Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 209
Filtrar
1.
Cells ; 10(8)2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34440814

RESUMEN

Adult neural stem and progenitor cells (NSPCs) contribute to learning, memory, maintenance of homeostasis, energy metabolism and many other essential processes. They are highly heterogeneous populations that require input from a regionally distinct microenvironment including a mix of neurons, oligodendrocytes, astrocytes, ependymal cells, NG2+ glia, vasculature, cerebrospinal fluid (CSF), and others. The diversity of NSPCs is present in all three major parts of the CNS, i.e., the brain, spinal cord, and retina. Intrinsic and extrinsic signals, e.g., neurotrophic and growth factors, master transcription factors, and mechanical properties of the extracellular matrix (ECM), collectively regulate activities and characteristics of NSPCs: quiescence/survival, proliferation, migration, differentiation, and integration. This review discusses the heterogeneous NSPC populations in the normal physiology and highlights their potentials and roles in injured/diseased states for regenerative medicine.


Asunto(s)
Células Madre Adultas/fisiología , Células-Madre Neurales/fisiología , Enfermedades Neurodegenerativas/patología , Traumatismos de la Médula Espinal/patología , Células Madre Adultas/citología , Células Madre Adultas/trasplante , Animales , Antígenos/metabolismo , Diferenciación Celular , Epéndimo/citología , Epéndimo/fisiología , Humanos , Células-Madre Neurales/citología , Células-Madre Neurales/trasplante , Enfermedades Neurodegenerativas/terapia , Proteoglicanos/metabolismo , Medicina Regenerativa , Traumatismos de la Médula Espinal/terapia
2.
Science ; 372(6547): 1205-1209, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-34112692

RESUMEN

Quiescent neural stem cells (NSCs) in the adult mouse ventricular-subventricular zone (V-SVZ) undergo activation to generate neurons and some glia. Here we show that platelet-derived growth factor receptor beta (PDGFRß) is expressed by adult V-SVZ NSCs that generate olfactory bulb interneurons and glia. Selective deletion of PDGFRß in adult V-SVZ NSCs leads to their release from quiescence, uncovering gliogenic domains for different glial cell types. These domains are also recruited upon injury. We identify an intraventricular oligodendrocyte progenitor derived from NSCs inside the brain ventricles that contacts supraependymal axons. Together, our findings reveal that the adult V-SVZ contains spatial domains for gliogenesis, in addition to those for neurogenesis. These gliogenic NSC domains tend to be quiescent under homeostasis and may contribute to brain plasticity.


Asunto(s)
Células Madre Adultas/fisiología , Ventrículos Cerebrales/fisiología , Ventrículos Laterales/fisiología , Células-Madre Neurales/fisiología , Neuroglía/fisiología , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Animales , Astrocitos/citología , Astrocitos/fisiología , Axones/fisiología , Diferenciación Celular , División Celular , Ventrículos Cerebrales/citología , Epéndimo/citología , Epéndimo/fisiología , Femenino , Perfilación de la Expresión Génica , Homeostasis , Ventrículos Laterales/citología , Masculino , Ratones , Neurogénesis , Bulbo Olfatorio/citología , Bulbo Olfatorio/fisiología , Oligodendroglía/citología , Oligodendroglía/fisiología , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética
3.
Elife ; 102021 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-33988504

RESUMEN

Axolotls are uniquely able to resolve spinal cord injuries, but little is known about the mechanisms underlying spinal cord regeneration. We previously found that tail amputation leads to reactivation of a developmental-like program in spinal cord ependymal cells (Rodrigo Albors et al., 2015), characterized by a high-proliferation zone emerging 4 days post-amputation (Rost et al., 2016). What underlies this spatiotemporal pattern of cell proliferation, however, remained unknown. Here, we use modeling, tightly linked to experimental data, to demonstrate that this regenerative response is consistent with a signal that recruits ependymal cells during ~85 hours after amputation within ~830 µm of the injury. We adapted Fluorescent Ubiquitination-based Cell Cycle Indicator (FUCCI) technology to axolotls (AxFUCCI) to visualize cell cycles in vivo. AxFUCCI axolotls confirmed the predicted appearance time and size of the injury-induced recruitment zone and revealed cell cycle synchrony between ependymal cells. Our modeling and imaging move us closer to understanding bona fide spinal cord regeneration.


Asunto(s)
Proliferación Celular , Análisis Espacio-Temporal , Regeneración de la Medula Espinal , Ambystoma mexicanum , Animales , Animales Modificados Genéticamente , Ciclo Celular , Biología Computacional , Epéndimo/fisiología , Traumatismos de la Médula Espinal , Ubiquitinación
4.
PLoS Genet ; 16(12): e1009232, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33347437

RESUMEN

Motile cilia can beat with distinct patterns, but how motility variations are regulated remain obscure. Here, we have studied the role of the coiled-coil protein CFAP53 in the motility of different cilia-types in the mouse. While node (9+0) cilia of Cfap53 mutants were immotile, tracheal and ependymal (9+2) cilia retained motility, albeit with an altered beat pattern. In node cilia, CFAP53 mainly localized at the base (centriolar satellites), whereas it was also present along the entire axoneme in tracheal cilia. CFAP53 associated tightly with microtubules and interacted with axonemal dyneins and TTC25, a dynein docking complex component. TTC25 and outer dynein arms (ODAs) were lost from node cilia, but were largely maintained in tracheal cilia of Cfap53-/- mice. Thus, CFAP53 at the base of node cilia facilitates axonemal transport of TTC25 and dyneins, while axonemal CFAP53 in 9+2 cilia stabilizes dynein binding to microtubules. Our study establishes how differential localization and function of CFAP53 contributes to the unique motion patterns of two important mammalian cilia-types.


Asunto(s)
Dineínas Axonemales/metabolismo , Axonema/metabolismo , Transporte Biológico Activo/genética , Movimiento Celular/genética , Cilios/metabolismo , Embrión de Mamíferos/metabolismo , Microtúbulos/metabolismo , Animales , Dineínas Axonemales/genética , Axonema/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Cilios/genética , Embrión de Mamíferos/fisiología , Embrión de Mamíferos/ultraestructura , Epéndimo/embriología , Epéndimo/metabolismo , Epéndimo/fisiología , Técnica del Anticuerpo Fluorescente , Genotipo , Inmunoprecipitación , Ratones , Ratones Noqueados , Microscopía Electrónica de Transmisión , Microtúbulos/genética , Mutación , Fenotipo , Tráquea/embriología , Tráquea/metabolismo , Tráquea/fisiología , Tráquea/ultraestructura
5.
Ann Anat ; 231: 151549, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32512203

RESUMEN

BACKGROUND: The regenerating blastema of the tail in the lizard Podarcis muralis contains numerous macrophages among the prevalent mesenchymal cells. Some macrophages are phagocytic but others are devoid of phagosomes suggesting that they have other roles aside phagocytosis. METHODS: The presence of healing macrophages (M2-like) has been tested using autoradiographic, immunohistochemical and ultrastructural studies. RESULTS: Autoradiography shows an uptake of tritiated arginine in sparse cells of the blastema and in the regenerating epidermis. Bioinformatics analysis suggests that epitopes for arginase-1 and -2, recognized by the employed antibody, are present in lizards. Immunofluorescence shows sparse arginase immunopositive macrophages in the blastema and few macrophages also in the apical wound epidermis. The ultrastructural study shows that macrophages contain dense secretory granules, most likely inactive lysosomes, and small cytoplasmic pale vesicles. Some of the small vesicles are arginase-positive while immunolabeling is very diffuse in the macrophage cytoplasm. CONCLUSIONS: The presence of cells incorporating arginine and of arginase 1-positive cells suggests that M2-like macrophages are present among mesenchymal and epidermal cells of the regenerative tail blastema. M2-like macrophages may promote tail regeneration differently from the numerous pro-inflammatory macrophages previously detected in the scarring limb. The presence of M2-like macrophages in addition to hyaluronate, support the hypothesis that the regenerative blastema of the tail in lizards is an immuno-privileged organ where cell proliferation and growth occur without degenerating in a tumorigenic outgrowth.


Asunto(s)
Lagartos/anatomía & histología , Lagartos/fisiología , Macrófagos/fisiología , Regeneración/fisiología , Cola (estructura animal)/fisiología , Animales , Arginasa/inmunología , Autorradiografía/veterinaria , Biomarcadores/análisis , Biología Computacional , Epéndimo/anatomía & histología , Epéndimo/fisiología , Epéndimo/ultraestructura , Técnica del Anticuerpo Fluorescente/veterinaria , Humanos , Inmunohistoquímica/veterinaria , Hígado/enzimología , Macrófagos/enzimología , Macrófagos/ultraestructura , Médula Espinal/anatomía & histología , Médula Espinal/fisiología
6.
Curr Opin Genet Dev ; 56: 1-7, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31102978

RESUMEN

Multiciliated cells (MCCs) are specialized in fluid propulsion through directional beating of myriads of superficial motile cilia, which rest on modified centrioles named basal bodies. MCCs are found throughout metazoans, and serve functions as diverse as feeding and locomotion in marine organisms, as well as mucus clearance, cerebrospinal fluid circulation, and egg transportation in mammals. Impaired MCC differentiation or activity causes diseases characterized by severe chronic airway infections and reduced fertility. Through studies in Xenopus and mouse mainly, MCC biology has made significant progress on several fronts in recent years. The gene regulatory network that controls MCC specification and differentiation has been deciphered to a large extent. The enigmatic deuterosomes, which serve as centriole amplification platforms in vertebrate MCCs, have started to be studied at the molecular level. Principles of ciliary beating coordination within and between MCCs have been identified.


Asunto(s)
Cilios/fisiología , Epéndimo/fisiología , Epidermis/fisiología , Animales , Diferenciación Celular/fisiología , Centriolos/metabolismo , Centriolos/fisiología , Cilios/metabolismo , Cilios/ultraestructura , Epéndimo/citología , Ratones , Microscopía Electrónica de Rastreo , Combinación Trimetoprim y Sulfametoxazol/metabolismo , Xenopus laevis
7.
Nat Commun ; 9(1): 2279, 2018 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-29891944

RESUMEN

Multiciliated ependymal cells line all brain cavities. The beating of their motile cilia contributes to the flow of cerebrospinal fluid, which is required for brain homoeostasis and functions. Motile cilia, nucleated from centrioles, persist once formed and withstand the forces produced by the external fluid flow and by their own cilia beating. Here, we show that a dense actin network around the centrioles is induced by cilia beating, as shown by the disorganisation of the actin network upon impairment of cilia motility. Moreover, disruption of the actin network, or specifically of the apical actin network, causes motile cilia and their centrioles to detach from the apical surface of ependymal cell. In conclusion, cilia beating controls the apical actin network around centrioles; the mechanical resistance of this actin network contributes, in turn, to centriole stability.


Asunto(s)
Actinas/fisiología , Centriolos/fisiología , Cilios/fisiología , Epéndimo/fisiología , Actinas/química , Animales , Fenómenos Biomecánicos , Proteínas del Citoesqueleto , Epéndimo/crecimiento & desarrollo , Epéndimo/ultraestructura , Ratones , Ratones Noqueados , Ratones Transgénicos , Proteínas de Microfilamentos , Modelos Neurológicos , Mapas de Interacción de Proteínas , Proteínas/genética , Proteínas/metabolismo
8.
Nat Commun ; 9(1): 1655, 2018 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-29695808

RESUMEN

Specialized, differentiated cells often perform unique tasks that require them to maintain a stable phenotype. Multiciliated ependymal cells (ECs) are unique glial cells lining the brain ventricles, important for cerebral spinal fluid circulation. While functional ECs are needed to prevent hydrocephalus, they have also been reported to generate new neurons: whether ECs represent a stable cellular population remains unclear. Via a chemical screen we found that mature ECs are inherently plastic, with their multiciliated state needing constant maintenance by the Foxj1 transcription factor, which paradoxically is rapidly turned over by the ubiquitin-proteasome system leading to cellular de-differentiation. Mechanistic analyses revealed a novel NF-κB-independent IKK2 activity stabilizing Foxj1 in mature ECs, and we found that known IKK2 inhibitors including viruses and growth factors robustly induced Foxj1 degradation, EC de-differentiation, and hydrocephalus. Although mature ECs upon de-differentiation can divide and regenerate multiciliated ECs, we did not detect evidence supporting EC's neurogenic potential.


Asunto(s)
Desdiferenciación Celular/fisiología , Plasticidad de la Célula/fisiología , Epéndimo/citología , Hidrocefalia/etiología , Neuroglía/fisiología , Animales , Desdiferenciación Celular/efectos de los fármacos , Células Cultivadas , Cilios/fisiología , Ciclopentanos/farmacología , Epéndimo/fisiología , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Células HEK293 , Humanos , Hidrocefalia/patología , Quinasa I-kappa B/antagonistas & inhibidores , Quinasa I-kappa B/genética , Quinasa I-kappa B/metabolismo , Ratones , Ratones Noqueados , Neurogénesis/fisiología , Neuroglía/citología , Neuronas/fisiología , Cultivo Primario de Células , Pirimidinas/farmacología , Transducción de Señal/fisiología
9.
Stem Cell Reports ; 10(3): 984-999, 2018 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-29503085

RESUMEN

The regulatory mechanisms that control neural stem cell (NSC) activation in the adult ventricular-subventricular zone (V-SVZ) stem cell niche have been the focus of intense investigation, yet how the niche first develops and organizes is poorly understood. Here, we examined matrix metalloproteinases (MMPs) for potential roles in V-SVZ stem cell niche development. MMP12 was found to promote appropriate niche cellular arrangements, the formation of specialized niche extracellular matrix, and the translational planar cell polarity of ependymal cells that surround and support niche NSCs. Surprisingly, ependymal cells were found to have an intracellular pool of MMP12 that promoted ependymal cell ciliogenesis by upregulating FOXJ1. In addition, both extracellular and intracellular MMP12 were found to regulate V-SVZ niche output by promoting NSC quiescence. These findings reveal that extracellular and intracellular MMP12 have both unique and overlapping roles that help orchestrate the development of the adult V-SVZ stem cell niche.


Asunto(s)
Matriz Extracelular/metabolismo , Ventrículos Laterales/metabolismo , Ventrículos Laterales/fisiología , Metaloproteinasa 12 de la Matriz/metabolismo , Células-Madre Neurales/metabolismo , Células-Madre Neurales/fisiología , Nicho de Células Madre/fisiología , Animales , Polaridad Celular/fisiología , Epéndimo/metabolismo , Epéndimo/fisiología , Matriz Extracelular/fisiología , Factores de Transcripción Forkhead/metabolismo , Ratones , Ratones Endogámicos C57BL , Regulación hacia Arriba/fisiología
10.
Mol Neurobiol ; 55(4): 2780-2788, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28455692

RESUMEN

Drug delivery to the central nervous system (CNS) is complicated by the blood-brain barrier. As a result, many agents that are found to be potentially effective at their site of action cannot be sufficiently or effectively delivered to the CNS and therefore have been discarded and not developed further for clinical use, leaving many CNS diseases untreated. One way to overcome this obstacle is intracerebroventricular (ICV) delivery of the therapeutics directly to cerebrospinal fluid (CSF). Recent experimental and clinical findings reveal that CSF flows from the ventricles throughout the parenchyma towards the subarachnoid space also named minor CSF pathway, while earlier, it was suggested that only in pathological conditions such as hydrocephalus this form of CSF flow occurs. This transependymal flow of CSF provides a route to distribute ICV-infused drugs throughout the brain. More insight on transependymal CSF flow will direct more rational to ICV drug delivery and broaden its clinical indications in managing CNS diseases.


Asunto(s)
Líquido Cefalorraquídeo/fisiología , Sistemas de Liberación de Medicamentos , Epéndimo/fisiología , Reología , Animales , Humanos
11.
Adv Exp Med Biol ; 1041: 55-79, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29204829

RESUMEN

The ependyma of the spinal cord is currently proposed as a latent neural stem cell niche. This chapter discusses recent knowledge on the developmental origin and nature of the heterogeneous population of cells that compose this stem cell microenviroment, their diverse physiological properties and regulation. The chapter also reviews relevant data on the ependymal cells as a source of plasticity for spinal cord repair.


Asunto(s)
Epéndimo/fisiología , Células-Madre Neurales/fisiología , Médula Espinal/fisiología , Nicho de Células Madre/fisiología , Animales , Diferenciación Celular/fisiología , Epéndimo/citología , Humanos , Regeneración Nerviosa/fisiología , Células-Madre Neurales/citología , Médula Espinal/citología , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/fisiopatología
12.
Open Biol ; 7(11)2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29162726

RESUMEN

Zebrafish are able to regenerate the spinal cord and recover motor and sensory functions upon severe injury, through the activation of cells located at the ependymal canal. Here, we show that cells surrounding the ependymal canal in the adult zebrafish spinal cord express Foxj1a. We demonstrate that ependymal cells express Foxj1a from their birth in the embryonic neural tube and that Foxj1a activity is required for the final positioning of the ependymal canal. We also show that in response to spinal cord injury, Foxj1a ependymal cells actively proliferate and contribute to the restoration of the spinal cord structure. Finally, this study reveals that Foxj1a expression in the injured spinal cord is regulated by regulatory elements activated during regeneration. These data establish Foxj1a as a pan-ependymal marker in development, homeostasis and regeneration and may help identify the signals that enable this progenitor population to replace lost cells after spinal cord injury.


Asunto(s)
Epéndimo/fisiología , Factores de Transcripción Forkhead/genética , Regulación del Desarrollo de la Expresión Génica , Regeneración , Pez Cebra/fisiología , Animales , Animales Modificados Genéticamente , Epéndimo/citología , Epéndimo/metabolismo , Factores de Transcripción Forkhead/metabolismo , Inmunohistoquímica , Hibridación in Situ , Microscopía Electrónica de Transmisión , ARN Mensajero/genética , Traumatismos de la Médula Espinal/metabolismo , Pez Cebra/genética , Pez Cebra/lesiones , Proteínas de Pez Cebra
13.
Histol Histopathol ; 32(9): 879-892, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28177105

RESUMEN

The circumventricular organs (CVOs) are midline structures located around the third and fourth ventricles that are characterized by a lack of blood-brain barrier. The pineal gland, median eminence, neurohypophysis and the subcommisural organ are classified as secretory, whereas the subfornical organ, area postrema and the organum vasculosum of the lamina terminalis as the sensory CVOs. Glial cells consisting of astrocytes and microglia/macrophages are present in all these organs. The pineal gland, neurohypophysis and the median eminence lack the presence of neurons that are present in the rest of the circumventricular organs. Most of the circumventricular organs are lined by ependymal cells except the pineal and the neurohypophysis. Modified ependymal cells known as tanycytes are present in the ependymal lining. These organs are important sites for communication with the cerebrospinal fluid as well as between the brain and peripheral organs via blood-borne products as they lack the blood brain barrier.


Asunto(s)
Barrera Hematoencefálica/fisiología , Órganos Circunventriculares/fisiología , Células Ependimogliales/fisiología , Neuroglía/fisiología , Animales , Barrera Hematoencefálica/citología , Órganos Circunventriculares/citología , Epéndimo/citología , Epéndimo/fisiología , Células Ependimogliales/citología
14.
Glia ; 65(7): 1032-1042, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28168763

RESUMEN

The V-SVZ adult neurogenic niche is located in the wall of the lateral ventricles and contains neural stem cells, with self-renewing and differentiating ability and postmitotic multiciliated ependymal cells, an important structural and trophic component of the niche. The niche is established at postnatal stages from a subpopulation of radial glial cells, determined during embryogenesis. Radial glial cells constitute a heterogeneous population, which give rise, in addition to niche cellular components, to neurons and glial cells. The mechanisms that direct their fate commitment towards V-SVZ niche cells are largely unknown. In the present review, we discuss recent findings on the signaling networks governing fate commitment decisions of radial glial cells towards multiciliated ependymal cells. We highlight the role of two novel factors: McIdas and GemC1/Lynkeas and the molecular pathways which they activate in order to promote ependymal cell differentiation. Finally, we discuss a possible crosstalk of known signaling pathways, such as Notch, STAT3, and BMPs, for the specification of ependymal versus adult neural stem cells in the V-SVZ niche. GLIA 2017;65:1032-1042.


Asunto(s)
Diferenciación Celular/fisiología , Epéndimo/citología , Epéndimo/fisiología , Células Ependimogliales/fisiología , Ventrículos Laterales/citología , Animales , Proliferación Celular , Células-Madre Neurales/fisiología , Transducción de Señal/fisiología
15.
Dev Neurobiol ; 77(1): 26-38, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27273844

RESUMEN

In zebrafish brains, populations of continuously proliferating cells are present during an entire life span. Under normal conditions, stem cells give rise to rapidly proliferating progenitors that quickly exit the cell cycle and differentiate. Hence fish are favorable models to study what regulates postembryonic neurogenesis. The aim of this study was to determine if optic tectum (OT) cell proliferation is halted during nutritional deprivation (ND) and whether or not it can be restored with refeeding. We examined the effect of ND on the proliferation of Neuroepithelial/Ependymal Progenitor cell (NeEPC) and transitory-amplifying progenitors (TAPs). Following ND, no PCNA immunostaining was found in OT of starved fish, while positive cell populations of PCNA positive progenitors are found at its periphery in control fish. This indicated that active proliferation stopped. To label retaining progenitor cells, BrdU was applied and a chase-period was accompanied by ND. Positive NeEPCs were detected in the external tectum marginal zone of starved fish suggesting that these progenitors are relatively immune to ND. Moreover in the internal tectum marginal zone labeled retaining cells were observed leaving the possibility that some arrested TAPs were present to readily restart proliferation when nutrition was returned. Our results suggest that neurogenesis was maintained during ND and that a normal proliferative situation was recovered after refeeding. We point to the mTOR pathway as a necessary pathway in progenitors to regulate their mitosis activity. Thus, this study highlights mechanisms involved in neural stem and progenitor cell homeostatic maintenance in an adverse situation. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 26-38, 2017.


Asunto(s)
Fenómenos Fisiológicos Nutricionales de los Animales/fisiología , Proliferación Celular/fisiología , Neurogénesis/fisiología , Inanición , Células Madre/fisiología , Colículos Superiores/fisiología , Animales , Epéndimo/citología , Epéndimo/fisiología , Modelos Animales , Células-Madre Neurales/citología , Células-Madre Neurales/fisiología , Células Neuroepiteliales/citología , Células Neuroepiteliales/fisiología , Colículos Superiores/citología , Pez Cebra
16.
Int J Dev Biol ; 61(3-4-5): 257-265, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27528042

RESUMEN

During embryonic development of the Central Nervous System (CNS), the expression of the bHLH transcription factor Nato3 (Ferd3l) is unique and restricted to the floor plate of the neural tube. In mice lacking Nato3 the floor plate cells of the spinal cord do not fully mature, whereas in the midbrain floor plate, progenitors lose some neurogenic activity, giving rise to a reduced population of dopaminergic neurons. Since the floor plate is considered to be disintegrated at the time of birth, Nato3 expression was never tested postnatally and in adult mice. Here, we utilized a Nato3 knockout mouse model in which a LacZ reporter precisely replaced the coding region under the endogenous regulatory elements, so that its expression recapitulates the spatiotemporal pattern of Nato3 expression. Nato3 was found to be expressed in the CNS throughout life in a highly restricted manner along the medial cavities: in subpopulations of cells in the IIIrd ventricle, the cerebral aqueduct, the IVth ventricle, the central canal of the spinal cord, and the subcommissural organ, a gland located in the midbrain. A few unifying themes are shared among all Nato3-positive cells: all are positioned in the midline, are of an ependymal type, and contact the cerebrospinal fluid (CSF) similarly to the embryonic position of the floor plate bordering the lumen of the neural tube. Taken together, Nato3 defines an unrecognized subpopulation of medial cells positioned at only one side of circular ependymal structures, and it may affect their regulatory activities and neuronal stem cell function.


Asunto(s)
Sistema Nervioso Central/fisiología , Epéndimo/fisiología , Regulación del Desarrollo de la Expresión Génica , Animales , Diferenciación Celular , Líquido Cefalorraquídeo/metabolismo , Operón Lac , Ratones , Ratones Noqueados , Microscopía Fluorescente , Proteínas del Tejido Nervioso/metabolismo , Tubo Neural/fisiología , Neurogénesis , Neuronas/metabolismo , Proteínas Represoras , Médula Espinal/embriología , Células Madre/metabolismo , Factores de Tiempo , Factores de Transcripción/metabolismo
17.
Cell Rep ; 16(4): 1126-1137, 2016 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-27425622

RESUMEN

The striatum contributes to many cognitive processes and disorders, but its cell types are incompletely characterized. We show that microfluidic and FACS-based single-cell RNA sequencing of mouse striatum provides a well-resolved classification of striatal cell type diversity. Transcriptome analysis revealed ten differentiated, distinct cell types, including neurons, astrocytes, oligodendrocytes, ependymal, immune, and vascular cells, and enabled the discovery of numerous marker genes. Furthermore, we identified two discrete subtypes of medium spiny neurons (MSNs) that have specific markers and that overexpress genes linked to cognitive disorders and addiction. We also describe continuous cellular identities, which increase heterogeneity within discrete cell types. Finally, we identified cell type-specific transcription and splicing factors that shape cellular identities by regulating splicing and expression patterns. Our findings suggest that functional diversity within a complex tissue arises from a small number of discrete cell types, which can exist in a continuous spectrum of functional states.


Asunto(s)
Cuerpo Estriado/fisiología , ARN/genética , Animales , Astrocitos/metabolismo , Astrocitos/fisiología , Conducta Adictiva/metabolismo , Conducta Adictiva/fisiopatología , Diferenciación Celular/fisiología , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/fisiopatología , Cuerpo Estriado/metabolismo , Epéndimo/metabolismo , Epéndimo/fisiología , Masculino , Ratones , Neuronas/metabolismo , Neuronas/fisiología , Oligodendroglía/metabolismo , Oligodendroglía/fisiología , Factores de Transcripción/metabolismo , Transcriptoma/fisiología
18.
Science ; 353(6295): 176-8, 2016 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-27387952

RESUMEN

Cerebrospinal fluid conveys many physiologically important signaling factors through the ventricular cavities of the brain. We investigated the transport of cerebrospinal fluid in the third ventricle of the mouse brain and discovered a highly organized pattern of cilia modules, which collectively give rise to a network of fluid flows that allows for precise transport within this ventricle. We also discovered a cilia-based switch that reliably and periodically alters the flow pattern so as to create a dynamic subdivision that may control substance distribution in the third ventricle. Complex flow patterns were also present in the third ventricles of rats and pigs. Our work suggests that ciliated epithelia can generate and maintain complex, spatiotemporally regulated flow networks.


Asunto(s)
Líquido Cefalorraquídeo/fisiología , Tercer Ventrículo/fisiología , Animales , Cilios/fisiología , Epéndimo/fisiología , Células Epiteliales/fisiología , Hidrodinámica , Ratones , Ratas , Porcinos , Tercer Ventrículo/anatomía & histología
19.
Trends Neurosci ; 39(8): 543-551, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27311928

RESUMEN

Cerebrospinal fluid (CSF) continuously flows through the cerebral ventricles, a process essential for brain homeostasis. Multiciliated ependymal (E1) cells line the walls of the ventricles and contribute importantly to CSF flow through ciliary beating. Key to this function is the rotational and translational planar cell polarity (PCP) of E1 cells. Defects in the PCP of E1 cells can result in abnormal CSF accumulation and hydrocephalus. Here, we integrate recent data on the roles of early CSF flow in the embryonic ventricles, PCP regulators (e.g., Vangl2 and Dishevelled), and cytoskeletal networks in the establishment, refinement, and maintenance of E1 cells' PCP. The planar organization mechanisms of E1 cells could explain how CSF flow contributes to brain function and may help in the diagnosis and prevention of hydrocephalus.


Asunto(s)
Epéndimo/citología , Epéndimo/fisiología , Células Epiteliales/citología , Células Epiteliales/fisiología , Animales , Epéndimo/crecimiento & desarrollo , Epéndimo/fisiopatología , Humanos , Hidrocefalia/patología , Hidrocefalia/fisiopatología
20.
J Comp Neurol ; 524(15): 2982-92, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-26991819

RESUMEN

In mammals, ventricular walls of the developing brain maintain a neurogenic niche, in which radial glial cells act as neural stem cells (NSCs) and generate new neurons in the embryo. In the adult brain, the neurogenic niche is maintained in the ventricular-subventricular zone (V-SVZ) of the lateral wall of lateral ventricles and the hippocampal dentate gyrus. In the neonatal V-SVZ, radial glial cells transform into astrocytic postnatal NSCs and multiciliated ependymal cells. On the other hand, in zebrafish, radial glial cells continue to cover the surface of the adult telencephalic ventricle and maintain a higher neurogenic potential in the adult brain. However, the cell composition of the neurogenic niche of the aged zebrafish brain has not been investigated. Here we show that multiciliated ependymal cells emerge in the neurogenic niche of the aged zebrafish telencephalon. These multiciliated cells appear predominantly in the dorsal part of the ventral telencephalic ventricular zone, which also contains clusters of migrating new neurons. Scanning electron microscopy and live imaging analyses indicated that these multiple cilia beat coordinately and generate constant fluid flow within the ventral telencephalic ventricle. Analysis of the cell composition by transmission electron microscopy revealed that the neurogenic niche in the aged zebrafish contains different types of cells, with ultrastructures similar to those of ependymal cells, transit-amplifying cells, and migrating new neurons in postnatal mice. These data suggest that the transformation capacity of radial glial cells is conserved but that its timing is different between fish and mice. J. Comp. Neurol. 524:2982-2992, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Envejecimiento/fisiología , Epéndimo/citología , Nicho de Células Madre/fisiología , Telencéfalo/citología , Pez Cebra/fisiología , Envejecimiento/patología , Animales , Animales Modificados Genéticamente , Movimiento Celular/fisiología , Cilios/ultraestructura , Epéndimo/crecimiento & desarrollo , Epéndimo/fisiología , Epéndimo/ultraestructura , Inmunohistoquímica , Microscopía Confocal , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Telencéfalo/crecimiento & desarrollo , Telencéfalo/fisiología , Telencéfalo/ultraestructura , Pez Cebra/anatomía & histología , Pez Cebra/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA