derived CBH II works in biopolishing of cotton by removing surface fibers to improve dyeability and increasing glucose from corn flour for increasing ethanol yield from starch-based first-generation processes.


Cellulase , Trichoderma , Cellulose 1,4-beta-Cellobiosidase/genetics , Cellulose 1,4-beta-Cellobiosidase/metabolism , Zea mays/genetics , Zea mays/metabolism , Endosperm/genetics , Endosperm/metabolism , Trichoderma/genetics , Trichoderma/metabolism , Plant Breeding , Cellulase/genetics
14.
Plant Physiol ; 195(2): 1214-1228, 2024 May 31.
Article En | MEDLINE | ID: mdl-38319651

The parent-of-origin effect on seeds can result from imprinting (unequal expression of paternal and maternal alleles) or combinational effects between cytoplasmic and nuclear genomes, but their relative contributions remain unknown. To discern these confounding factors, we produced cytoplasmic-nuclear substitution (CNS) lines using recurrent backcrossing in Arabidopsis (Arabidopsis thaliana) ecotypes Col-0 and C24. These CNS lines differed only in the nuclear genome (imprinting) or cytoplasm. The CNS reciprocal hybrids with the same cytoplasm displayed ∼20% seed size difference, whereas the seed size was similar between the reciprocal hybrids with fixed imprinting. Transcriptome analyses in the endosperm of CNS hybrids using laser-capture microdissection identified 104 maternally expressed genes (MEGs) and 90 paternally expressed genes (PEGs). These imprinted genes were involved in pectin catabolism and cell wall modification in the endosperm. Homeodomain Glabrous9 (HDG9), an epiallele and one of 11 cross-specific imprinted genes, affected seed size. In the embryo, there were a handful of imprinted genes in the CNS hybrids but only 1 was expressed at higher levels than in the endosperm. AT4G13495 was found to encode a long-noncoding RNA (lncRNA), but no obvious seed phenotype was observed in lncRNA knockout lines. Nuclear RNA Polymerase D1 (NRPD1), encoding the largest subunit of RNA Pol IV, was involved in the biogenesis of small interfering RNAs. Seed size and embryos were larger in the cross using nrpd1 as the maternal parent than in the reciprocal cross, supporting a role of the maternal NRPD1 allele in seed development. Although limited ecotypes were tested, these results suggest that imprinting and the maternal NRPD1-mediated small RNA pathway play roles in seed size heterosis in plant hybrids.


Arabidopsis , Genomic Imprinting , Hybrid Vigor , Seeds , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Genomic Imprinting/genetics , Seeds/genetics , Seeds/growth & development , Hybrid Vigor/genetics , Endosperm/genetics , Endosperm/growth & development , Endosperm/metabolism , Gene Expression Regulation, Plant , Cell Nucleus/metabolism , Cell Nucleus/genetics , Hybridization, Genetic , Cytoplasm/metabolism , Cytoplasm/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism
15.
Food Chem ; 444: 138597, 2024 Jun 30.
Article En | MEDLINE | ID: mdl-38310783

Polar lipids have biosynthetic pathways which intersect and overlap with triacylglycerol biosynthesis; however, polar lipids have not been well characterized in the developing endosperms of oat with high oil accumulation. The polar lipids in endosperms of oat and wheat varieties having different oil contents were analyzed and compared at different developmental stages. Our study shows that the relative contents of polar lipid by mass were decreased more slowly in wheat than in oat. Phosphatidylcholine and phosphatidylethanolamine were the major phospholipids, which showed similar abundance and gradual decreases during endosperm development in oat and wheat, while lysophospholipids were noticeably higher in oat. Monogalactosyldiacylglycerol showed a gradual increase in wheat and a decrease in oat during endosperm development. The relative contents of some polar lipid species and their unsaturation index were significantly different in their endosperms. These characteristics of polar lipids might indicate an adaption of oat to accommodate oil accumulation.


Avena , Endosperm , Endosperm/metabolism , Avena/metabolism , Triticum , Lipidomics , Phosphatidylcholines/metabolism
16.
Plant Physiol ; 195(1): 155-169, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38298124

The endosperm, a transient seed tissue, plays a pivotal role in supporting embryo growth and germination. This unique feature sets flowering plants apart from gymnosperms, marking an evolutionary innovation in the world of seed-bearing plants. Nevertheless, the importance of the endosperm extends beyond its role in providing nutrients to the developing embryo by acting as a versatile protector, preventing hybridization events between distinct species and between individuals with different ploidy. This phenomenon centers on growth and differentiation of the endosperm and the speed at which both processes unfold. Emerging studies underscore the important role played by type I MADS-box transcription factors, including the paternally expressed gene PHERES1. These factors, along with downstream signaling pathways involving auxin and abscisic acid, are instrumental in regulating endosperm development and, consequently, the establishment of hybridization barriers. Moreover, mutations in various epigenetic regulators mitigate these barriers, unveiling a complex interplay of pathways involved in their formation. In this review, we discuss the molecular underpinnings of endosperm-based hybridization barriers and their evolutionary drivers.


Endosperm , Hybridization, Genetic , Endosperm/genetics , Endosperm/metabolism , Biological Evolution , Gene Expression Regulation, Plant
17.
BMC Genom Data ; 25(1): 14, 2024 Feb 07.
Article En | MEDLINE | ID: mdl-38321382

OBJECTIVE: Sorghum (Sorghum bicolor (L.) Moench) is the fifth most important grain produced in the world. Interest for cultivating sorghum is increasing all over the world in the context of climate change, due to its low input and water requirements. Like other cultivated cereals, sorghum has significant nutritional value thanks to its protein, carbohydrate and dietary fiber content, these latter mainly consisting of cell wall polysaccharides. This work describes for the first time a transcriptomic analysis dedicated to identify the genes involved in the biosynthesis and remodelling of cell walls both in the endosperm and outer layers of sorghum grain during its development. Further analysis of these transcriptomic data will improve our understanding of cell wall assembly, which is a key component of grain quality. DATA DESCRIPTION: This research delineates the steps of our analysis, starting with the cultivation conditions and the grain harvest at different stages of development, followed by the laser microdissection applied to separate the endosperm from the outer layers. It also describes the procedures implemented to generate RNA libraries and to obtain a normalized and filtered table of transcript counts, and finally determine the number of putative cell wall-related genes already listed in literature.


Edible Grain , Sorghum , Edible Grain/genetics , Edible Grain/metabolism , Sorghum/genetics , Sorghum/metabolism , Endosperm/metabolism , Gene Expression Profiling , Cell Wall/metabolism
18.
Plant Biotechnol J ; 22(6): 1453-1467, 2024 Jun.
Article En | MEDLINE | ID: mdl-38163293

Kernel weight is a critical factor that essentially affects maize (Zea mays) yield. In natural inbred lines, popcorn kernels exhibit overtly smaller sizes compared to dent corn kernels, and kernel weight, which is controlled by multiple genetic loci, varies widely. Here, we characterized a major quantitative trait locus on chromosome 1, responsible for controlling kernel weight (qKW1) and size. The qKW1 locus encodes a protein containing a seven in absentia domain with E3 ubiquitin ligase activity, expressed prominently from the top to the middle region of the endosperm. The presence and function of qKW1 were confirmed through ZmKW1 gene editing, where the mutations in ZmKW1 within dent corn significantly increased kernel weight, consistent with alterations in kernel size, while overexpression of ZmKW1 had the opposite effect. ZmKW1 acts as a negative regulator of kernel weight and size by reducing both the number and size of the endosperm cells and impacting endosperm filling. Notably, the popcorn allele qKW1N and the dent corn allele qKW1D encode identical proteins; however, the differences in promoter activity arise due to the insertion of an Indel-1346 sequence in the qKW1N promoter, resulting in higher expression levels compared to qKW1D, thus contributing to the variation in kernel weight and size between popcorn and dent corn kernels. Linkage disequilibrium analysis of the 2.8 kb promoter region of ZmKW1 in a dataset comprising 111 maize association panels identified two distinct haplotypes. Our results provide insight into the mechanisms underlying kernel development and yield regulation in dent corn and popcorn, with a specific focus on the role of the ubiquitination system.


Plant Proteins , Quantitative Trait Loci , Zea mays , Zea mays/genetics , Zea mays/growth & development , Zea mays/metabolism , Quantitative Trait Loci/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Genetic Variation , Endosperm/genetics , Endosperm/metabolism , Endosperm/growth & development , Seeds/genetics , Seeds/growth & development , Seeds/metabolism , Gene Expression Regulation, Plant
19.
Plant Cell ; 36(5): 1892-1912, 2024 May 01.
Article En | MEDLINE | ID: mdl-38262703

In cereal grains, starch is synthesized by the concerted actions of multiple enzymes on the surface of starch granules within the amyloplast. However, little is known about how starch-synthesizing enzymes access starch granules, especially for amylopectin biosynthesis. Here, we show that the rice (Oryza sativa) floury endosperm9 (flo9) mutant is defective in amylopectin biosynthesis, leading to grains exhibiting a floury endosperm with a hollow core. Molecular cloning revealed that FLO9 encodes a plant-specific protein homologous to Arabidopsis (Arabidopsis thaliana) LIKE EARLY STARVATION1 (LESV). Unlike Arabidopsis LESV, which is involved in starch metabolism in leaves, OsLESV is required for starch granule initiation in the endosperm. OsLESV can directly bind to starch by its C-terminal tryptophan (Trp)-rich region. Cellular and biochemical evidence suggests that OsLESV interacts with the starch-binding protein FLO6, and loss-of-function mutations of either gene impair ISOAMYLASE1 (ISA1) targeting to starch granules. Genetically, OsLESV acts synergistically with FLO6 to regulate starch biosynthesis and endosperm development. Together, our results identify OsLESV-FLO6 as a non-enzymatic molecular module responsible for ISA1 localization on starch granules, and present a target gene for use in biotechnology to control starch content and composition in rice endosperm.


Endosperm , Gene Expression Regulation, Plant , Oryza , Plant Proteins , Starch , Oryza/genetics , Oryza/metabolism , Oryza/growth & development , Endosperm/metabolism , Endosperm/genetics , Starch/metabolism , Starch/biosynthesis , Plant Proteins/metabolism , Plant Proteins/genetics , Amylopectin/metabolism , Mutation , Plants, Genetically Modified
20.
Plant Physiol ; 194(4): 2434-2448, 2024 Mar 29.
Article En | MEDLINE | ID: mdl-38214208

Cereal endosperm represents the most important source of the world's food. Nevertheless, the molecular mechanisms behind sugar import into rice (Oryza sativa) endosperm and their relationship with auxin signaling are poorly understood. Here, we report that auxin transport inhibitor response 1 (TIR1) plays an essential role in rice grain yield and quality via modulating sugar transport into endosperm. The fluctuations of OsTIR1 transcripts parallel to the early stage of grain expansion among those of the 5 TIR1/AFB (auxin-signaling F-box) auxin co-receptor proteins. OsTIR1 is abundantly expressed in ovular vascular trace, nucellar projection, nucellar epidermis, aleurone layer cells, and endosperm, providing a potential path for sugar into the endosperm. Compared to wild-type (WT) plants, starch accumulation is repressed by mutation of OsTIR1 and improved by overexpression of the gene, ultimately leading to reduced grain yield and quality in tir1 mutants but improvement in overexpression lines. Of the rice AUXIN RESPONSE FACTOR (ARF) genes, only the OsARF25 transcript is repressed in tir1 mutants and enhanced by overexpression of OsTIR1; its highest transcript is recorded at 10 d after fertilization, consistent with OsTIR1 expression. Also, OsARF25 can bind the promoter of the sugar transporter OsSWEET11 (SWEET, sugars will eventually be exported transporter) in vivo and in vitro. arf25 and arf25/sweet11 mutants exhibit reduced starch content and seed size (relative to the WTs), similar to tir1 mutants. Our data reveal that OsTIR1 mediates sugar import into endosperm via the auxin signaling component OsARF25 interacting with sugar transporter OsSWEET11. The results of this study are of great significance to further clarify the regulatory mechanism of auxin signaling on grain development in rice.


Oryza , Oryza/metabolism , Plant Proteins/metabolism , Seeds/genetics , Endosperm/metabolism , Edible Grain/metabolism , Starch/metabolism , Indoleacetic Acids/metabolism , Sugars/metabolism , Gene Expression Regulation, Plant
...