Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 13.511
1.
Signal Transduct Target Ther ; 9(1): 125, 2024 May 11.
Article En | MEDLINE | ID: mdl-38734691

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a 'highly transmissible respiratory pathogen, leading to severe multi-organ damage. However, knowledge regarding SARS-CoV-2-induced cellular alterations is limited. In this study, we report that SARS-CoV-2 aberrantly elevates mitochondrial bioenergetics and activates the EGFR-mediated cell survival signal cascade during the early stage of viral infection. SARS-CoV-2 causes an increase in mitochondrial transmembrane potential via the SARS-CoV-2 RNA-nucleocapsid cluster, thereby abnormally promoting mitochondrial elongation and the OXPHOS process, followed by enhancing ATP production. Furthermore, SARS-CoV-2 activates the EGFR signal cascade and subsequently induces mitochondrial EGFR trafficking, contributing to abnormal OXPHOS process and viral propagation. Approved EGFR inhibitors remarkably reduce SARS-CoV-2 propagation, among which vandetanib exhibits the highest antiviral efficacy. Treatment of SARS-CoV-2-infected cells with vandetanib decreases SARS-CoV-2-induced EGFR trafficking to the mitochondria and restores SARS-CoV-2-induced aberrant elevation in OXPHOS process and ATP generation, thereby resulting in the reduction of SARS-CoV-2 propagation. Furthermore, oral administration of vandetanib to SARS-CoV-2-infected hACE2 transgenic mice reduces SARS-CoV-2 propagation in lung tissue and mitigates SARS-CoV-2-induced lung inflammation. Vandetanib also exhibits potent antiviral activity against various SARS-CoV-2 variants of concern, including alpha, beta, delta and omicron, in in vitro cell culture experiments. Taken together, our findings provide novel insight into SARS-CoV-2-induced alterations in mitochondrial dynamics and EGFR trafficking during the early stage of viral infection and their roles in robust SARS-CoV-2 propagation, suggesting that EGFR is an attractive host target for combating COVID-19.


COVID-19 , ErbB Receptors , Mitochondria , SARS-CoV-2 , Virus Replication , SARS-CoV-2/drug effects , Mitochondria/metabolism , Mitochondria/genetics , Mitochondria/drug effects , Humans , Animals , Mice , COVID-19/virology , COVID-19/metabolism , COVID-19/genetics , ErbB Receptors/metabolism , ErbB Receptors/genetics , Virus Replication/drug effects , Energy Metabolism/drug effects , Energy Metabolism/genetics , Vero Cells , Chlorocebus aethiops , Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Membrane Potential, Mitochondrial/drug effects , Oxidative Phosphorylation/drug effects , Signal Transduction/drug effects
2.
Int J Mol Sci ; 25(9)2024 May 03.
Article En | MEDLINE | ID: mdl-38732234

Metals are dispersed in natural environments, particularly in the aquatic environment, and accumulate, causing adverse effects on aquatic life. Moreover, chronic polymetallic water pollution is a common problem, and the biological effects of exposure to complex mixtures of metals are the most difficult to interpret. In this review, metal toxicity is examined with a focus on its impact on energy metabolism. Mechanisms regulating adenosine triphosphate (ATP) production and reactive oxygen species (ROS) emission are considered in their dual roles in the development of cytotoxicity and cytoprotection, and mitochondria may become target organelles of metal toxicity when the transmembrane potential is reduced below its phosphorylation level. One of the main consequences of metal toxicity is additional energy costs, and the metabolic load can lead to the disruption of oxidative metabolism and enhanced anaerobiosis.


Energy Metabolism , Fishes , Metals , Reactive Oxygen Species , Water Pollutants, Chemical , Animals , Energy Metabolism/drug effects , Fishes/metabolism , Metals/toxicity , Metals/metabolism , Reactive Oxygen Species/metabolism , Water Pollutants, Chemical/toxicity , Adenosine Triphosphate/metabolism , Mitochondria/metabolism , Mitochondria/drug effects , Oxidative Stress/drug effects
3.
Int J Mol Sci ; 25(9)2024 May 06.
Article En | MEDLINE | ID: mdl-38732272

Lung branching morphogenesis relies on intricate epithelial-mesenchymal interactions and signaling networks. Still, the interplay between signaling and energy metabolism in shaping embryonic lung development remains unexplored. Retinoic acid (RA) signaling influences lung proximal-distal patterning and branching morphogenesis, but its role as a metabolic modulator is unknown. Hence, this study investigates how RA signaling affects the metabolic profile of lung branching. We performed ex vivo lung explant culture of embryonic chicken lungs treated with DMSO, 1 µM RA, or 10 µM BMS493. Extracellular metabolite consumption/production was evaluated by using 1H-NMR spectroscopy. Mitochondrial respiration and biogenesis were also analyzed. Proliferation was assessed using an EdU-based assay. The expression of crucial metabolic/signaling components was examined through Western blot, qPCR, and in situ hybridization. RA signaling stimulation redirects glucose towards pyruvate and succinate production rather than to alanine or lactate. Inhibition of RA signaling reduces lung branching, resulting in a cystic-like phenotype while promoting mitochondrial function. Here, RA signaling emerges as a regulator of tissue proliferation and lactate dehydrogenase expression. Furthermore, RA governs fatty acid metabolism through an AMPK-dependent mechanism. These findings underscore RA's pivotal role in shaping lung metabolism during branching morphogenesis, contributing to our understanding of lung development and cystic-related lung disorders.


Energy Metabolism , Lung , Morphogenesis , Signal Transduction , Tretinoin , Animals , Tretinoin/metabolism , Tretinoin/pharmacology , Lung/metabolism , Lung/drug effects , Lung/embryology , Energy Metabolism/drug effects , Morphogenesis/drug effects , Signal Transduction/drug effects , Chick Embryo , Cell Proliferation/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Chickens
4.
Nutrients ; 16(9)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38732622

Acute lung injury, a fatal condition characterized by a high mortality rate, necessitates urgent exploration of treatment modalities. Utilizing UHPLS-Q-Exactive Orbitrap/MS, our study scrutinized the active constituents present in Rosa roxburghii-fermented juice (RRFJ) while also assessing its protective efficacy against LPS-induced ALI in mice through lung histopathological analysis, cytokine profiling, and oxidative stress assessment. The protective mechanism of RRFJ against ALI in mice was elucidated utilizing metabolomics, network pharmacology, and molecular docking methodologies. Our experimental findings demonstrate that RRFJ markedly ameliorates pathological injuries in ALI-afflicted mice, mitigates systemic inflammation and oxidative stress, enhances energy metabolism, and restores dysregulated amino acid and arachidonic acid metabolic pathways. This study indicates that RRFJ can serve as a functional food for adjuvant treatment of ALI.


Acute Lung Injury , Fruit and Vegetable Juices , Lipopolysaccharides , Metabolomics , Oxidative Stress , Rosa , Animals , Acute Lung Injury/drug therapy , Acute Lung Injury/chemically induced , Acute Lung Injury/metabolism , Acute Lung Injury/prevention & control , Rosa/chemistry , Metabolomics/methods , Mice , Male , Oxidative Stress/drug effects , Network Pharmacology , Fermentation , Lung/drug effects , Lung/pathology , Lung/metabolism , Disease Models, Animal , Molecular Docking Simulation , Plant Extracts/pharmacology , Cytokines/metabolism , Energy Metabolism/drug effects
5.
Sci Rep ; 14(1): 10616, 2024 05 09.
Article En | MEDLINE | ID: mdl-38720012

Oral cancer stands as a prevalent maligancy worldwide; however, its therapeutic potential is limited by undesired effects and complications. As a medicinal edible fungus, Chaga mushroom (Inonotus obliquus) exhibits anticancer effects across diverse cancers. Yet, the precise mechanisms underlying its efficacy remain unclear. We explored the detailed mechanisms underlying the anticancer action of Chaga mushroom extract in oral cancer cells (HSC-4). Following treatment with Chaga mushroom extracts, we analyzed cell viability, proliferation capacity, glycolysis, mitochondrial respiration, and apoptosis. Our findings revealed that the extract reduced cell viability and proliferation of HSC-4 cells while arresting their cell cycle via suppression of STAT3 activity. Regarding energy metabolism, Chaga mushroom extract inhibited glycolysis and mitochondrial membrane potential in HSC-4 cells, thereby triggering autophagy-mediated apoptotic cell death through activation of the p38 MAPK and NF-κB signaling pathways. Our results indicate that Chaga mushroom extract impedes oral cancer cell progression, by inhibiting cell cycle and proliferation, suppressing cancer cell energy metabolism, and promoting autophagy-mediated apoptotic cell death. These findings suggest that this extract is a promising supplementary medicine for the treatment of patients with oral cancer.


Apoptosis , Autophagy , Cell Proliferation , Energy Metabolism , Mouth Neoplasms , Humans , Mouth Neoplasms/drug therapy , Mouth Neoplasms/metabolism , Mouth Neoplasms/pathology , Energy Metabolism/drug effects , Cell Proliferation/drug effects , Cell Line, Tumor , Apoptosis/drug effects , Autophagy/drug effects , Inonotus/chemistry , Cell Survival/drug effects , Membrane Potential, Mitochondrial/drug effects , Glycolysis/drug effects , Signal Transduction/drug effects , NF-kappa B/metabolism , STAT3 Transcription Factor/metabolism , Agaricales/chemistry , Mitochondria/drug effects , Mitochondria/metabolism , Cell Cycle/drug effects
6.
Front Immunol ; 15: 1394925, 2024.
Article En | MEDLINE | ID: mdl-38690282

Sepsis is a life-threatening organ dysfunction caused by the host's dysfunctional response to infection. Abnormal activation of the immune system and disturbance of energy metabolism play a key role in the development of sepsis. In recent years, the Sirtuins (SIRTs) family has been found to play an important role in the pathogenesis of sepsis. SIRTs, as a class of histone deacetylases (HDACs), are widely involved in cellular inflammation regulation, energy metabolism and oxidative stress. The effects of SIRTs on immune cells are mainly reflected in the regulation of inflammatory pathways. This regulation helps balance the inflammatory response and may lessen cell damage and organ dysfunction in sepsis. In terms of energy metabolism, SIRTs can play a role in immunophenotypic transformation by regulating cell metabolism, improve mitochondrial function, increase energy production, and maintain cell energy balance. SIRTs also regulate the production of reactive oxygen species (ROS), protecting cells from oxidative stress damage by activating antioxidant defense pathways and maintaining a balance between oxidants and reducing agents. Current studies have shown that several potential drugs, such as Resveratrol and melatonin, can enhance the activity of SIRT. It can help to reduce inflammatory response, improve energy metabolism and reduce oxidative stress, showing potential clinical application prospects for the treatment of sepsis. This review focuses on the regulation of SIRT on inflammatory response, energy metabolism and oxidative stress of immune cells, as well as its important influence on multiple organ dysfunction in sepsis, and discusses and summarizes the effects of related drugs and compounds on reducing multiple organ damage in sepsis through the pathway involving SIRTs. SIRTs may become a new target for the treatment of sepsis and its resulting organ dysfunction, providing new ideas and possibilities for the treatment of this life-threatening disease.


Energy Metabolism , Oxidative Stress , Sepsis , Sirtuins , Humans , Sepsis/drug therapy , Sepsis/immunology , Sepsis/metabolism , Animals , Sirtuins/metabolism , Energy Metabolism/drug effects , Reactive Oxygen Species/metabolism , Inflammation/drug therapy , Inflammation/immunology
7.
Front Immunol ; 15: 1375461, 2024.
Article En | MEDLINE | ID: mdl-38711514

Excess dietary fructose consumption has been long proposed as a culprit for the world-wide increase of incidence in metabolic disorders and cancer within the past decades. Understanding that cancer cells can gradually accumulate metabolic mutations in the tumor microenvironment, where glucose is often depleted, this raises the possibility that fructose can be utilized by cancer cells as an alternative source of carbon. Indeed, recent research has increasingly identified various mechanisms that show how cancer cells can metabolize fructose to support their proliferating and migrating needs. In light of this growing interest, this review will summarize the recent advances in understanding how fructose can metabolically reprogram different types of cancer cells, as well as how these metabolic adaptations can positively support cancer cells development and malignancy.


Fructose , Neoplasms , Tumor Microenvironment , Humans , Fructose/metabolism , Fructose/adverse effects , Neoplasms/metabolism , Neoplasms/etiology , Animals , Cellular Reprogramming/drug effects , Energy Metabolism/drug effects , Metabolic Reprogramming
8.
Neuromolecular Med ; 26(1): 18, 2024 May 01.
Article En | MEDLINE | ID: mdl-38691185

Seipin is a key regulator of lipid metabolism, the deficiency of which leads to severe lipodystrophy. Hypothalamus is the pivotal center of brain that modulates appetite and energy homeostasis, where Seipin is abundantly expressed. Whether and how Seipin deficiency leads to systemic metabolic disorders via hypothalamus-involved energy metabolism dysregulation remains to be elucidated. In the present study, we demonstrated that Seipin-deficiency induced hypothalamic inflammation, reduction of anorexigenic pro-opiomelanocortin (POMC), and elevation of orexigenic agonist-related peptide (AgRP). Importantly, administration of rosiglitazone, a thiazolidinedione antidiabetic agent, rescued POMC and AgRP expression, suppressed hypothalamic inflammation, and restored energy homeostasis in Seipin knockout mice. Our findings offer crucial insights into the mechanism of Seipin deficiency-associated energy imbalance and indicates that rosiglitazone could serve as potential intervening agent towards metabolic disorders linked to Seipin.


Agouti-Related Protein , Energy Metabolism , GTP-Binding Protein gamma Subunits , Homeostasis , Hypothalamus , Mice, Knockout , Pro-Opiomelanocortin , Rosiglitazone , Animals , Mice , Hypothalamus/metabolism , Energy Metabolism/drug effects , Pro-Opiomelanocortin/genetics , Pro-Opiomelanocortin/biosynthesis , Agouti-Related Protein/genetics , GTP-Binding Protein gamma Subunits/genetics , Rosiglitazone/pharmacology , Male , Neuroinflammatory Diseases/etiology , Mice, Inbred C57BL , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Neuropeptides/genetics , Neuropeptides/deficiency , Gene Expression Regulation/drug effects
9.
J Pharm Biomed Anal ; 245: 116196, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38723559

Osteoarthritis (OA) is a degenerative joint disease primarily affecting the cartilage. The therapeutic potential of the Dipsacus asper-Achyranthes bidentate herb pair for OA has been acknowledged, yet its precise mechanism remains elusive. In this study, we conducted a comprehensive analysis of metabolomic changes and therapeutic outcomes in osteoarthritic rats, employing a gas chromatography-mass spectrometry-based metabolomics approach in conjunction with histopathological and biochemical assessments. The rats were divided into six groups: control, model, positive control, Dipsacus asper treated, Achyranthes bidentata treated, and herb pair treated groups. Compared to the model group, significant reductions in levels of tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), interleukin-6 (IL-6), and iNOS were observed in the treated groups. Multivariate statistical analyses were employed to investigate metabolite profile changes in serum samples and identify potential biomarkers, revealing 45 differential biomarkers, with eighteen validated using standard substances. These analytes exhibited excellent linearity across a wide concentration range (R2>0.9990), with intra- and inter-day precision RSD values below 4.69% and 4.83%, respectively. Recoveries of the eighteen analytes ranged from 93.97% to 106.59%, with RSD values under 5.72%, underscoring the method's reliability. Treatment with the herbal pair effectively restored levels of unsaturated fatty acids such as linoleic acid and arachidonic acid, along with glucogenic amino acids. Additionally, levels of phosphoric acid and citric acid were reversed, indicating restoration of energy metabolism. Collectively, these findings highlight the utility of metabolomic analysis in evaluating therapeutic efficacy and elucidating the underlying molecular mechanisms of herb pairs in OA treatment.


Achyranthes , Biomarkers , Energy Metabolism , Fatty Acids, Unsaturated , Gas Chromatography-Mass Spectrometry , Metabolomics , Osteoarthritis , Rats, Sprague-Dawley , Animals , Metabolomics/methods , Osteoarthritis/drug therapy , Osteoarthritis/metabolism , Achyranthes/chemistry , Rats , Energy Metabolism/drug effects , Male , Gas Chromatography-Mass Spectrometry/methods , Fatty Acids, Unsaturated/metabolism , Fatty Acids, Unsaturated/blood , Biomarkers/blood , Dipsacaceae/chemistry , Disease Models, Animal , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Plant Extracts/pharmacology , Plant Extracts/therapeutic use
10.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167227, 2024 Jun.
Article En | MEDLINE | ID: mdl-38733774

Olanzapine (OLA) is a highly obesogenic second-generation antipsychotic (SGA). Recently we demonstrated that, contrarily to OLA oral treatment, intraperitoneal (i.p.) administration resulted in weight loss and absence of hepatic steatosis in wild-type (WT) and protein tyrosine phosphatase 1B (PTP1B)-deficient (KO) male mice. This protection relied on two central-peripheral axes connecting hypothalamic AMPK with brown/inguinal white adipose tissue (BAT/iWAT) uncoupling protein-1 (UCP-1) and hypothalamic JNK with hepatic fatty acid synthase (FAS). Herein, we addressed OLA i.p. treatment effects in WT and PTP1B-KO female mice. Contrarily to our previous results in WT females receiving OLA orally, the i.p. treatment did not induce weight gain or hyperphagia. Molecularly, in females OLA failed to diminish hypothalamic phospho-AMPK or elevate BAT UCP-1 and energy expenditure (EE) despite the preservation of iWAT browning. Conversely, OLA i.p. treatment in ovariectomized mice reduced hypothalamic phospho-AMPK, increased BAT/iWAT UCP-1 and EE, and induced weight loss as occurred in males. Pretreatment of hypothalamic neurons with 17ß-estradiol (E2) abolished OLA effects on AMPK. Moreover, neither hypothalamic JNK activation nor hepatic FAS upregulation were found in WT and PTP1B-KO females receiving OLA via i.p. Importantly, this axis was reestablished upon ovariectomy. In this line, E2 prevented OLA-induced phospho-JNK in hypothalamic neurons. These results support the role of estrogens in sex-related dimorphism in OLA treatment. This study evidenced the benefit of OLA i.p. administration in preventing its obesogenic effects in female mice that could offer clinical value.


Adipose Tissue, Brown , Estrogens , Hypothalamus , Liver , Mice, Knockout , Olanzapine , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Uncoupling Protein 1 , Animals , Female , Adipose Tissue, Brown/metabolism , Adipose Tissue, Brown/drug effects , Hypothalamus/metabolism , Hypothalamus/drug effects , Mice , Liver/metabolism , Liver/drug effects , Estrogens/metabolism , Estrogens/pharmacology , Olanzapine/pharmacology , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 1/genetics , Uncoupling Protein 1/metabolism , Uncoupling Protein 1/genetics , Male , Energy Metabolism/drug effects , Injections, Intraperitoneal , Adipose Tissue, White/metabolism , Adipose Tissue, White/drug effects , Mice, Inbred C57BL , Estradiol/pharmacology , Ovariectomy
11.
Physiol Rep ; 12(10): e16038, 2024 May.
Article En | MEDLINE | ID: mdl-38757249

This study investigated the effects of EPO on hemoglobin (Hgb) and hematocrit (Hct), time trial (TT) performance, substrate oxidation, and skeletal muscle phenotype throughout 28 days of strenuous exercise. Eight males completed this longitudinal controlled exercise and feeding study using EPO (50 IU/kg body mass) 3×/week for 28 days. Hgb, Hct, and TT performance were assessed PRE and on Days 7, 14, 21, and 27 of EPO. Rested/fasted muscle obtained PRE and POST EPO were analyzed for gene expression, protein signaling, fiber type, and capillarization. Substrate oxidation and glucose turnover were assessed during 90-min of treadmill load carriage (LC; 30% body mass; 55 ± 5% V̇O2peak) exercise using indirect calorimetry, and 6-6-[2H2]-glucose PRE and POST. Hgb and Hct increased, and TT performance improved on Days 21 and 27 compared to PRE (p < 0.05). Energy expenditure, fat oxidation, and metabolic clearance rate during LC increased (p < 0.05) from PRE to POST. Myofiber type, protein markers of mitochondrial biogenesis, and capillarization were unchanged PRE to POST. Transcriptional regulation of mitochondrial activity and fat metabolism increased from PRE to POST (p < 0.05). These data indicate EPO administration during 28 days of strenuous exercise can enhance aerobic performance through improved oxygen carrying capacity, whole-body and skeletal muscle fat metabolism.


Erythropoietin , Exercise , Muscle, Skeletal , Oxidation-Reduction , Male , Humans , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Adult , Erythropoietin/metabolism , Erythropoietin/pharmacology , Oxidation-Reduction/drug effects , Exercise/physiology , Hemoglobins/metabolism , Hematocrit , Energy Metabolism/drug effects , Young Adult , Lipid Metabolism/drug effects
12.
Environ Int ; 187: 108710, 2024 May.
Article En | MEDLINE | ID: mdl-38701644

Exposure to persistent organic pollutants (POPs), such as dichlorodiphenyltrichloroethane (DDT) and polychlorinated biphenyls (PCBs), has historically been linked to population collapses in wildlife. Despite international regulations, these legacy chemicals are still currently detected in women of reproductive age, and their levels correlate with reduced ovarian reserve, longer time-to-pregnancy, and higher risk of infertility. However, the specific modes of action underlying these associations remain unclear. Here, we examined the effects of five commonly occurring POPs - hexachlorobenzene (HCB), p,p'-dichlorodiphenyldichloroethylene (DDE), 2,3,3',4,4',5-hexachlorobiphenyl (PCB156), 2,2',3,4,4',5,5'-heptachlorobiphenyl (PCB180), perfluorooctane sulfonate (PFOS) - and their mixture on human ovaries in vitro. We exposed human ovarian cancer cell lines COV434, KGN, and PA1 as well as primary ovarian cells for 24 h, and ovarian tissue containing unilaminar follicles for 6 days. RNA-sequencing of samples exposed to concentrations covering epidemiologically relevant levels revealed significant gene expression changes related to central energy metabolism in the exposed cells, indicating glycolysis, oxidative phosphorylation, fatty acid metabolism, and reactive oxygen species as potential shared targets of POP exposures in ovarian cells. Alpha-enolase (ENO1), lactate dehydrogenase A (LDHA), cytochrome C oxidase subunit 4I1 (COX4I1), ATP synthase F1 subunit alpha (ATP5A), and glutathione peroxidase 4 (GPX4) were validated as targets through qPCR in additional cell culture experiments in KGN. In ovarian tissue cultures, we observed significant effects of exposure on follicle growth and atresia as well as protein expression. All POP exposures, except PCB180, decreased unilaminar follicle proportion and increased follicle atresia. Immunostaining confirmed altered expression of LDHA, ATP5A, and GPX4 in the exposed tissues. Moreover, POP exposures modified ATP production in KGN and tissue culture. In conclusion, our results demonstrate the disruption of cellular energy metabolism as a novel mode of action underlying POP-mediated interference of follicle growth in human ovaries.


Energy Metabolism , Fluorocarbons , Ovary , Persistent Organic Pollutants , Humans , Female , Ovary/drug effects , Ovary/metabolism , Energy Metabolism/drug effects , Fluorocarbons/toxicity , Homeostasis/drug effects , Cell Line, Tumor , Polychlorinated Biphenyls/toxicity , Dichlorodiphenyl Dichloroethylene/toxicity , Alkanesulfonic Acids/toxicity , Hexachlorobenzene/toxicity
13.
J Transl Med ; 22(1): 441, 2024 May 10.
Article En | MEDLINE | ID: mdl-38730481

Microtubule targeting agents (MTAs) are commonly prescribed to treat cancers and predominantly kill cancer cells in mitosis. Significantly, some MTA-treated cancer cells escape death in mitosis, exit mitosis and become malignant polyploid giant cancer cells (PGCC). Considering the low number of cancer cells undergoing mitosis in tumor tissues, killing them in interphase may represent a favored antitumor approach. We discovered that ST-401, a mild inhibitor of microtubule (MT) assembly, preferentially kills cancer cells in interphase as opposed to mitosis, a cell death mechanism that avoids the development of PGCC. Single cell RNA sequencing identified mRNA transcripts regulated by ST-401, including mRNAs involved in ribosome and mitochondrial functions. Accordingly, ST-401 induces a transient integrated stress response, reduces energy metabolism, and promotes mitochondria fission. This cell response may underly death in interphase and avoid the development of PGCC. Considering that ST-401 is a brain-penetrant MTA, we validated these results in glioblastoma cell lines and found that ST-401 also reduces energy metabolism and promotes mitochondria fission in GBM sensitive lines. Thus, brain-penetrant mild inhibitors of MT assembly, such as ST-401, that induce death in interphase through a previously unanticipated antitumor mechanism represent a potentially transformative new class of therapeutics for the treatment of GBM.


Cell Death , Giant Cells , Interphase , Microtubules , Polyploidy , Humans , Interphase/drug effects , Microtubules/metabolism , Microtubules/drug effects , Cell Line, Tumor , Cell Death/drug effects , Giant Cells/drug effects , Giant Cells/metabolism , Giant Cells/pathology , Mitochondrial Dynamics/drug effects , Energy Metabolism/drug effects , Glioblastoma/pathology , Glioblastoma/drug therapy , Glioblastoma/metabolism , Glioblastoma/genetics , Neoplasms/pathology , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/genetics , Mitochondria/metabolism , Mitochondria/drug effects , Gene Expression Regulation, Neoplastic/drug effects
14.
J Pineal Res ; 76(4): e12961, 2024 May.
Article En | MEDLINE | ID: mdl-38751172

Melatonin is a neurohormone synthesized from dietary tryptophan in various organs, including the pineal gland and the retina. In the pineal gland, melatonin is produced at night under the control of the master clock located in the suprachiasmatic nuclei of the hypothalamus. Under physiological conditions, the pineal gland seems to constitute the unique source of circulating melatonin. Melatonin is involved in cellular metabolism in different ways. First, the circadian rhythm of melatonin helps the maintenance of proper internal timing, the disruption of which has deleterious effects on metabolic health. Second, melatonin modulates lipid metabolism, notably through diminished lipogenesis, and it has an antidiabetic effect, at least in several animal models. Third, pharmacological doses of melatonin have antioxidative, free radical-scavenging, and anti-inflammatory properties in various in vitro cellular models. As a result, melatonin can be considered both a circadian time-giver and a homeostatic monitor of cellular metabolism, via multiple mechanisms of action that are not all fully characterized. Aging, circadian disruption, and artificial light at night are conditions combining increased metabolic risks with diminished circulating levels of melatonin. Accordingly, melatonin supplementation could be of potential therapeutic value in the treatment or prevention of metabolic disorders. More clinical trials in controlled conditions are needed, notably taking greater account of circadian rhythmicity.


Circadian Rhythm , Homeostasis , Melatonin , Melatonin/metabolism , Animals , Humans , Circadian Rhythm/physiology , Homeostasis/physiology , Energy Metabolism/drug effects , Energy Metabolism/physiology , Pineal Gland/metabolism
15.
Discov Med ; 36(183): 678-689, 2024 Apr.
Article En | MEDLINE | ID: mdl-38665017

BACKGROUND: An imbalance in energy metabolism serves as a causal factor for type 2 diabetes (T2D). Although metformin has been known to ameliorate the overall energy metabolism imbalance, but the direct correlation between metformin and central carbon metabolism (CCM) has not been thoroughly investigated. In this study, we employed a high-performance ion chromatography-tandem mass spectrometry (HPIC-MS/MS) technique to examine the alterations and significance of CCM both before and after metformin treatment for T2D. METHODS: We recruited 29 participants, comprising 10 individuals recently diagnosed with T2D (T2D group). Among these, 10 patients underwent a 4-6-week treatment with metformin (MET group). Additionally, we included 9 healthy subjects (CON group). Employing HPIC-MS/MS, we quantitatively analyzed 56 metabolites across 18 biologically relevant metabolic pathways associated with CCM. Univariate and multivariate statistical analyses were utilized to identify differential metabolites. Subsequently, correlation analyses and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were conducted on the identified differential metabolites. RESULTS: We identified seven distinct metabolites in individuals with T2D (p < 0.05). Notably, cyclic 3',5'-Adenosine MonoPhosphate (AMP), Glucose 6-phosphate, L-lactic acid, Maleic acid, and Malic acid exhibited a reversal to normal levels following metformin treatment. Furthermore, Malic acid demonstrated a positive correlation with L-lactic acid (r = 0.94, p < 0.05), as did succinic acid with malic acid (r = 0.81, p < 0.05), L-lactic acid with succinic acid (r = 0.78, p < 0.05), and L-lactic acid with glucose-6-phosphate (r = 0.72, p < 0.05). These metabolites were notably enriched in pyruvate metabolism (p = 0.005), tricarboxylic acid cycle (TCA) (p = 0.007), propanoate metabolism (p = 0.007), and glycolysis or gluconeogenesis (p = 0.009), respectively. CONCLUSIONS: We employed HPIC-MS/MS to uncover alterations in CCM among individuals recently diagnosed with T2D before and after metformin treatment. The findings suggest that metformin may ameliorate the energy metabolism imbalance in T2D by reducing intermediates within the CCM pathway.


Carbon , Diabetes Mellitus, Type 2 , Metformin , Tandem Mass Spectrometry , Humans , Metformin/therapeutic use , Metformin/pharmacology , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Male , Middle Aged , Female , Carbon/metabolism , Tandem Mass Spectrometry/methods , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/pharmacology , Aged , Adult , Metabolic Networks and Pathways/drug effects , Energy Metabolism/drug effects
16.
Int J Mol Sci ; 25(8)2024 Apr 13.
Article En | MEDLINE | ID: mdl-38673906

Air pollution poses a significant global health risk, with fine particulate matter (PM2.5) such as diesel exhaust particles (DEPs) being of particular concern due to their potential to drive systemic toxicities through bloodstream infiltration. The association between PM2.5 exposure and an increased prevalence of metabolic disorders, including obesity, metabolic syndrome, and type 2 diabetes mellitus (T2DM), is evident against a backdrop of rising global obesity and poor metabolic health. This paper examines the role of adipose tissue in mediating the effects of PM2.5 on metabolic health. Adipose tissue, beyond its energy storage function, is responsive to inhaled noxious stimuli, thus disrupting metabolic homeostasis and responding to particulate exposure with pro-inflammatory cytokine release, contributing to systemic inflammation. The purpose of this study was to characterize the metabolic response of adipose tissue in mice exposed to either DEPs or room air (RA), exploring both the adipokine profile and mitochondrial bioenergetics. In addition to a slight change in fat mass and a robust shift in adipocyte hypertrophy in the DEP-exposed animals, we found significant changes in adipose mitochondrial bioenergetics. Furthermore, the DEP-exposed animals had a significantly higher expression of adipose inflammatory markers compared with the adipose from RA-exposed mice. Despite the nearly exclusive focus on dietary factors in an effort to better understand metabolic health, these results highlight the novel role of environmental factors that may contribute to the growing global burden of poor metabolic health.


Adipose Tissue , Inflammation , Mitochondria , Particulate Matter , Vehicle Emissions , Animals , Vehicle Emissions/toxicity , Mitochondria/metabolism , Mitochondria/drug effects , Mice , Particulate Matter/adverse effects , Particulate Matter/toxicity , Adipose Tissue/metabolism , Adipose Tissue/drug effects , Inflammation/metabolism , Inflammation/chemically induced , Inflammation/pathology , Male , Mice, Inbred C57BL , Energy Metabolism/drug effects , Adipokines/metabolism , Air Pollutants/adverse effects , Air Pollutants/toxicity , Adipocytes/metabolism , Adipocytes/drug effects
17.
Int J Mol Sci ; 25(8)2024 Apr 19.
Article En | MEDLINE | ID: mdl-38674060

Mandarin peel, a main by-product from the processing of citrus juice, has been highlighted for its various bioactivities and functional ingredients. Our previous study proved the inhibitory effects of Celluclast extract from mandarin peel (MPCE) on lipid accumulation and differentiation in 3T3-L1 adipocytes. Therefore, the current study aimed to evaluate the anti-obesity effect of MPCE in high-fat diet (HFD)-induced obese mice. The high-performance liquid chromatography (HPLC) analysis exhibited that narirutin and hesperidin are the main active components of MPCE. Our current results showed that MPCE supplementation decreased adiposity by reducing body and organ weights in HFD-induced obese mice. MPCE also reduced triglyceride (TG), alanine transaminase (ALT), aspartate transaminase (AST), and leptin contents in the serum of HFD-fed mice. Moreover, MPCE significantly inhibited hepatic lipid accumulation by regulating the expression levels of proteins associated with lipid metabolism, including sterol regulatory element-binding protein (SREBP1c), fatty acid synthase (FAS), and acetyl-CoA carboxylase (ACC). Furthermore, MPCE administration significantly inhibited both adipogenesis and lipogenesis, with modulation of energy metabolism by activating 5' adenosine monophosphate-activated protein kinase (AMPK) and lipolytic enzymes such as hormone-sensitive lipase (HSL) in the white adipose tissue (WAT). Altogether, our findings indicate that MPCE improves HFD-induced obesity and can be used as a curative agent in pharmaceuticals and nutraceuticals to alleviate obesity and related disorders.


Adipogenesis , Citrus , Diet, High-Fat , Disaccharides , Energy Metabolism , Flavanones , Mice, Inbred C57BL , Obesity , Plant Extracts , Animals , Diet, High-Fat/adverse effects , Obesity/metabolism , Obesity/drug therapy , Obesity/etiology , Citrus/chemistry , Mice , Energy Metabolism/drug effects , Plant Extracts/pharmacology , Male , Adipogenesis/drug effects , Lipid Metabolism/drug effects , 3T3-L1 Cells , Anti-Obesity Agents/pharmacology , Liver/metabolism , Liver/drug effects , Lipogenesis/drug effects , Triglycerides/metabolism , Triglycerides/blood
18.
Food Chem Toxicol ; 188: 114666, 2024 Jun.
Article En | MEDLINE | ID: mdl-38621509

This work was designed to investigate the neurotoxic effects of the typical plasticizer dibutyl phthalate (DBP) using zebrafish larvae as a model. The results of exhibited that zebrafish larvae exposed to DBP at concentrations of 5 µg/L and 10 µg/L exhibited brain malformations (24 h) and behavioral abnormalities (72 h). After 72 h of exposure to DBP, microglia in the brain were over-activated, reactive oxygen species (ROS) formation was increased, and apoptosis was observed. Meanwhile, it was found that neurons exhibited impaired mitochondrial structure, absent mitochondrial membrane potential and up-regulated autophagy. Further comprehensive biochemical analyses and RNA-Seq, validated by RT-qPCR, glutamate metabolism and PPAR signaling pathway were significantly enriched in the DBP stress group, this may be the main reason for the disruption of glycolysis/gluconeogenesis processes and the reduction of energy substrates for the astrocyte-neuron lactate shuttle (ANLS). In addition, the DBP-exposed group showed aberrant activation of endoplasmic reticulum (ER) stress signaling pathway, which may be related to ROS as well as neuronal apoptosis and autophagy. In conclusion, DBP-induced neurotoxicity may be the combined result of insufficient neuronal energy acquisition, damage to mitochondrial structure, apoptosis and autophagy. These results provide a theoretical basis for understanding the neurotoxic effects of DBP.


Apoptosis , Dibutyl Phthalate , Larva , Neurons , Zebrafish , Animals , Neurons/drug effects , Neurons/metabolism , Dibutyl Phthalate/toxicity , Larva/drug effects , Larva/metabolism , Apoptosis/drug effects , Reactive Oxygen Species/metabolism , Energy Metabolism/drug effects , Endoplasmic Reticulum Stress/drug effects , Brain/drug effects , Brain/metabolism , Autophagy/drug effects , Plasticizers/toxicity , Mitochondria/drug effects , Mitochondria/metabolism , Membrane Potential, Mitochondrial/drug effects
19.
Cell Mol Life Sci ; 81(1): 200, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38684535

BACKGROUND AND AIM: Cellular senescence of hepatocytes involves permanent cell cycle arrest, disrupted cellular bioenergetics, resistance to cell death, and the release of pro-inflammatory cytokines. This 'zombie-like' state perpetuates harmful effects on tissues and holds potential implications for liver disease progression. Remarkably, senescence exhibits heterogeneity, stemming from two crucial factors: the inducing stressor and the cell type. As such, our present study endeavors to characterize stressor-specific changes in senescence phenotype, its related molecular patterns, and cellular bioenergetics in primary mouse hepatocytes (PMH) and hepatocyte-derived liver organoids (HepOrgs). METHODS: PMH, isolated by collagenase-perfused mouse liver (C57B6/J; 18-23 weeks), were cultured overnight in William's E-medium supplemented with 2% FBS, L-glutamine, and hepatocyte growth supplements. HepOrgs were developed by culturing cells in a 3D matrix for two weeks. The senescence was induced by DNA damage (doxorubicin, cisplatin, and etoposide), oxidative stress (H2O2, and ethanol), and telomere inhibition (BIBR-1532), p53 activation (nutlin-3a), DNA methyl transferase inhibition (5-azacitidine), and metabolism inhibitors (galactosamine and hydroxyurea). SA-ß galactosidase activity, immunofluorescence, immunoblotting, and senescence-associated secretory phenotype (SASP), and cellular bioenergetics were used to assess the senescence phenotype. RESULTS: Each senescence inducer triggers a unique combination of senescence markers in hepatocytes. All senescence inducers, except hydroxyurea and ethanol, increased SA-ß galactosidase activity, the most commonly used marker for cellular senescence. Among the SASP factors, CCL2 and IL-10 were consistently upregulated, while Plasminogen activator inhibitor-1 exhibited global downregulation across all modes of senescence. Notably, DNA damage response was activated by DNA damage inducers. Cell cycle markers were most significantly reduced by doxorubicin, cisplatin, and galactosamine. Additionally, DNA damage-induced senescence shifted cellular bioenergetics capacity from glycolysis to oxidative phosphorylation. In HepOrgs exposed to senescence inducers, there was a notable increase in γH2A.X, p53, and p21 levels. Interestingly, while showing a similar trend, SASP gene expression in HepOrgs was significantly higher compared to PMH, demonstrating a several-fold increase. CONCLUSION: In our study, we demonstrated that each senescence inducer activates a unique combination of senescence markers in PMH. Doxorubicin demonstrated the highest efficacy in inducing senescence, followed by cisplatin and H2O2, with no impact on apoptosis. Each inducer prompted DNA damage response and mitochondrial dysfunction, independent of MAPK/AKT.


Cellular Senescence , DNA Damage , Hepatocytes , Mice, Inbred C57BL , Oxidative Stress , Animals , Cellular Senescence/drug effects , Hepatocytes/metabolism , Hepatocytes/drug effects , Hepatocytes/cytology , Mice , Oxidative Stress/drug effects , Cells, Cultured , Senescence-Associated Secretory Phenotype , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Doxorubicin/pharmacology , Energy Metabolism/drug effects , Liver/metabolism , Liver/drug effects , Male
20.
Anticancer Res ; 44(5): 1895-1903, 2024 May.
Article En | MEDLINE | ID: mdl-38677730

BACKGROUND/AIM: The present study investigated the anticancer effects of intraperitoneally administered D-allose in in vivo models of head and neck cancer cell lines. MATERIALS AND METHODS: To assess the direct effects of D-allose, its dynamics in blood and tumor tissues were examined. RESULTS: D-allose was detected in blood and tumor tissues 10 min after its intraperitoneal administration and then gradually decreased. In vivo experiments revealed that radiation plus D-allose was more effective than either treatment alone. Thioredoxin-interacting protein (TXNIP) mRNA over-expression was detected after the addition of D-allose in in vitro and in vivo experiments. D-allose inhibited cell growth, which was associated with decreases in glycolysis and intracellular ATP levels and the prolonged activation of AMPK. The phosphorylation of p38-MAPK was also observed early after the administration of D-allose and was followed by the activation of AMPK and up-regulated expression of TXNIP in both in vitro and in vivo experiments. CONCLUSION: Systemically administered D-allose appears to exert antitumor effects. Further studies are needed to clarify the appropriate dosage and timing of the administration of D-allose and its combination with other metabolic agents.


Glucose , Head and Neck Neoplasms , Animals , Humans , Male , Mice , AMP-Activated Protein Kinases/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Energy Metabolism/drug effects , Glucose/metabolism , Glycolysis/drug effects , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/radiotherapy , Head and Neck Neoplasms/genetics , Mice, Nude , Xenograft Model Antitumor Assays
...