Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 342
Filtrar
1.
Sci Rep ; 10(1): 11497, 2020 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-32661389

RESUMEN

One innate immune response in insects is the proteolytic activation of hemolymph prophenoloxidase (proPO), regulated by protease inhibitors called serpins. In the inhibition reaction of serpins, a protease cleaves a peptide bond in a solvent-exposed reactive center loop (RCL) of the serpin, and the serpin undergoes a conformational change, incorporating the amino-terminal segment of the RCL into serpin ß-sheet A as a new strand. This results in an irreversible inhibitory complex of the serpin with the protease. We synthesized four peptides with sequences from the hinge region in the RCL of Manduca sexta serpin-3 and found they were able to block serpin-3 inhibitory activity, resulting in suppression of inhibitory protease-serpin complex formation. An RCL-derived peptide with the sequence Ser-Val-Ala-Phe-Ser (SVAFS) displayed robust blocking activity against serpin-3. Addition of acetyl-SVAFS-amide to hemolymph led to unregulated proPO activation. Serpin-3 associated with Ac-SVAFS-COO- had an altered circular dichroism spectrum and enhanced thermal resistance to change in secondary structure, indicating that these two molecules formed a binary complex, most likely by insertion of the peptide into ß-sheet A. The interference of RCL-derived peptides with serpin activity may lead to new possibilities of "silencing" arthropod serpins with unknown functions for investigation of their physiological roles.


Asunto(s)
Catecol Oxidasa/química , Precursores Enzimáticos/química , Manduca/química , Péptidos/farmacología , Serpinas/química , Animales , Catecol Oxidasa/antagonistas & inhibidores , Catecol Oxidasa/ultraestructura , Precursores Enzimáticos/antagonistas & inhibidores , Precursores Enzimáticos/ultraestructura , Hemolinfa/enzimología , Inmunidad Innata/efectos de los fármacos , Péptido Hidrolasas/química , Péptido Hidrolasas/ultraestructura , Péptidos/síntesis química , Péptidos/química , Conformación Proteica en Lámina beta/efectos de los fármacos , Serpinas/ultraestructura
2.
ACS Chem Biol ; 15(2): 575-586, 2020 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-31927936

RESUMEN

Caspases are a critical class of proteases involved in regulating programmed cell death and other biological processes. Selective inhibitors of individual caspases, however, are lacking, due in large part to the high structural similarity found in the active sites of these enzymes. We recently discovered a small-molecule inhibitor, 63-R, that covalently binds the zymogen, or inactive precursor (pro-form), of caspase-8, but not other caspases, pointing to an untapped potential of procaspases as targets for chemical probes. Realizing this goal would benefit from a structural understanding of how small molecules bind to and inhibit caspase zymogens. There have, however, been very few reported procaspase structures. Here, we employ X-ray crystallography to elucidate a procaspase-8 crystal structure in complex with 63-R, which reveals large conformational changes in active-site loops that accommodate the intramolecular cleavage events required for protease activation. Combining these structural insights with molecular modeling and mutagenesis-based biochemical assays, we elucidate key interactions required for 63-R inhibition of procaspase-8. Our findings inform the mechanism of caspase activation and its disruption by small molecules and, more generally, have implications for the development of small molecule inhibitors and/or activators that target alternative (e.g., inactive precursor) protein states to ultimately expand the druggable proteome.


Asunto(s)
Acetamidas/metabolismo , Caspasa 8/metabolismo , Inhibidores de Caspasas/metabolismo , Precursores Enzimáticos/antagonistas & inhibidores , Precursores Enzimáticos/metabolismo , Piperidinas/metabolismo , Caspasa 8/química , Caspasa 8/genética , Dominio Catalítico/efectos de los fármacos , Cristalografía por Rayos X , Precursores Enzimáticos/química , Precursores Enzimáticos/genética , Humanos , Simulación del Acoplamiento Molecular , Mutagénesis Sitio-Dirigida , Mutación , Unión Proteica , Conformación Proteica/efectos de los fármacos
3.
J Colloid Interface Sci ; 552: 540-553, 2019 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-31154247

RESUMEN

The quantification of lipopolysaccharide (LPS) shed by bacteria within aqueous samples is typically performed by binding LPS to a protein called Factor C within a lysate prepared from the blood of horseshoe crabs (Limulus amebocyte lysate (LAL)). How the state of aggregation of LPS impacts Factor C activation, however, is not understood, particularly in the presence of select salts and non-ionic surfactants that are commonly incorporated into pharmaceutical formulations. To address this open question, herein we report on the aggregation status of LPS in aqueous solution, characterized using angle-dependent static and dynamic light scattering with and without chelating salts and polysorbate surfactants, and its correlation with activation of Factor C. Because the aggregation status of LPS is kinetically controlled, care was taken to compare LPS aggregation and activity using identically prepared samples. By plotting LPS activity versus the LPS aggregate size distribution over varied solution conditions, we found a positive correlation between LPS aggregate sizes between 30 and 50 nm and LAL activity. Overall, our results support the hypothesis that activation of Factor C is dependent of LPS aggregate size, and that the modulating effects of salts and surfactants on activation of Factor C is associated with changes in the LPS aggregation.


Asunto(s)
Proteínas de Artrópodos/antagonistas & inhibidores , Precursores Enzimáticos/antagonistas & inhibidores , Lipopolisacáridos/química , Lipopolisacáridos/farmacología , Proteínas de Artrópodos/metabolismo , Precursores Enzimáticos/metabolismo , Escherichia coli/química , Lipopolisacáridos/antagonistas & inhibidores , Estructura Molecular , Tamaño de la Partícula , Serina Endopeptidasas/metabolismo , Propiedades de Superficie , Tensoactivos/química , Tensoactivos/farmacología , Agua/química
4.
J Biol Chem ; 294(1): 314-326, 2019 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-30409910

RESUMEN

Matriptase is a member of the type-II transmembrane serine protease (TTSP) family and plays a crucial role in the development and maintenance of epithelial tissues. As all chymotrypsin-like serine proteases, matriptase is synthesized as a zymogen (proform), requiring a cleavage event for full activity. Recent studies suggest that the zymogen of matriptase possesses enough catalytic activity to not only facilitate autoactivation, but also carry out its in vivo functions, which include activating several proteolytic and signaling cascades. Inhibition of zymogen matriptase may therefore be a highly effective approach for limiting matriptase activity. To this end, here we sought to characterize the catalytic activity of human zymogen matriptase and to develop mAb inhibitors against this enzyme form. Using a mutated variant of matriptase in which the serine protease domain is locked in the zymogen conformation, we confirmed that the zymogen form of human matriptase has catalytic activity. Moreover, the crystal structure of the catalytic domain of zymogen matriptase was solved to 2.5 Å resolution to characterize specific antibody-based matriptase inhibitors and to further structure-based studies. Finally, we describe the first antibody-based competitive inhibitors that target both the zymogen and activated forms of matriptase. We propose that these antibodies provide a more efficient way to regulate matriptase activity by targeting the protease both before and after its activation and may be of value for both research and preclinical applications.


Asunto(s)
Anticuerpos Monoclonales/química , Precursores Enzimáticos/química , Inhibidores de Proteasas/química , Proteolisis , Serina Endopeptidasas/química , Cristalografía por Rayos X , Precursores Enzimáticos/antagonistas & inhibidores , Células HEK293 , Humanos , Dominios Proteicos
5.
Bull Entomol Res ; 109(2): 236-247, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29929571

RESUMEN

Phenoloxidase (PO) plays a key role in melanin biosynthesis during insect development. Here, we isolated the 2310-bp full-length cDNA of PPO1 from Zeugodacus tau, a destructive horticultural pest. qRT-polymerase chain reaction showed that the ZtPPO1 transcripts were highly expressed during larval-prepupal transition and in the haemolymph. When the larvae were fed a 1.66% kojic acid (KA)-containing diet, the levels of the ZtPPO1 transcripts significantly increased by 2.79- and 3.39-fold in the whole larvae and cuticles, respectively, while the corresponding PO activity was significantly reduced; in addition, the larval and pupal durations were significantly prolonged; pupal weights were lowered; and abnormal phenotypes were observed. An in vitro inhibition experiment indicated that KA was an effective competitive inhibitor of PO in Z. tau. Additionally, the functional analysis showed that 20E could significantly up-regulate the expression of ZtPPO1, induce lower pupal weight, and advance pupation. Knockdown of the ZtPPO1 gene by RNAi significantly decreased mRNA levels after 24 h and led to low pupation rates and incomplete pupae with abnormal phenotypes during the larval-pupal interim period. These results proved that PO is important for the normal growth of Z. tau and that KA can disrupt the development of this pest insect.


Asunto(s)
Catecol Oxidasa/metabolismo , Precursores Enzimáticos/metabolismo , Pironas/farmacología , Tephritidae/enzimología , Animales , Catecol Oxidasa/antagonistas & inhibidores , Catecol Oxidasa/genética , Precursores Enzimáticos/antagonistas & inhibidores , Precursores Enzimáticos/genética , Silenciador del Gen , Tephritidae/efectos de los fármacos , Tephritidae/genética , Tephritidae/crecimiento & desarrollo
6.
Biophys Chem ; 234: 34-41, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29407769

RESUMEN

Membrane type-1 matrix metalloproteinase (MT1-MMP) is a transmembrane MMP which triggers intracellular signaling and regulates extracellular matrix proteolysis, two functions that are critical for tumor-associated angiogenesis and inflammation. While green tea catechins, particularly epigallocatechin gallate (EGCG), are considered very effective in preventing MT1-MMP-mediated functions, lack of structure-function studies and evidence regarding their direct interaction with MT1-MMP-mediated biological activities remain. Here, we assessed the impact in both cellular and biophysical assays of four ungallated catechins along with their gallated counterparts on MT1-MMP-mediated functions and molecular binding partners. Concanavalin-A (ConA) was used to trigger MT1-MMP-mediated proMMP-2 activation, expression of MT1-MMP and of endoplasmic reticulum stress biomarker GRP78 in U87 glioblastoma cells. We found that ConA-mediated MT1-MMP induction was inhibited by EGCG and catechin gallate (CG), that GRP78 induction was inhibited by EGCG, CG, and gallocatechin gallate (GCG), whereas proMMP-2 activation was inhibited by EGCG and GCG. Surface plasmon resonance was used to assess direct interaction between catechins and MT1-MMP interactors. We found that gallated catechins interacted better than their ungallated analogs with MT1-MMP as well as with MT1-MMP binding partners MMP-2, TIMP-2, MTCBP-1 and LRP1-clusterIV. Overall, current structure-function evidence supports a role for the galloyl moiety in both direct and indirect interactions of green tea catechins with MT1-MMP-mediated oncogenic processes.


Asunto(s)
Catequina/análogos & derivados , Metaloproteinasa 14 de la Matriz/metabolismo , Té/química , Carcinogénesis/efectos de los fármacos , Catequina/metabolismo , Catequina/farmacología , Línea Celular Tumoral , Concanavalina A/farmacología , Chaperón BiP del Retículo Endoplásmico , Precursores Enzimáticos/antagonistas & inhibidores , Gelatinasas/antagonistas & inhibidores , Glioblastoma/patología , Proteínas de Choque Térmico/antagonistas & inhibidores , Humanos , Metaloproteinasa 14 de la Matriz/farmacología , Inhibidores de la Metaloproteinasa de la Matriz/farmacología , Unión Proteica , Relación Estructura-Actividad
7.
J Biol Chem ; 292(43): 17963-17974, 2017 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-28860188

RESUMEN

Aberrant activation of matrix metalloproteinases (MMPs) is a common feature of pathological cascades observed in diverse disorders, such as cancer, fibrosis, immune dysregulation, and neurodegenerative diseases. MMP-9, in particular, is highly dynamically regulated in several pathological processes. Development of MMP inhibitors has therefore been an attractive strategy for therapeutic intervention. However, a long history of failed clinical trials has demonstrated that broad-spectrum MMP inhibitors have limited clinical utility, which has spurred the development of inhibitors selective for individual MMPs. Attaining selectivity has been technically challenging because of sequence and structural conservation across the various MMPs. Here, through a biochemical and structural screening paradigm, we have identified JNJ0966, a highly selective compound that inhibited activation of MMP-9 zymogen and subsequent generation of catalytically active enzyme. JNJ0966 had no effect on MMP-1, MMP-2, MMP-3, MMP-9, or MMP-14 catalytic activity and did not inhibit activation of the highly related MMP-2 zymogen. The molecular basis for this activity was characterized as an interaction of JNJ0966 with a structural pocket in proximity to the MMP-9 zymogen cleavage site near Arg-106, which is distinct from the catalytic domain. JNJ0966 was efficacious in reducing disease severity in a mouse experimental autoimmune encephalomyelitis model, demonstrating the viability of this therapeutic approach. This discovery reveals an unprecedented pharmacological approach to MMP inhibition, providing an opportunity to improve selectivity of future clinical drug candidates. Targeting zymogen activation in this manner may also allow for pharmaceutical exploration of other enzymes previously viewed as intractable drug targets.


Asunto(s)
Precursores Enzimáticos/antagonistas & inhibidores , Precursores Enzimáticos/química , Metaloproteinasa 9 de la Matriz/química , Inhibidores de la Metaloproteinasa de la Matriz/química , Regulación Alostérica , Animales , Células COS , Dominio Catalítico , Chlorocebus aethiops , Precursores Enzimáticos/genética , Precursores Enzimáticos/metabolismo , Humanos , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Dominios Proteicos
8.
ACS Chem Biol ; 12(11): 2788-2803, 2017 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-28945333

RESUMEN

A lack of target specificity has greatly hindered the success of inhibitor development against matrix metalloproteinases (MMPs) for the treatment of various cancers. The MMP catalytic domains are highly conserved, whereas the hemopexin-like domains of MMPs are unique to each family member. The hemopexin-like domain of MMP-9 enhances cancer cell migration through self-interaction and heterointeractions with cell surface proteins including CD44 and α4ß1 integrin. These interactions activate EGFR-MAP kinase dependent signaling that leads to cell migration. In this work, we generated a library of compounds, based on hit molecule N-[4-(difluoromethoxy)phenyl]-2-[(4-oxo-6-propyl-1H-pyrimidin-2-yl)sulfanyl]-acetamide, that target the hemopexin-like domain of MMP-9. We identify N-(4-fluorophenyl)-4-(4-oxo-3,4,5,6,7,8-hexahydroquinazolin-2-ylthio)butanamide, 3c, as a potent lead (Kd = 320 nM) that is specific for binding to the proMMP-9 hemopexin-like domain. We demonstrate that 3c disruption of MMP-9 homodimerization prevents association of proMMP-9 with both α4ß1 integrin and CD44 and results in the dissociation of EGFR. This disruption results in decreased phosphorylation of Src and its downstream target proteins focal adhesion kinase (FAK) and paxillin (PAX), which are implicated in promoting tumor cell growth, migration, and invasion. Using a chicken chorioallantoic membrane in vivo assay, we demonstrate that 500 nM 3c blocks cancer cell invasion of the basement membrane and reduces angiogenesis. In conclusion, we present a mechanism of action for 3c whereby targeting the hemopexin domain results in decreased cancer cell migration through simultaneous disruption of α4ß1 integrin and EGFR signaling pathways, thereby preventing signaling bypass. Targeting through the hemopexin-like domain is a powerful approach to antimetastatic drug development.


Asunto(s)
Precursores Enzimáticos/antagonistas & inhibidores , Precursores Enzimáticos/metabolismo , Adhesiones Focales/efectos de los fármacos , Metaloproteinasa 9 de la Matriz/metabolismo , Inhibidores de la Metaloproteinasa de la Matriz/química , Inhibidores de la Metaloproteinasa de la Matriz/farmacología , Dominios Proteicos/efectos de los fármacos , Animales , Células COS , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Pollos , Chlorocebus aethiops , Precursores Enzimáticos/química , Adhesiones Focales/metabolismo , Hemopexina/química , Humanos , Receptores de Hialuranos/metabolismo , Integrina alfa4beta1/metabolismo , Metaloproteinasa 9 de la Matriz/química , Modelos Moleculares , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología
9.
Mol Cell Biochem ; 427(1-2): 111-122, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28013477

RESUMEN

Matrix metalloproteinases (MMPs) play a crucial role in developing different types of lung diseases, e.g., pulmonary arterial hypertension (PAH). Green tea polyphenolic catechins such as EGCG and ECG have been shown to ameliorate various types of diseases including PAH. Our present study revealed that among the four green tea catechins (EGCG, ECG, EC, and EGC), EGCG and ECG inhibit pro-/active MMP-2 activities in pulmonary artery smooth muscle cell (PASMC) culture supernatant. Based on the above, we investigated the interactions of pro-/active MMP-2 with the green tea catechins by computational methods. In silico analysis revealed a strong interaction of pro-/active MMP-2 with EGCG/ECG, and galloyl group has been observed to be responsible for this interaction. The in silico analysis corroborated our experimental observation that EGCG and ECG are active in preventing both the proMMP-2 and MMP-2 activities. Importantly, these two catechins appeared to be better inhibitors for proMMP-2 in comparison to MMP-2 as revealed by gelatin zymogram and also by molecular docking studies. In many type of cells, activation of proMMP-2 occurs via an increase in the level of MT1-MMP (MMP-14). We, therefore, determined the interactions of MT1-MMP with the green tea catechins by molecular docking analysis. The study revealed a strong interaction of MT1-MMP with EGCG/ECG, and galloyl group has been observed to be responsible for the interaction.


Asunto(s)
Catequina , Precursores Enzimáticos , Gelatinasas , Metaloproteinasa 2 de la Matriz , Simulación del Acoplamiento Molecular , Inhibidores de Proteasas , Té/química , Animales , Catequina/química , Catequina/farmacología , Bovinos , Precursores Enzimáticos/antagonistas & inhibidores , Precursores Enzimáticos/química , Precursores Enzimáticos/metabolismo , Gelatinasas/antagonistas & inhibidores , Gelatinasas/química , Gelatinasas/metabolismo , Humanos , Metaloproteinasa 2 de la Matriz/química , Metaloproteinasa 2 de la Matriz/metabolismo , Músculo Liso Vascular/enzimología , Miocitos del Músculo Liso/enzimología , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología
10.
Biol Chem ; 397(12): 1251-1264, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27611765

RESUMEN

Although kallikrein-related peptidase 10 (KLK10) is expressed in a variety of human tissues and body fluids, knowledge of its physiological functions is fragmentary. Similarly, the pathophysiology of KLK10 in cancer is not well understood. In some cancer types, a role as tumor suppressor has been suggested, while in others elevated expression is associated with poor patient prognosis. Active human KLK10 exhibits a unique, three residue longer N-terminus with respect to other serine proteases and an extended 99-loop nearly as long as in tissue kallikrein KLK1. Crystal structures of recombinant ligand-free KLK10 and a Zn2+ bound form explain to some extent the mixed trypsin- and chymotrypsin-like substrate specificity. Zn2+-inhibition of KLK10 appears to be based on a unique mechanism, which involves direct binding and blocking of the catalytic triad. Since the disordered N-terminus and several loops adopt a zymogen-like conformation, the active protease conformation is very likely induced by interaction with the substrate, in particular at the S1 subsite and at the unusual Ser193 as part of the oxyanion hole. The KLK10 structures indicate that the N-terminus, the nearby 75-, 148-, and the 99-loops are connected in an allosteric network, which is present in other trypsin-like serine proteases with several variations.


Asunto(s)
Precursores Enzimáticos/antagonistas & inhibidores , Precursores Enzimáticos/química , Calicreínas/antagonistas & inhibidores , Calicreínas/química , Inhibidores de Proteasas/farmacología , Zinc/farmacología , Secuencia de Aminoácidos , Dominio Catalítico , Cristalografía por Rayos X , Precursores Enzimáticos/metabolismo , Humanos , Calicreínas/metabolismo , Modelos Moleculares , Inhibidores de Proteasas/metabolismo , Especificidad por Sustrato , Zinc/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA