Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 25.338
1.
Environ Monit Assess ; 196(6): 554, 2024 May 17.
Article En | MEDLINE | ID: mdl-38760486

This comprehensive review delves into the complex issue of plastic pollution, focusing on the emergence of biodegradable plastics (BDPs) as a potential alternative to traditional plastics. While BDPs seem promising, recent findings reveal that a large number of BDPs do not fully degrade in certain natural conditions, and they often break down into microplastics (MPs) even faster than conventional plastics. Surprisingly, research suggests that biodegradable microplastics (BDMPs) could have more significant and long-lasting effects than petroleum-based MPs in certain environments. Thus, it is crucial to carefully assess the ecological consequences of BDPs before widely adopting them commercially. This review thoroughly examines the formation of MPs from prominent BDPs, their impacts on the environment, and adsorption capacities. Additionally, it explores how BDMPs affect different species, such as plants and animals within a particular ecosystem. Overall, these discussions highlight potential ecological threats posed by BDMPs and emphasize the need for further scientific investigation before considering BDPs as a perfect solution to plastic pollution.


Environmental Monitoring , Microplastics , Microplastics/analysis , Biodegradable Plastics , Environmental Pollution/statistics & numerical data , Plastics/analysis , Ecosystem , Biodegradation, Environmental , Environmental Pollutants/analysis
2.
PLoS One ; 19(5): e0302789, 2024.
Article En | MEDLINE | ID: mdl-38768109

Employing the "Green Credit Guidelines" implemented in 2012 as the basis for a quasi-natural experiment, this study applies the method of Difference-in-Differences(DID) to investigate the influence of the Green Credit Policy on both the quantity and quality of enterprise innovation. The outcomes of our analysis reveal that the policy has significantly boosted both the quantity and quality of innovation among enterprises identified as heavy polluters. It is noteworthy that the policy's positive impact on innovation quantity surpasses its positive effect on innovation quality. This substantiates that the Green Credit Policy effectively generates incentivizing outcomes for innovation among the heavy polluters, thereby verifying Porter's hypothesis within the domain of green credit in China. Furthermore, we find that the positive impact is more significant for enterprises with lower innovation capabilities, large-scale enterprises, state-owned enterprises, and those situated in both the Eastern and Western regions. Through these findings, this study illuminates a novel perspective on the interplay between the Green Credit Policy and enterprise innovation dynamics in China.


Environmental Pollution , China , Environmental Pollution/prevention & control , Conservation of Natural Resources/methods , Inventions , Humans
3.
PLoS One ; 19(5): e0299731, 2024.
Article En | MEDLINE | ID: mdl-38768191

The government's environmental protection policy can significantly contribute to alleviating resource shortages and curbing environmental pollution, but the impact of various policy instruments implemented by the government on energy efficiency is unclear. Based on the panel data of 30 provinces in China from 2005 to 2021, this paper analyses the impact of environmental regulation and the industrial structure on energy efficiency from the perspective of resource taxes. The U-shaped relationship between environmental regulation and energy efficiency and between the optimization of industrial structure can significantly improve energy efficiency, and the optimization of industrial structure is conducive to weakening the initial inhibitory effect of environmental regulation. In addition, the analysis of regional heterogeneity showed that the impact of environmental regulation was stronger in the central and western regions, while the impact of industrial structure was stronger in the eastern and western regions. The conclusions of this study can help to expand the understanding of the relationship between environmental regulation and industrial structure on energy efficiency, provide policy enlightenment for the realization of green development and high-quality development, and provide Chinese examples and experiences for developing countries to improve energy efficiency.


Industry , China , Environmental Pollution/prevention & control , Environmental Policy/legislation & jurisprudence , Conservation of Energy Resources , Conservation of Natural Resources/methods
4.
Sci Prog ; 107(2): 368504241253720, 2024.
Article En | MEDLINE | ID: mdl-38715402

Ecosystems, biodiversity, and the human population all depend on a quality or uncontaminated environment. Quality environment provides people and wildlife access to nutrition, medications, dietary supplements, and other ecosystem services. The conservation of biodiversity-that is, species richness, abundance, heredities, and diversity-as well as the control of climate change are facilitated by such an uncontaminated environment. However, these advantages are jeopardized by newly emerging environmental chemical contaminants (EECCs) brought on by increased industrialization and urbanization. In developing countries, inadequate or poor environmental policies, infrastructure, and national standards concerning the usage, recycling, remediation, control, and management of EECCs hasten their effects. EECCs in these countries negatively affect biodiversity, ecological services and functions, and human health. This review reveals that the most deprived or vulnerable local communities in developing countries are those residing near mining or industrial areas and cultivating their crops and vegetables on contaminated soils, as is wildlife that forages or drinks in EECC-contaminated water bodies. Yet, people in these countries have limited knowledge about EECCs, their threats to human well-being, ecosystem safety, and the environment, as well as remediation technologies. Besides, efforts to efficiently control, combat, regulate, and monitor EECCs are limited. Thus, the review aims to increase public knowledge concerning EECCs in developing countries and present a comprehensive overview of the current status of EECCs. It also explores the sources and advancements in remediation techniques and the threats of EECCs to humans, ecosystems, and biodiversity.


Biodiversity , Conservation of Natural Resources , Environmental Pollutants , Humans , Conservation of Natural Resources/methods , Environmental Pollutants/analysis , Environmental Restoration and Remediation/methods , Animals , Environmental Pollution/prevention & control , Ecosystem
5.
J Environ Manage ; 359: 120868, 2024 May.
Article En | MEDLINE | ID: mdl-38692024

Several countries have imposed either a ban or a tax on single-use plastic packaging, motivated by their contribution to marine plastic pollution. This may lead consumers to opt for similar unregulated substitutes, potentially undermining or even counteracting the intended effect of the policy instrument. The purpose of this study is to theoretically and empirically compare the environmental and welfare effects of the first-best Pigouvian taxes on both plastic bags and a substitute (paper bags), with two alternative second-best policy instruments: a tax on plastic products alone, and a common uniform tax on all packaging materials. The empirical analysis accounts for two different types of environmental externalities from the use of both bag types: marine pollution and greenhouse gas emissions. It also compares results for two countries, Denmark and the USA, which differ in the demand for plastic and paper bags. The theoretical analysis shows that a unilateral tax on plastic bags should equal the marginal environmental damage of plastic bags minus a fraction of the marginal environmental cost of paper bags, hence being lower than the Pigouvian tax. The optimal common tax should equal a weighted average of the marginal environmental damage of the two bag types and would be lower than the Pigouvian tax on plastics if the marginal external cost of plastic bags exceeds that for paper bags. The empirical analysis shows that for default parameters, the variation in tax level across the studied scenarios is small. It also shows that if Pigouvian taxes cannot be implemented, a common uniform tax on both bag types would result in a higher welfare gain than a tax on plastic bags alone. Sensitivity analysis reveals that the level of the second-best taxes and their associated environmental and welfare impacts are sensitive to assumptions regarding the littering rate and decay rate of plastic bags in the marine environment.


Climate Change , Plastics , Taxes , Environmental Pollution , Denmark
6.
J Environ Manage ; 359: 121016, 2024 May.
Article En | MEDLINE | ID: mdl-38703648

The trading of carbon emissions is a crucial regulatory method to address environmental pollution issues. This study takes China's carbon emission trading pilot policy established in 2013 as a quasi-natural experiment and uses the DID model to empirically test the urban panel data from 2006 to 2019. The results show that the carbon emission trading pilot policy can effectively reduce urban environmental pollution, and this effect is more noticeable in mid-western cities, northern cities, cities with fewer resources, and large-scale cities. In addition, to address the urban environmental pollution problem through this policy, the government is encouraged to raise its environmental protection awareness and put more effort into the innovation of technology. In general, this study uses carbon emission trading policies from China to confirm that market-based incentive environmental regulation tools can effectively reduce environmental pollution in urban areas. These findings can provide more theoretical support and empirical evidence for the government to use mechanisms of the market to effectively solve pollution problems, improve ecological environment quality, and accelerate the realization of green economy.


Carbon , Cities , Environmental Pollution , China , Environmental Pollution/legislation & jurisprudence , Environmental Pollution/prevention & control , Carbon/analysis , Environmental Policy/legislation & jurisprudence , Pilot Projects
7.
J Environ Manage ; 359: 121065, 2024 May.
Article En | MEDLINE | ID: mdl-38714038

This study addresses the challenge of incomplete separation of mechanically recovered residual films and impurities in cotton fields, examining their impact on resource utilization and environmental pollution. It introduces an innovative screening method that combines pneumatic force and mechanical vibration for processing crushed film residue mixtures. A double-action screening device integrating pneumatic force and a key-type vibrating screen was developed. The working characteristics of this device were analyzed to explore the dynamic characteristics and kinematic laws of the materials using theoretical analysis methods. This led to the revelation of the screening laws of residual films and impurities. Screening tests were conducted using the Central Composite Design method, considering factors such as fan outlet, fan speed, vibration frequency of the screen, and feeding amount, with the impurity-rate-in-film (Q) and film-content-in-impurity (W) as evaluation indexes. The significant influence of each factor on the indexes was determined, regression models between the test factors and indexes were established, and the effect laws of key parameters and their significant interaction terms on the indexes were interpreted. The optimal combination of working parameters for the screening device was identified through multivariable optimization methods. Validation tests under this optimal parameters combination showed that the impurity-rate-in-film was 3.08% and the film-content-in-impurity was 1.94%, with average errors between the test values and the predicted values of 3.36% and 5.98%, respectively, demonstrating the effectiveness of the proposed method. This research provides a novel method and technical reference for achieving effective separation of residual film and impurities, thereby enhancing resource utilization.


Gossypium , Cotton Fiber/analysis , Environmental Pollution/prevention & control
11.
Environ Int ; 187: 108709, 2024 May.
Article En | MEDLINE | ID: mdl-38723457

Heavy metals are commonly released into the environment through industrial processes such as mining and refining. The rapid industrialization that occurred in South Korea during the 1960s and 1970s contributed significantly to the economy of the country; however, the associated mining and refining led to considerable environmental pollution, and although mining is now in decline in South Korea, the detrimental effects on residents inhabiting the surrounding areas remain. The bioaccumulation of toxic heavy metals leads to metabolic alterations in human homeostasis, with disruptions in this balance leading to various health issues. This study used metabolomics to explore metabolomic alterations in the plasma samples of residents living in mining and refining areas. The results showed significant increases in metabolites involved in glycolysis and the surrounding metabolic pathways, such as glucose-6-phosphate, phosphoenolpyruvate, lactate, and inosine monophosphate, in those inhabiting polluted areas. An investigation of the associations between metabolites and blood clinical parameters through meet-in-the-middle analysis indicated that female residents were more affected by heavy metal exposure, resulting in more metabolomic alterations. For women, inhabiting the abandoned mine area, metabolites in the glycolysis and pentose phosphate pathways, such as ribose-5-phosphate and 3-phosphoglycerate, have shown a negative correlation with albumin and calcium. Finally, Mendelian randomization(MR) was used to determine the causal effects of these heavy metal exposure-related metabolites on heavy metal exposure-related clinical parameters. Metabolite biomarkers could provide insights into altered metabolic pathways related to exposure to toxic heavy metals and improve our understanding of the molecular mechanisms underlying the health effects of toxic heavy metal exposure.


Environmental Exposure , Metals, Heavy , Humans , Metals, Heavy/blood , Female , Republic of Korea , Male , Adult , Metabolomics , Mining , Middle Aged , Environmental Pollution/statistics & numerical data , Environmental Pollutants/blood
15.
Sci Total Environ ; 932: 173044, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38723971

Siderophores are small molecules of organic nature, released by bacteria to chelate iron from the surrounding environment and subsequently incorporate it into the cytoplasm. In addition to iron, these secondary metabolites can complex with a wide variety of metals, which is why they are commonly studied in the environment. Heavy metals can be very toxic when present in large amounts on the planet, affecting public health and all living organisms. The pollution caused by these toxic metals is increasing, and therefore it is urgent to find practical, sustainable, and economical solutions for remediation. One of the strategies is siderophore-assisted bioremediation, an innovative and advantageous alternative for various environmental applications. This research highlights the various uses of siderophores and metallophores in the environment, underscoring their significance to ecosystems. The study delves into the utilization of siderophores and metallophores in both marine and terrestrial settings (e.g. bioremediation, biocontrol of pathogens, and plant growth promotion), such as bioremediation, biocontrol of pathogens, and plant growth promotion, providing context for the different instances outlined in the existing literature and highlighting their relevance in each field. The study delves into the structures and types of siderophores focusing on their singular characteristics for each application and methodologies used. Focusing on recent developments over the last two decades, the opportunities and challenges associated with siderophores and metallophores applications in the environment were mapped to arm researchers in the fight against environmental pollution.


Biodegradation, Environmental , Siderophores , Environmental Pollution , Metals, Heavy/analysis
16.
Environ Monit Assess ; 196(6): 546, 2024 May 14.
Article En | MEDLINE | ID: mdl-38743357

Industrial activities have the potential to pollute soils with a wide variety of heavy metals (HMs). In Ghana, however, assessment of HM pollution of soils in industrial areas remains limited. Accordingly, HM soil pollution in one of the industrial areas in Accra, Ghana was assessed. Soil samples were taken and analysed for HMs, including Fe, Zr, Zn, Ti, Sr, Rb, Mn, Pb, Cu, and Co, using X-Ray Fluorescence (XRF). HM geochemical threshold values (GTVs) were determined to establish soil HM pollution levels and identify areas needing remediation. Furthermore, risk assessments were conducted to evaluate the potential ecological and human health risks associated with these metals. The mean concentrations of Fe, Zn, Rb, Sr, Zr, Ti, Mn, Co, Cu, and Pb in the soils were: 27133.83, 147.72, 16.30, 95.95, 307.11, 4663.66, 289.85, 418.54, 44.97, and 112.88 mg/kg, respectively. Generally, the concentrations of HMs decreased with depth, although some lower layers exhibited elevated HM levels. Soil pollution levels were categorized as low for Fe, Rb, Zr, Ti, Mn, Co, and Cu; moderate for Sr and Zn; and considerable for Pb. Notably, the northwestern part of the study area displayed a considerable to very high degree of HM contamination. While HMs in the soils posed low ecological risk, the human health risk assessment indicated potential health effects from Co, particularly in children. The presence of HMs in the soils was noted to originate from both natural geological phenomena and human activities, including industrial operations, agricultural practices, landfill activities, and vehicular emissions.


Environmental Monitoring , Metals, Heavy , Soil Pollutants , Soil , Soil Pollutants/analysis , Ghana , Metals, Heavy/analysis , Soil/chemistry , Risk Assessment , Humans , Industry , Environmental Pollution/statistics & numerical data
17.
Reprod Fertil Dev ; 362024 May.
Article En | MEDLINE | ID: mdl-38744493

Poly- and perfluoroalkyl substances (PFAS) are a prominent class of persistent synthetic compound. The widespread use of these substances in various industrial applications has resulted in their pervasive contamination on a global scale. It is therefore concerning that PFAS have a propensity to accumulate in bodily tissues whereupon they have been linked with a range of adverse health outcomes. Despite this, the true extent of the risk posed by PFAS to humans, domestic animals, and wildlife remains unclear. Addressing these questions requires a multidisciplinary approach, combining the fields of chemistry, biology, and policy to enable meaningful investigation and develop innovative remediation strategies. This article combines the perspectives of chemists, soil scientists, reproductive biologists, and health policy researchers, to contextualise the issue of PFAS contamination and its specific impact on reproductive health. The purpose of this article is to describe the challenges associated with remediating PFAS-contaminated soils and waters and explore the consequences of PFAS contamination on health and reproduction. Furthermore, current actions to promote planetary health and protect ecosystems are presented to instigate positive social change among the scientific community.


Animals, Wild , Environmental Pollutants , Fluorocarbons , Reproductive Health , Animals , Humans , Fluorocarbons/toxicity , Fluorocarbons/adverse effects , Fluorocarbons/analysis , Livestock , Reproduction/drug effects , Environmental Pollution/adverse effects , Environmental Pollution/analysis , Environmental Exposure/adverse effects
18.
Sci Rep ; 14(1): 10918, 2024 05 13.
Article En | MEDLINE | ID: mdl-38740813

The contamination and quantification of soil potentially toxic elements (PTEs) contamination sources and the determination of driving factors are the premise of soil contamination control. In our study, 788 soil samples from the National Agricultural Park in Chengdu, Sichuan Province were used to evaluate the contamination degree of soil PTEs by pollution factors and pollution load index. The source identification of soil PTEs was performed using positive matrix decomposition (PMF), edge analysis (UNMIX) and absolute principal component score-multiple line regression (APCS-MLR). The geo-detector method (GDM) was used to analysis drivers of soil PTEs pollution sources to help interpret pollution sources derived from receptor models. Result shows that soil Cu, Pb, Zn, Cr, Ni, Cd, As and Hg average content were 35.2, 32.3, 108.9, 91.9, 37.1, 0.22, 9.76 and 0.15 mg/kg in this study area. Except for As, all are higher than the corresponding soil background values in Sichuan Province. The best performance of APCS-MLR was determined by comparison, and APCS-MLR was considered as the preferred receptor model for soil PTEs source distribution in the study area. ACPS-MLR results showed that 82.70% of Cu, 61.6% of Pb, 75.3% of Zn, 91.9% of Cr and 89.4% of Ni came from traffic-industrial emission sources, 60.9% of Hg came from domestic-transportation emission sources, 57.7% of Cd came from agricultural sources, and 89.5% of As came from natural sources. The GDM results showed that distance from first grade highway, population, land utilization and total potassium (TK) content were the main driving factors affecting these four sources, with q values of 0.064, 0.048, 0.069 and 0.058, respectively. The results can provide reference for reducing PTEs contamination in farmland soil.


Environmental Monitoring , Soil Pollutants , Soil , Soil Pollutants/analysis , Soil/chemistry , Environmental Monitoring/methods , China , Metals, Heavy/analysis , Principal Component Analysis , Environmental Pollution/analysis
20.
Environ Monit Assess ; 196(5): 415, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38568381

In this study, we used a comprehensive array of sampling techniques to examine the pollution caused by organic micropollutants in Izmit Bay for the first time. Our methodology contains spot seawater sampling, semi-permeable membrane devices (SPMDs) passive samplers for time-weighted average (TWA), and sediment sampling for long-term pollution detection in Izmit Bay, together. Additionally, the analysis results obtained with these three sampling methods were compared in this study. Over the course of two seasons in 2020 and 2021, we deployed SPMDs for 21 days in the first season and for 30 days in the second season. This innovative approach allowed us to gather sea water samples and analyze them for the presence of polycyclic aromatic hydrocarbons (Σ15 PAHs), polychlorinated biphenyls (Σ7 PCBs), and organochlorine pesticides (Σ11 OCPs). Using SPMD-based passive sampling, we measured micropollutant concentrations: PAHs ranged from 1963 to 10342 pg/L in 2020 and 1338 to 6373 pg/L in 2021; PCBs from 17.46 to 61.90 pg/L in 2020 and 8.37 to 78.10 pg/L in 2021; and OCPs from 269.2 to 8868 pg/L in 2020 and 141.7 to 1662 pg/L in 2021. Our findings revealed parallels between the concentrations of PAHs, PCBs, and OCPs in both SPMDs and sediment samples, providing insights into the distribution patterns of these pollutants in the marine ecosystem. However, it is worth noting that due to limited data acquisition, the suitability of spot sampling in comparison to instantaneous sampling remains inconclusive, highlighting the need for further investigation and data collection.


Polychlorinated Biphenyls , Polycyclic Aromatic Hydrocarbons , Bays , Ecosystem , Environmental Monitoring , Environmental Pollution
...