Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 5.178
1.
ACS Nano ; 18(20): 12639-12671, 2024 May 21.
Article En | MEDLINE | ID: mdl-38718193

Since the discovery of ferromagnetic nanoparticles Fe3O4 that exhibit enzyme-like activity in 2007, the research on nanoenzymes has made significant progress. With the in-depth study of various nanoenzymes and the rapid development of related nanotechnology, nanoenzymes have emerged as a promising alternative to natural enzymes. Within nanozymes, there is a category of metal-based single-atom nanozymes that has been rapidly developed due to low cast, convenient preparation, long storage, less immunogenicity, and especially higher efficiency. More importantly, single-atom nanozymes possess the capacity to scavenge reactive oxygen species through various mechanisms, which is beneficial in the tissue repair process. Herein, this paper systemically highlights the types of metal single-atom nanozymes, their catalytic mechanisms, and their recent applications in tissue repair. The existing challenges are identified and the prospects of future research on nanozymes composed of metallic nanomaterials are proposed. We hope this review will illuminate the potential of single-atom nanozymes in tissue repair, encouraging their sequential clinical translation.


Enzymes , Humans , Enzymes/chemistry , Enzymes/metabolism , Reactive Oxygen Species/metabolism , Animals , Catalysis , Nanostructures/chemistry , Nanotechnology
2.
Nature ; 629(8013): 824-829, 2024 May.
Article En | MEDLINE | ID: mdl-38720081

Enzymes play an increasingly important role in improving the benignity and efficiency of chemical production, yet the diversity of their applications lags heavily behind chemical catalysts as a result of the relatively narrow range of reaction mechanisms of enzymes. The creation of enzymes containing non-biological functionalities facilitates reaction mechanisms outside nature's canon and paves the way towards fully programmable biocatalysis1-3. Here we present a completely genetically encoded boronic-acid-containing designer enzyme with organocatalytic reactivity not achievable with natural or engineered biocatalysts4,5. This boron enzyme catalyses the kinetic resolution of hydroxyketones by oxime formation, in which crucial interactions with the protein scaffold assist in the catalysis. A directed evolution campaign led to a variant with natural-enzyme-like enantioselectivities for several different substrates. The unique activation mode of the boron enzyme was confirmed using X-ray crystallography, high-resolution mass spectrometry (HRMS) and 11B NMR spectroscopy. Our study demonstrates that genetic-code expansion can be used to create evolvable enantioselective enzymes that rely on xenobiotic catalytic moieties such as boronic acids and access reaction mechanisms not reachable through catalytic promiscuity of natural or engineered enzymes.


Biocatalysis , Boronic Acids , Enzymes , Protein Engineering , Boronic Acids/chemistry , Boronic Acids/metabolism , Crystallography, X-Ray , Directed Molecular Evolution , Enzymes/chemistry , Enzymes/metabolism , Enzymes/genetics , Ketones/chemistry , Ketones/metabolism , Kinetics , Models, Molecular , Oximes/chemistry , Oximes/metabolism , Substrate Specificity , Nuclear Magnetic Resonance, Biomolecular , Mass Spectrometry , Xenobiotics/chemistry , Xenobiotics/metabolism
3.
Int J Biol Macromol ; 270(Pt 2): 132466, 2024 Jun.
Article En | MEDLINE | ID: mdl-38761904

Nanotechnology has become a revolutionary technique for improving the preliminary treatment of lignocellulosic biomass in the production of biofuels. Traditional methods of pre-treatment have encountered difficulties in effectively degrading the intricate lignocellulosic composition, thereby impeding the conversion of biomass into fermentable sugars. Nanotechnology has enabled the development of enzyme cascade processes that present a potential solution for addressing the limitations. The focus of this review article is to delve into the utilization of nanotechnology in the pretreatment of lignocellulosic biomass through enzyme cascade processes. The review commences with an analysis of the composition and structure of lignocellulosic biomass, followed by a discussion on the drawbacks associated with conventional pre-treatment techniques. The subsequent analysis explores the importance of efficient pre-treatment methods in the context of biofuel production. We thoroughly investigate the utilization of nanotechnology in the pre-treatment of enzyme cascades across three distinct sections. Nanomaterials for enzyme immobilization, enhanced enzyme stability and activity through nanotechnology, and nanocarriers for controlled enzyme delivery. Moreover, the techniques used to analyse nanomaterials and the interactions between enzymes and nanomaterials are introduced. This review emphasizes the significance of comprehending the mechanisms underlying the synergy between nanotechnology and enzymes establishing sustainable and environmentally friendly nanotechnology applications.


Biomass , Enzymes, Immobilized , Lignin , Nanotechnology , Nanotechnology/methods , Lignin/chemistry , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Biofuels , Enzymes/chemistry , Enzymes/metabolism , Nanostructures/chemistry , Enzyme Stability
4.
J Bioinform Comput Biol ; 22(2): 2450005, 2024 Apr.
Article En | MEDLINE | ID: mdl-38779780

Enzymes catalyze diverse biochemical reactions and are building blocks of cellular and metabolic pathways. Data and metadata of enzymes are distributed across databases and are archived in various formats. The enzyme databases provide utilities for efficient searches and downloading enzyme records in batch mode but do not support organism-specific extraction of subsets of data. Users are required to write scripts for parsing entries for customized data extraction prior to downstream analysis. Integrated Customized Extraction of Enzyme Data (iCEED) has been developed to provide organism-specific customized data extraction utilities for seven commonly used enzyme databases and brings these resources under an integrated portal. iCEED provides dropdown menus and search boxes using typehead utility for submission of queries as well as enzyme class-based browsing utility. A utility to facilitate mapping and visualization of functionally important features on the three-dimensional (3D) structures of enzymes is integrated. The customized data extraction utilities provided in iCEED are expected to be useful for biochemists, biotechnologists, computational biologists, and life science researchers to build curated datasets of their choice through an easy to navigate web-based interface. The integrated feature visualization system is useful for a fine-grained understanding of the enzyme structure-function relationship. Desired subsets of data, extracted and curated using iCEED can be subsequently used for downstream processing, analyses, and knowledge discovery. iCEED can also be used for training and teaching purposes.


Databases, Protein , Enzymes , Software , Enzymes/chemistry , Enzymes/metabolism , Computational Biology/methods , User-Computer Interface , Internet
5.
Protein Eng Des Sel ; 372024 Jan 29.
Article En | MEDLINE | ID: mdl-38713696

Plastic degrading enzymes have immense potential for use in industrial applications. Protein engineering efforts over the last decade have resulted in considerable enhancement of many properties of these enzymes. Directed evolution, a protein engineering approach that mimics the natural process of evolution in a laboratory, has been particularly useful in overcoming some of the challenges of structure-based protein engineering. For example, directed evolution has been used to improve the catalytic activity and thermostability of polyethylene terephthalate (PET)-degrading enzymes, although its use for the improvement of other desirable properties, such as solvent tolerance, has been less studied. In this review, we aim to identify some of the knowledge gaps and current challenges, and highlight recent studies related to the directed evolution of plastic-degrading enzymes.


Directed Molecular Evolution , Protein Engineering , Directed Molecular Evolution/methods , Plastics/chemistry , Plastics/metabolism , Polyethylene Terephthalates/chemistry , Polyethylene Terephthalates/metabolism , Enzymes/genetics , Enzymes/chemistry , Enzymes/metabolism
6.
J Nanobiotechnology ; 22(1): 286, 2024 May 25.
Article En | MEDLINE | ID: mdl-38796465

Various clinical symptoms of digestive system, such as infectious, inflammatory, and malignant disorders, have a profound impact on the quality of life and overall health of patients. Therefore, the chase for more potent medicines is both highly significant and urgent. Nanozymes, a novel class of nanomaterials, amalgamate the biological properties of nanomaterials with the catalytic activity of enzymes, and have been engineered for various biomedical applications, including complex gastrointestinal diseases (GI). Particularly, because of their distinctive metal coordination structure and ability to maximize atom use efficiency, single-atom nanozymes (SAzymes) with atomically scattered metal centers are becoming a more viable substitute for natural enzymes. Traditional nanozyme design strategies are no longer able to meet the current requirements for efficient and diverse SAzymes design due to the diversification and complexity of preparation processes. As a result, this review emphasizes the design concept and the synthesis strategy of SAzymes, and corresponding bioenzyme-like activities, such as superoxide dismutase (SOD), peroxidase (POD), oxidase (OXD), catalase (CAT), and glutathione peroxidase (GPx). Then the various application of SAzymes in GI illnesses are summarized, which should encourage further research into nanozymes to achieve better application characteristics.


Gastrointestinal Diseases , Nanostructures , Humans , Nanostructures/chemistry , Animals , Enzymes/chemistry , Enzymes/metabolism , Superoxide Dismutase/chemistry , Superoxide Dismutase/metabolism , Catalase/chemistry , Catalase/metabolism , Catalysis , Glutathione Peroxidase/metabolism
7.
Anal Chem ; 96(21): 8221-8233, 2024 May 28.
Article En | MEDLINE | ID: mdl-38740384

Compared with traditional "lock-key mode" biosensors, a sensor array consists of a series of sensing elements based on intermolecular interactions (typically hydrogen bonds, van der Waals forces, and electrostatic interactions). At the same time, sensor arrays also have the advantages of fast response, high sensitivity, low energy consumption, low cost, rich output signals, and imageability, which have attracted widespread attention from researchers. Nanozymes are nanomaterials which own enzyme-like properties. Because of the adjustable activity, high stability, and cost effectiveness of nanozymes, they are potential candidates for construction of sensor arrays to output different signals from analytes through the chemoresponse of colorants, which solves the shortcomings of traditional sensors that they cannot support multiple detection and lack universality. Recently, a sensor array based on nanozymes as nonspecific recognition receptors has attracted much more attention from researchers and has been applied to precise recognition of proteins, bacteria, and heavy metals. In this perspective, attention is given to nanozymes and the regulation of their enzyme-like activity. Particularly, the building principles and methods for sensor arrays based on nanozymes are analyzed, and the applications are summarized. Finally, the approaches to overcome the challenges and perspectives are also presented and analyzed for facilitating further research and development of nanozyme sensor arrays. This perspective should be helpful for gaining insight into research ideas within the field of nanozyme sensor arrays.


Biosensing Techniques , Nanostructures , Nanostructures/chemistry , Enzymes/metabolism , Enzymes/chemistry
8.
Biotechnol Adv ; 73: 108376, 2024.
Article En | MEDLINE | ID: mdl-38740355

Enzymes play a pivotal role in various industries by enabling efficient, eco-friendly, and sustainable chemical processes. However, the low turnover rates and poor substrate selectivity of enzymes limit their large-scale applications. Rational computational enzyme design, facilitated by computational algorithms, offers a more targeted and less labor-intensive approach. There has been notable advancement in employing rational computational protein engineering strategies to overcome these issues, it has not been comprehensively reviewed so far. This article reviews recent developments in rational computational enzyme design, categorizing them into three types: structure-based, sequence-based, and data-driven machine learning computational design. Case studies are presented to demonstrate successful enhancements in catalytic activity, stability, and substrate selectivity. Lastly, the article provides a thorough analysis of these approaches, highlights existing challenges and potential solutions, and offers insights into future development directions.


Enzymes , Protein Engineering , Protein Engineering/methods , Enzymes/chemistry , Enzymes/metabolism , Computational Biology/methods , Machine Learning , Substrate Specificity , Algorithms , Models, Molecular
9.
J Chem Inf Model ; 64(8): 3123-3139, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38573056

Rapidly predicting enzyme properties for catalyzing specific substrates is essential for identifying potential enzymes for industrial transformations. The demand for sustainable production of valuable industry chemicals utilizing biological resources raised a pressing need to speed up biocatalyst screening using machine learning techniques. In this research, we developed an all-purpose deep-learning-based multiple-toolkit (ALDELE) workflow for screening enzyme catalysts. ALDELE incorporates both structural and sequence representations of proteins, alongside representations of ligands by subgraphs and overall physicochemical properties. Comprehensive evaluation demonstrated that ALDELE can predict the catalytic activities of enzymes, and particularly, it identifies residue-based hotspots to guide enzyme engineering and generates substrate heat maps to explore the substrate scope for a given biocatalyst. Moreover, our models notably match empirical data, reinforcing the practicality and reliability of our approach through the alignment with confirmed mutation sites. ALDELE offers a facile and comprehensive solution by integrating different toolkits tailored for different purposes at affordable computational cost and therefore would be valuable to speed up the discovery of new functional enzymes for their exploitation by the industry.


Biocatalysis , Deep Learning , Enzymes , Enzymes/metabolism , Enzymes/chemistry , Models, Molecular , Protein Conformation
10.
Phys Chem Chem Phys ; 26(16): 12610-12618, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38597505

In the present study, we have used the MEI196 set of interaction energies to investigate low-cost computational chemistry approaches for the calculation of binding between a molecule and its environment. Density functional theory (DFT) methods, when used with the vDZP basis set, yield good agreement with the reference energies. On the other hand, semi-empirical methods are less accurate as expected. By examining different groups of systems within MEI196 that contain species of a similar nature, we find that chemical similarity leads to cancellation of errors in the calculation of relative binding energies. Importantly, the semi-empirical method GFN1-xTB (XTB1) yields reasonable results for this purpose. We have thus further assessed the performance of XTB1 for calculating relative energies of docking poses of substrates in enzyme active sites represented by cluster models or within the ONIOM protocol. The results support the observations on error cancellation. This paves the way for the use of XTB1 in parts of large-scale virtual screening workflows to accelerate the drug discovery process.


Catalytic Domain , Density Functional Theory , Molecular Docking Simulation , Thermodynamics , Pharmaceutical Preparations/chemistry , Pharmaceutical Preparations/metabolism , Enzymes/chemistry , Enzymes/metabolism
11.
Int J Biol Macromol ; 267(Pt 2): 131518, 2024 May.
Article En | MEDLINE | ID: mdl-38615865

D-Galactose derivatives, including galactosyl-conjugates and galactose-upgrading compounds, provide various physiological benefits and find applications in industries such as food, cosmetics, feed, pharmaceuticals. Many research on galactose derivatives focuses on identification, characterization, development, and mechanistic aspects of their physiological function, providing opportunities and challenges for the development of practical approaches for synthesizing galactose derivatives. This study focuses on recent advancements in enzymatic biosynthesis of galactose derivatives. Various strategies including isomerization, epimerization, transgalactosylation, and phosphorylation-dephosphorylation were extensively discussed under the perspectives of thermodynamic feasibility, theoretical yield, cost-effectiveness, and by-product elimination. Specifically, the enzymatic phosphorylation-dephosphorylation cascade is a promising enzymatic synthesis route for galactose derivatives because it can overcome the thermodynamic equilibrium of isomerization and utilize cost-effective raw materials. The study also elucidates the existing challenges and future trends in enzymatic biosynthesis of galactose derivatives. Collectively, this review provides a real-time summary aimed at promoting the practical biosynthesis of galactose derivatives through enzymatic catalysis.


Galactose , Galactose/metabolism , Galactose/chemistry , Galactose/biosynthesis , Phosphorylation , Enzymes/metabolism , Enzymes/chemistry , Glycosylation
12.
Nanoscale ; 16(17): 8196-8215, 2024 May 02.
Article En | MEDLINE | ID: mdl-38572762

Noble metal (e.g., Au and Ag) nanoclusters (NCs), which exhibit structural complexity and hierarchy comparable to those of natural proteins, have been increasingly pursued in artificial enzyme research. The protein-like structure of metal NCs not only ensures enzyme-mimic catalytic activity, including peroxidase-, catalase-, and superoxide dismutase-mimic activities, but also affords an unprecedented opportunity to correlate the catalytic performance with the cluster structure at the molecular or atomic levels. In this review, we aim to summarize the recent progress in programming and demystify the enzyme-mimic catalytic activity of metal NCs, presenting the state-of-the-art understandings of the structure-property relationship of metal NC-based artificial enzymes. By leveraging on a concise anatomy of the hierarchical structure of noble metal NCs, we manage to unravel the structural origin of the catalytic performance of metal NCs. Noteworthily, it has been proven that the surface ligands and metal-ligand interface of metal NCs are instrumental in influencing enzyme-mimic catalytic activities. In addition to the structure-property correlation, we also discuss the synthetic methodologies feasible to tailoring the cluster structure at the atomic level. Prior to the closure of this review with our perspectives in noble metal NC-based artificial enzymes, we also exemplify the biomedical applications based on the enzyme-mimic catalysis of metal NCs with the theranostics of kidney injury, brain inflammation, and tumors. The fundamental and methodological advancements delineated in this review would be conducive to further development of metal NCs as an alternative family of artificial enzymes.


Metal Nanoparticles , Metal Nanoparticles/chemistry , Catalysis , Humans , Gold/chemistry , Animals , Biomimetic Materials/chemistry , Silver/chemistry , Enzymes/chemistry , Enzymes/metabolism
13.
J Chem Inf Model ; 64(9): 3953-3958, 2024 May 13.
Article En | MEDLINE | ID: mdl-38607669

The rate constants of enzyme-catalyzed reactions (kcat) are often approximated from the barrier height of the reactive step. We introduce an enhanced sampling QM/MM approach that directly calculates the kinetics of enzymatic reactions, without introducing the transition-state theory assumptions, and takes into account the dynamical equilibrium between the reactive and non-reactive conformations of the enzyme/substrate complex. Our computed kcat values are in order-of-magnitude agreement with the experimental data for two representative enzymatic reactions.


Biocatalysis , Quantum Theory , Kinetics , Molecular Dynamics Simulation , Enzymes/metabolism , Enzymes/chemistry , Protein Conformation
14.
J Chem Inf Model ; 64(9): 3912-3922, 2024 May 13.
Article En | MEDLINE | ID: mdl-38648614

In constructing finite models of enzyme active sites for quantum-chemical calculations, atoms at the periphery of the model must be constrained to prevent unphysical rearrangements during geometry relaxation. A simple fixed-atom or "coordinate-lock" approach is commonly employed but leads to undesirable artifacts in the form of small imaginary frequencies. These preclude evaluation of finite-temperature free-energy corrections, limiting thermochemical calculations to enthalpies only. Full-dimensional vibrational frequency calculations are possible by replacing the fixed-atom constraints with harmonic confining potentials. Here, we compare that approach to an alternative strategy in which fixed-atom contributions to the Hessian are simply omitted. While the latter strategy does eliminate imaginary frequencies, it tends to underestimate both the zero-point energy and the vibrational entropy while introducing artificial rigidity. Harmonic confining potentials eliminate imaginary frequencies and provide a flexible means to construct active-site models that can be used in unconstrained geometry relaxations, affording better convergence of reaction energies and barrier heights with respect to the model size, as compared to models with fixed-atom constraints.


Catalytic Domain , Quantum Theory , Vibration , Models, Molecular , Enzymes/chemistry , Enzymes/metabolism , Models, Chemical , Thermodynamics
15.
ACS Sens ; 9(5): 2237-2253, 2024 May 24.
Article En | MEDLINE | ID: mdl-38669585

Enzymes serve as pivotal biological catalysts that accelerate essential chemical reactions, thereby influencing a variety of physiological processes. Consequently, the monitoring of enzyme activity and inhibition not only yields crucial insights into health and disease conditions but also forms the basis of research in drug discovery, toxicology, and the understanding of disease mechanisms. In this context, near-infrared (NIR) fluorescent single-walled carbon nanotubes (SWCNTs) have emerged as effective tools for tracking enzyme activity and inhibition through diverse strategies. This perspective explores the physicochemical attributes of SWCNTs that render them well-suited for such monitoring. Additionally, we delve into the various strategies developed so far for successfully monitoring enzyme activity and inhibition, emphasizing the distinctive features of each principle. Furthermore, we contrast the benefits of SWCNT-based NIR probes with conventional gold standards in monitoring enzyme activity. Lastly, we highlight the current challenges faced in this field and suggest potential solutions to propel it forward. This perspective aims to contribute to the ongoing progress in biodiagnostics and seeks to engage the wider community in developing and applying enzymatic assays using SWCNTs.


Fluorescent Dyes , Nanotubes, Carbon , Nanotubes, Carbon/chemistry , Fluorescent Dyes/chemistry , Humans , Infrared Rays , Spectroscopy, Near-Infrared/methods , Enzyme Assays/methods , Enzymes/chemistry , Enzymes/metabolism
16.
Org Biomol Chem ; 22(18): 3559-3583, 2024 05 08.
Article En | MEDLINE | ID: mdl-38639195

Steroids are an important family of bioactive compounds. Steroid drugs are renowned for their multifaceted pharmacological activities and are the second-largest category in the global pharmaceutical market. Recent developments in biocatalysis and biosynthesis have led to the increased use of enzymes to enhance the selectivity, efficiency, and sustainability for diverse modifications of steroids. This review discusses the advancements achieved over the past five years in the enzymatic modifications of steroid scaffolds, focusing on enzymatic hydroxylation, reduction, dehydrogenation, cascade reactions, and other modifications for future research on the synthesis of novel steroid compounds and related drugs, and new therapeutic possibilities.


Steroids , Steroids/chemistry , Steroids/metabolism , Humans , Biocatalysis , Enzymes/metabolism , Enzymes/chemistry , Hydroxylation , Molecular Structure
17.
Nat Commun ; 15(1): 3447, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38658554

Achieving cost-competitive bio-based processes requires development of stable and selective biocatalysts. Their realization through in vitro enzyme characterization and engineering is mostly low throughput and labor-intensive. Therefore, strategies for increasing throughput while diminishing manual labor are gaining momentum, such as in vivo screening and evolution campaigns. Computational tools like machine learning further support enzyme engineering efforts by widening the explorable design space. Here, we propose an integrated solution to enzyme engineering challenges whereby ML-guided, automated workflows (including library generation, implementation of hypermutation systems, adapted laboratory evolution, and in vivo growth-coupled selection) could be realized to accelerate pipelines towards superior biocatalysts.


Biocatalysis , Protein Engineering , Protein Engineering/methods , Enzymes/metabolism , Enzymes/genetics , Enzymes/chemistry , Machine Learning , Directed Molecular Evolution/methods , Automation , Gene Library
18.
Biotechnol Adv ; 73: 108365, 2024.
Article En | MEDLINE | ID: mdl-38677391

Carbohydrate binding modules (CBMs) are independent non-catalytic domains widely found in carbohydrate-active enzymes (CAZymes), and they play an essential role in the substrate binding process of CAZymes by guiding the appended catalytic modules to the target substrates. Owing to their precise recognition and selective affinity for different substrates, CBMs have received increasing research attention over the past few decades. To date, CBMs from different origins have formed a large number of families that show a variety of substrate types, structural features, and ligand recognition mechanisms. Moreover, through the modification of specific sites of CBMs and the fusion of heterologous CBMs with catalytic domains, improved enzymatic properties and catalytic patterns of numerous CAZymes have been achieved. Based on cutting-edge technologies in computational biology, gene editing, and protein engineering, CBMs as auxiliary components have become portable and efficient tools for the evolution and application of CAZymes. With the aim to provide a theoretical reference for the functional research, rational design, and targeted utilization of novel CBMs in the future, we systematically reviewed the function-related characteristics and potentials of CAZyme-derived CBMs in this review, including substrate recognition and binding mechanisms, non-catalytic contributions to enzyme performances, module modifications, and innovative applications in various fields.


Protein Engineering , Substrate Specificity , Protein Engineering/methods , Carbohydrate Metabolism , Carbohydrates/chemistry , Enzymes/chemistry , Enzymes/metabolism , Enzymes/genetics , Catalytic Domain , Protein Binding , Carbohydrate Binding Modules
19.
Biomater Sci ; 12(9): 2229-2243, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38497247

Nanozymes, a distinctive class of nanomaterials endowed with enzyme-like activity and kinetics akin to enzyme-catalysed reactions, present several advantages over natural enzymes, including cost-effectiveness, heightened stability, and adjustable activity. However, the conventional trial-and-error methodology for developing novel nanozymes encounters growing challenges as research progresses. The advent of artificial intelligence (AI), particularly machine learning (ML), has ushered in innovative design approaches for researchers in this domain. This review delves into the burgeoning role of ML in nanozyme research, elucidating the advancements achieved through ML applications. The review explores successful instances of ML in nanozyme design and implementation, providing a comprehensive overview of the evolving landscape. A roadmap for ML-assisted nanozyme research is outlined, offering a universal guideline for research in this field. In the end, the review concludes with an analysis of challenges encountered and anticipates future directions for ML in nanozyme research. The synthesis of knowledge in this review aims to foster a cross-disciplinary study, propelling the revolutionary field forward.


Machine Learning , Nanostructures , Nanostructures/chemistry , Enzymes/chemistry , Enzymes/metabolism , Humans
20.
Angew Chem Int Ed Engl ; 63(21): e202402316, 2024 May 21.
Article En | MEDLINE | ID: mdl-38494442

In the ever-growing demand for sustainable ways to produce high-value small molecules, biocatalysis has come to the forefront of greener routes to these chemicals. As such, the need to constantly find and optimise suitable biocatalysts for specific transformations has never been greater. Metagenome mining has been shown to rapidly expand the toolkit of promiscuous enzymes needed for new transformations, without requiring protein engineering steps. If protein engineering is needed, the metagenomic candidate can often provide a better starting point for engineering than a previously discovered enzyme on the open database or from literature, for instance. In this review, we highlight where metagenomics has made substantial impact on the area of biocatalysis in recent years. We review the discovery of enzymes in previously unexplored or 'hidden' sequence space, leading to the characterisation of enzymes with enhanced properties that originate from natural selection pressures in native environments.


Biocatalysis , Metagenomics , Enzymes/metabolism , Enzymes/chemistry , Enzymes/genetics , Protein Engineering
...