Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.485
1.
Wei Sheng Yan Jiu ; 53(3): 435-440, 2024 May.
Article Zh | MEDLINE | ID: mdl-38839585

OBJECTIVE: To investigate the effects of oral exposure to iron oxide nanoparticles(Fe_2O_3NPs) on the reproductive system of male rats. METHODS: Forty male SD rats were randomly divided into control group and low, medium, high dose groups, 10 rats in each group, normal saline and 50, 100 and 200 mg/kg Fe_2O_3NPs suspension were given by gavage, respectively. The volume of gavage was 10 mL/kg for 28 days. The body weight was weighed every three days, and the body weight changes of rats were recorded. After intraperitoneal anesthesia with 10% chloral hydrate, the rats were sacrificed by cervical dislocation, and the testis and epididymis were collected. Weigh and calculate the testicular coefficient and epididymal coefficient, the pathological sections of rat testis were observed by hematoxylin-eosin staining, the number of epididymal sperm was counted under an optical microscope and the sperm deformity rate was calculated. The activities of acid phosphatase(ACP), alkaline phosphatase(AKP), lactate dehydrogenase(LDH) and γ-glutamyl transpeptidase(γ-GT), the activity of superoxide dismutase(SOD), and the contents of glutathione(GSH) and malondialdehyde(MDA) in rat testis homogenate were detected by kit method. RESULTS: Compared with control group, there was no significant difference in body weight, testicular coefficient and epididymal coefficient in each dose group. In the medium and high dose groups, the arrangement of spermatogenic epithelium was disordered and spermatogenic cells decreased. The number of sperm in high dose group was decreased, and the sperm deformity rate in medium and high dose groups was increased(P<0.01). The activity of ACP in medium and high dose groups increased(P<0.05), and the activity of γ-GT decreased(P<0.01). There was no significant change in the activity of AKP and LDH in testicular homogenate of rats in each group(P>0.05). The level of GSH in medium dose group was increased(P<0.05), and the content of MDA in medium and high dose groups was increased(P<0.01). There was no significant difference in SOD activity among the groups(P>0.05). CONCLUSION: Under the conditions of this experiment, Fe_2O_3NPs can cause damage to the structure of rat testicular tissue, reduce the number of sperm, increase the rate of sperm deformity, interfere with the activity of marker enzymes in testicular tissue and induce oxidative stress injury, which has a negative impact on the reproductive system of male rats.


Rats, Sprague-Dawley , Testis , Animals , Male , Rats , Testis/drug effects , Testis/metabolism , Testis/pathology , Administration, Oral , Epididymis/drug effects , Epididymis/metabolism , Magnetic Iron Oxide Nanoparticles/toxicity , Spermatozoa/drug effects
2.
PeerJ ; 12: e17399, 2024.
Article En | MEDLINE | ID: mdl-38799061

Background: Circular RNAs (circRNAs) are a large class of RNAs present in mammals. Among these, circCamsap1 is a well-acknowledged circRNA with significant implications, particularly in the development and progression of diverse tumors. However, the potential consequences of circCamsap1 depletion in vivo on male reproduction are yet to be thoroughly investigated. Methods: The presence of circCamsap1 in the mouse testes was confirmed, and gene expression analysis was performed using reverse transcription quantitative polymerase chain reaction. CircCamsap1 knockout mice were generated utilizing the CRISPR/Cas9 system. Phenotypic analysis of both the testes and epididymis was conducted using histological and immunofluorescence staining. Additionally, fertility and sperm motility were assessed. Results: Here, we successfully established a circCamsap1 knockout mouse model without affecting the expression of parental gene. Surprisingly, male mice lacking circCamsap1 (circCamsap1-/-) exhibited normal fertility, with no discernible differences in testicular and epididymal histology, spermatogenesis, sperm counts or sperm motility compared to circCamsap1+/+ mice. These findings suggest that circCamsap1 may not play an essential role in physiological spermatogenesis. Nonetheless, this result also underscores the complexity of circRNA function in male reproductive biology. Therefore, further research is necessary to elucidate the precise roles of other circRNAs in regulating male fertility.


Fertility , Mice, Knockout , RNA, Circular , Sperm Motility , Spermatogenesis , Testis , Animals , Male , Mice , Epididymis/metabolism , Fertility/genetics , RNA, Circular/genetics , RNA, Circular/metabolism , Sperm Motility/genetics , Spermatogenesis/genetics , Testis/metabolism
3.
Toxicology ; 505: 153837, 2024 Jun.
Article En | MEDLINE | ID: mdl-38763426

Tetrabromobisphenol A (TBBPA) has become a topic of public attention due to its pervasive detection in the environment and organisms in recent decades. However, limited information is available regarding the toxicity of TBBPA on reproductive ability of male mammals. Herein, the reproductive toxicity of TBBPA was investigated in male rats to fill the knowledge gap. In this study, male rats were exposed to TBBPA (0, 10, 100, and 1000 mg/kg) for 6 weeks. Subsequently, body and organ indexes, histopathological evaluation of testis and epididymis, ultrastructural observation of sperm, testosterone and progesterone levels, and oxidative stress indicators were conducted to reveal corresponding mechanisms. Results obtained showed that compare to the control group, the body weight, testes weight, epididymis weight, seminal vesicle and coagulation glands weight of rats in the 1000 mg/kg group lost 8.30%, 16.84%, 20.16%, 19.72% and 26.42%, respectively. Intriguingly, exposure to TBBPA (10, 100, 100 mg/kg) resulted in substantial pathological damage in testis, epididymis and sperm. TBBPA exposure also increased malondialdehyde (MDA) and hydrogen peroxide (H2O2) contents, as well as superoxide dismutase (T-SOD) and catalase (CAT) activities in testicular tissue. What's more, the testosterone and progesterone levels in male rat serum were significantly decreased after exposure to TBBPA for 6 weeks. Meanwhile, results of molecular docking showed that TBBPA has a strong affinity with estrogen receptors (ERs). These findings demonstrated that TBBPA exposure negatively impacts the reproductive ability of male rats, thus providing new insights for risk assessment for reproductive health under TBBPA exposure.


Endocrine Disruptors , Oxidative Stress , Polybrominated Biphenyls , Progesterone , Testis , Testosterone , Animals , Male , Polybrominated Biphenyls/toxicity , Oxidative Stress/drug effects , Testis/drug effects , Testis/pathology , Testis/metabolism , Rats , Endocrine Disruptors/toxicity , Testosterone/blood , Progesterone/blood , Spermatozoa/drug effects , Spermatozoa/pathology , Epididymis/drug effects , Epididymis/pathology , Epididymis/metabolism , Rats, Sprague-Dawley , Organ Size/drug effects , Reproduction/drug effects , Molecular Docking Simulation , Dose-Response Relationship, Drug
4.
Cell Biol Toxicol ; 40(1): 26, 2024 May 01.
Article En | MEDLINE | ID: mdl-38691186

Copper ionophore NSC319726 has attracted researchers' attention in treating diseases, particularly cancers. However, its potential effects on male reproduction during medication are unclear. This study aimed to determine whether NSC319726 exposure affected the male reproductive system. The reproductive toxicity of NSC319726 was evaluated in male mice following a continuous exposure period of 5 weeks. The result showed that NSC319726 exposure caused testis index reduction, spermatogenesis dysfunction, and architectural damage in the testis and epididymis. The exposure interfered with spermatogonia proliferation, meiosis initiation, sperm count, and sperm morphology. The exposure also disturbed androgen synthesis and blood testis barrier integrity. NSC319726 treatment could elevate the copper ions in the testis to induce cuproptosis in the testis. Copper chelator rescued the elevated copper ions in the testis and partly restored the spermatogenesis dysfunction caused by NSC319726. NSC319726 treatment also decreased the level of retinol dehydrogenase 10 (RDH10), thereby inhibiting the conversion of retinol to retinoic acid, causing the inability to initiate meiosis. Retinoic acid treatment could rescue the meiotic initiation and spermatogenesis while not affecting the intracellular copper ion levels. The study provided an insight into the bio-safety of NSC319726. Retinoic acid could be a potential therapy for spermatogenesis impairment in patients undergoing treatment with NSC319726.


Copper , Spermatogenesis , Testis , Tretinoin , Male , Animals , Spermatogenesis/drug effects , Tretinoin/pharmacology , Copper/toxicity , Mice , Testis/drug effects , Testis/metabolism , Testis/pathology , Spermatogonia/drug effects , Spermatogonia/metabolism , Spermatozoa/drug effects , Spermatozoa/metabolism , Meiosis/drug effects , Epididymis/drug effects , Epididymis/metabolism , Epididymis/pathology
5.
Cell Commun Signal ; 22(1): 267, 2024 May 14.
Article En | MEDLINE | ID: mdl-38745232

Low sperm motility is a significant contributor to male infertility. beta-defensins have been implicated in host defence and the acquisition of sperm motility; however, the regulatory mechanisms governing their gene expression patterns and functions remain poorly understood. In this study, we performed single-cell RNA and spatial transcriptome sequencing to investigate the cellular composition of testicular and epididymal tissues and examined their gene expression characteristics. In the epididymis, we found that epididymal epithelial cells display a region specificity of gene expression in different epididymal segments, including the beta-defensin family genes. In particular, Defb15, Defb18, Defb20, Defb25 and Defb48 are specific to the caput; Defb22, Defb23 and Defb26 to the corpus; Defb2 and Defb9 to the cauda of the epididymis. To confirm this, we performed mRNA fluorescence in situ hybridisation (FISH) targeting certain exon region of beta-defensin genes, and found some of their expression matched the sequencing results and displayed a close connection with epididimosome marker gene Cd63. In addition, we paid attention to the Sertoli cells and Leydig cells in the testis, along with fibroblasts and smooth muscle cells in the epididymis, by demonstrating their gene expression profile and spatial information. Our study provides a single-cell and spatial landscape for analysing the gene expression characteristics of testicular and epididymal environments and has important implications for the study of spermatogenesis and sperm maturation.


Epididymis , Single-Cell Analysis , Sperm Maturation , Transcriptome , beta-Defensins , Male , Animals , beta-Defensins/genetics , beta-Defensins/metabolism , Mice , Transcriptome/genetics , Sperm Maturation/genetics , Epididymis/metabolism , Spermatozoa/metabolism , Multigene Family , Mice, Inbred C57BL , Testis/metabolism
6.
Sci Total Environ ; 930: 172895, 2024 Jun 20.
Article En | MEDLINE | ID: mdl-38697545

The widespread presence of fluoride in water, food, and the environment continues to exacerbate the impact of fluoride on the male reproductive health. However, as a critical component of the male reproductive system, the intrinsic mechanism of fluoride-induced cauda epididymis damage and the role of miRNAs in this process are still unclear. This study established a mouse fluorosis model and employed miRNA and mRNA sequencing; Evans blue staining, Oil Red O staining, TEM, immunofluorescence, western blotting, and other technologies to investigate the mechanism of miRNA in fluoride-induced cauda epididymal damage. The results showed that fluoride exposure increased the fluoride concentration in the hard tissue and cauda epididymis, altered the morphology and ultrastructure of the cauda epididymis, and reduced the motility rate, normal morphology rate, and hypo-osmotic swelling index of the sperm in the cauda epididymis. Furthermore, sequencing results revealed that fluoride exposure resulted in differential expression of 17 miRNAs and 4725 mRNAs, which were primarily enriched in the biological processes of tight junctions, inflammatory response, and lipid metabolism, with miR-742-3p, miR-141-5p, miR-878-3p, and miR-143-5p serving as key regulators. Further verification found that fluoride damaged tight junctions, raised oxidative stress, induced an inflammatory response, increased lipid synthesis, and reduced lipid decomposition and transport in the cauda epididymis. This study provided a theoretical basis for developing miRNA as potential diagnostic markers and therapeutic target drugs for this injury.


Epididymis , Fluorides , MicroRNAs , RNA, Messenger , Male , Animals , MicroRNAs/metabolism , Fluorides/toxicity , Mice , Epididymis/drug effects , Epididymis/metabolism , RNA, Messenger/metabolism , RNA, Messenger/genetics
7.
FASEB J ; 38(10): e23687, 2024 May 31.
Article En | MEDLINE | ID: mdl-38785390

Mammalian spermatozoa have a surface covered with glycocalyx, consisting of heterogeneous glycoproteins and glycolipids. This complexity arises from diverse monosaccharides, distinct linkages, various isomeric glycans, branching levels, and saccharide sequences. The glycocalyx is synthesized by spermatozoa developing in the testis, and its subsequent alterations during their transit through the epididymis are a critical process for the sperm acquisition of fertilizing ability. In this study, we performed detailed analysis of the glycocalyx on the sperm surface of bull spermatozoa in relation to individual parts of the epididymis using a wide range (24) of lectins with specific carbohydrate binding preferences. Fluorescence analysis of intact sperm isolated from the bull epididymides was complemented by Western blot detection of protein extracts from the sperm plasma membrane fractions. Our experimental results revealed predominant sequential modification of bull sperm glycans with N-acetyllactosamine (LacNAc), followed by subsequent sialylation and fucosylation in a highly specific manner. Additionally, variations in the lectin detection on the sperm surface may indicate the acquisition or release of glycans or glycoproteins. Our study is the first to provide a complex analysis of the bull sperm glycocalyx modification during epididymal maturation.


Epididymis , Glycocalyx , Lectins , Spermatozoa , Male , Animals , Glycocalyx/metabolism , Cattle , Epididymis/metabolism , Epididymis/cytology , Spermatozoa/metabolism , Lectins/metabolism , Polysaccharides/metabolism , Glycoproteins/metabolism
8.
Cells ; 13(7)2024 Mar 22.
Article En | MEDLINE | ID: mdl-38607002

(1) Background: Spermatozoa acquired motility and matured in epididymis after production in the testis. However, there is still limited understanding of the specific characteristics of sperm development across different species. In this study, we employed a comprehensive approach to analyze cell compositions in both testicular and epididymal tissues, providing valuable insights into the changes occurring during meiosis and spermiogenesis in mouse and pig models. Additionally, we identified distinct gene expression signatures associated with various spermatogenic cell types. (2) Methods: To investigate the differences in spermatogenesis between mice and pigs, we constructed a single-cell RNA dataset. (3) Results: Our findings revealed notable differences in testicular cell clusters between these two species. Furthermore, distinct gene expression patterns were observed among epithelial cells from different regions of the epididymis. Interestingly, regional gene expression patterns were also identified within principal cell clusters of the mouse epididymis. Moreover, through analysing differentially expressed genes related to the epididymis in both mouse and pig models, we successfully identified potential marker genes associated with sperm development and maturation for each species studied. (4) Conclusions: This research presented a comprehensive single-cell landscape analysis of both testicular and epididymal tissues, shedding light on the intricate processes involved in spermatogenesis and sperm maturation, specifically within mouse and pig models.


Semen , Testis , Mice , Male , Animals , Swine , Testis/metabolism , Spermatozoa/metabolism , Epididymis/metabolism , Spermatogenesis/genetics
9.
J Cell Physiol ; 239(6): e31273, 2024 Jun.
Article En | MEDLINE | ID: mdl-38666419

Glutathione peroxisomal-5 (Gpx5) promotes the elimination of H2O2 or organic hydrogen peroxide, and plays an important role in the physiological process of resistance to oxidative stress (OS). To directly and better understand the protection of Gpx5 against OS in epididymal cells and sperm, we studied its mechanism of antioxidant protection from multiple aspects. To more directly investigate the role of Gpx5 in combating oxidative damage, we started with epididymal tissue morphology and Gpx5 expression profiles in combination with the mouse epididymal epithelial cell line PC1 (proximal caput 1) expressing recombinant Gpx5. The Gpx5 is highly expressed in adult male epididymal caput, and its protein signal can be detected in the sperm of the whole epididymis. Gpx5 has been shown to alleviate OS damage induced by 3-Nitropropionic Acid (3-NPA), including enhancing antioxidant activity, reducing mitochondrial damage, and suppressing cell apoptosis. Gpx5 reduces OS damage in PC1 and maintains the well-functioning extracellular vesicles (EVs) secreted by PC1, and the additional epididymal EVs play a role in the response of sperm to OS damage, including reducing plasma membrane oxidation and death, and increasing sperm motility and sperm-egg binding ability. Our study suggests that GPX5 plays an important role as an antioxidant in the antioxidant processes of epididymal cells and sperm, including plasma membrane oxidation, mitochondrial oxidation, apoptosis, sperm motility, and sperm-egg binding ability.


Antioxidants , Epididymis , Extracellular Vesicles , Glutathione Peroxidase , Oxidative Stress , Spermatozoa , Male , Animals , Epididymis/metabolism , Epididymis/drug effects , Extracellular Vesicles/metabolism , Extracellular Vesicles/drug effects , Antioxidants/metabolism , Antioxidants/pharmacology , Oxidative Stress/drug effects , Mice , Spermatozoa/metabolism , Spermatozoa/drug effects , Glutathione Peroxidase/metabolism , Glutathione Peroxidase/genetics , Apoptosis/drug effects , Sperm Motility/drug effects , Cell Line , Mitochondria/metabolism , Mitochondria/drug effects , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Propionates/pharmacology , Nitro Compounds
10.
Andrology ; 12(5): 1038-1057, 2024 Jul.
Article En | MEDLINE | ID: mdl-38576152

BACKGROUND: The epididymis has long been of interest owing to its role in promoting the functional maturation of the male germline. More recent evidence has also implicated the epididymis as an important sensory tissue responsible for remodeling of the sperm epigenome, both under physiological conditions and in response to diverse forms of environmental stress. Despite this knowledge, the intricacies of the molecular pathways involved in regulating the adaptation of epididymal tissue to paternal stressors remains to be fully resolved. OBJECTIVE: The overall objective of this study was to investigate the direct impact of corticosterone challenge on a tractable epididymal epithelial cell line (i.e., mECap18 cells), in terms of driving adaptation of the cellular proteome and phosphoproteome signaling networks. MATERIALS AND METHODS: The newly developed phosphoproteomic platform EasyPhos coupled with sequencing via an Orbitrap Exploris 480 mass spectrometer, was applied to survey global changes in the mECap18 cell (phospho)proteome resulting from sub-chronic (10-day) corticosterone challenge. RESULTS: The imposed corticosterone exposure regimen elicited relatively subtle modifications of the global mECap18 proteome (i.e., only 73 out of 4171 [∼1.8%] proteins displayed altered abundance). By contrast, ∼15% of the mECap18 phosphoproteome was substantially altered following corticosterone challenge. In silico analysis of the corresponding parent proteins revealed an activation of pathways linked to DNA damage repair and oxidative stress responses as well as a reciprocal inhibition of pathways associated with organismal death. Corticosterone challenge also induced the phosphorylation of several proteins linked to the biogenesis of microRNAs. Accordingly, orthogonal validation strategies confirmed an increase in DNA damage, which was ameliorated upon selective kinase inhibition, and an altered abundance profile of a subset of microRNAs in corticosterone-treated cells. CONCLUSIONS: Together, these data confirm that epididymal epithelial cells are reactive to corticosterone challenge, and that their response is tightly coupled to the opposing action of cellular kinases and phosphatases.


Corticosterone , Epididymis , Epithelial Cells , Proteomics , Male , Epididymis/metabolism , Epididymis/drug effects , Animals , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Corticosterone/pharmacology , Proteomics/methods , Cell Line , Proteome/metabolism , Phosphoproteins/metabolism , Signal Transduction/drug effects
11.
Mol Cell Endocrinol ; 589: 112250, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38663485

The most common form of hypercortisolism is iatrogenic Cushing's syndrome. Lipodystrophy and metabolic disorders can result from the use of exogenous glucocorticoids (GC). Adipocytes play an important role in the production of circulating exosomal microRNAs, and knockdown of Dicer promotes lipodystrophy. The aim of this study is to investigate the effect of GCs on epididymal fat and to assess their influence on circulating microRNAs associated with fat turnover. The data indicate that despite the reduction in adipocyte volume due to increased lipolysis and apoptosis, there is no difference in tissue mass, suggesting that epididymal fat pad, related to animal size, is not affected by GC treatment. Although high concentrations of GC have no direct effect on epididymal microRNA-150-5p expression, GC can induce epididymal adipocyte uptake of microRNA-150-5p, which regulates transcription factor Ppar gamma during adipocyte maturation. In addition, GC treatment increased lipolysis and decreased glucose-derived lipid and glycerol incorporation. In conclusion, the similar control and GC epididymal fat mass results from increased dense fibrogenic tissue and decreased adipocyte volume induced by the lipolytic effect of GC. These findings demonstrate the complexity of epididymal fat. They also highlight how this disease alters fat distribution. This study is the first in a series published by our laboratory showing the detailed mechanism of adipocyte turnover in this disease.


Adipocytes , Epididymis , Glucocorticoids , Lipolysis , MicroRNAs , Male , Animals , MicroRNAs/metabolism , MicroRNAs/genetics , Epididymis/drug effects , Epididymis/metabolism , Epididymis/pathology , Adipocytes/drug effects , Adipocytes/metabolism , Glucocorticoids/adverse effects , Glucocorticoids/pharmacology , Lipolysis/drug effects , Mice , Apoptosis/drug effects , Mice, Inbred C57BL , PPAR gamma/metabolism , PPAR gamma/genetics
12.
Biochim Biophys Acta Gene Regul Mech ; 1867(2): 195031, 2024 Jun.
Article En | MEDLINE | ID: mdl-38679287

The cystic fibrosis transmembrane conductance regulator (CFTR) gene encodes an anion-selective channel found in epithelial cell membranes. Mutations in CFTR cause cystic fibrosis (CF), an inherited disorder that impairs epithelial function in multiple organs. Most men with CF are infertile due to loss of intact genital ducts. Here we investigated a novel epididymis-selective cis-regulatory element (CRE), located within a peak of open chromatin at -9.5 kb 5' to the CFTR gene promoter. Activation of the -9.5 kb CRE alone by CRISPRa had no impact on CFTR gene expression. However, CRISPRa co-activation of the -9.5 kb CRE and the CFTR gene promoter in epididymis cells significantly augmented CFTR mRNA and protein expression when compared to promoter activation alone. This increase was accompanied by enhanced chromatin accessibility at both sites. Furthermore, the combined CRISPRa strategy activated CFTR expression in other epithelial cells that lack open chromatin at the -9.5 kb site and in which the locus is normally inactive. However, the -9.5 kb CRE does not function as a classical enhancer of the CFTR promoter in transient reporter gene assays. These data provide a novel mechanism for activating/augmenting CFTR expression, which may have therapeutic utility for mutations that perturb CFTR transcription.


Cystic Fibrosis Transmembrane Conductance Regulator , Epithelial Cells , Promoter Regions, Genetic , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Epithelial Cells/metabolism , Humans , Male , Animals , Gene Expression Regulation , Epididymis/metabolism , Chromatin/metabolism , Cystic Fibrosis/genetics , Cystic Fibrosis/metabolism , Mice
13.
Reprod Biol Endocrinol ; 22(1): 40, 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38600586

The epididymal function and gene expression in mammals are under the control of the testis. Sex steroids are secreted from the testis and act on the epididymis in an endocrine manner. There is another, non-sex steroidal secreted signaling, named lumicrine signaling, in which testis-derived secreted proteins go through the male reproductive tract and act on the epididymis. The effects of such multiple regulations on the epididymis by the testis have been investigated for many genes. The recent development of high-throughput next-generation sequencing now enables us a further comparative survey of endocrine and lumicrine action-dependent gene expression. In the present study, testis-derived endocrine and lumicrine actions on epididymal gene expression were comparatively investigated by RNA-seq transcriptomic analyses. This investigation utilized experimental animal models in which testis-derived endocrine and/or lumicrine actions were interfered with, such as unilateral or bilateral orchidectomy. By bilateral orchidectomy, which interferes with both endocrine and lumicrine actions, 431 genes were downregulated. By unilateral orchidectomy, which also interferes with endocrine and lumicrine actions by the unilateral testis, but the endocrine action was compensated by the contralateral testis, 283 genes were downregulated. The content of such genes downregulated by unilateral orchidectomy was like those of lumicrine action-interfered efferent duct-ligation, W/Wv, and Nell2-/- mice. When genes affected by unilateral and bilateral orchidectomy were compared, 154 genes were commonly downregulated, whereas 217 genes were specifically downregulated only by bilateral orchidectomy, indicating the distinction between endocrine and lumicrine actions on the proximal epididymal transcriptome. Comparative transcriptome analyses also showed that the expressions of genes emerging since Amniota were notably impacted by bilateral orchidectomy, unilateral orchidectomy, and lumicrine action-interfering treatments; the degree of influence from these treatments varied based on the evolutionary stage beyond Amniota. These findings unveil an evolutional transition of regulated gene expression in the proximal epididymis by two different testis-derived signaling mechanisms.


Epididymis , Testis , Male , Mice , Animals , Testis/metabolism , Epididymis/metabolism , Transcriptome , Orchiectomy , Signal Transduction/genetics , Mammals
14.
Andrology ; 12(5): 1024-1037, 2024 Jul.
Article En | MEDLINE | ID: mdl-38497291

BACKGROUND: Region-specific immune environments in the epididymis influence the immune responses to uropathogenic Escherichia coli (UPEC) infection, a relevant cause of epididymitis in men. Toll-like receptors (TLRs) are essential to orchestrate immune responses against bacterial infections. The epididymis displays region-specific inflammatory responses to bacterial-derived TLR agonists, such as lipopolysaccharide (LPS; TLR4 agonist) and lipoteichoic acid (LTA; TLR2/TLR6 agonist), suggesting that TLR-associated signaling pathways could influence the magnitude of inflammatory responses in epididymitis. OBJECTIVES: To investigate the expression and regulation of key genes associated with TLR4 and TLR2/TLR6 signaling pathways during epididymitis induced by UPEC, LPS, and LTA in mice. MATERIAL AND METHODS: Epididymitis was induced in mice using UPEC, ultrapure LPS, or LTA, injected into the interstitial space of the initial segment or the lumen of the vas deferens close to the cauda epididymidis. Samples were harvested after 1, 5, and 10 days for UPEC-treated animals and 6 and 24 h for LPS-/LTA-treated animals. Ex vivo epididymitis was induced by incubating epididymal regions from naive mice with LPS or LTA. RT-qPCR and Western blot assays were conducted. RESULTS: UPEC infection up-regulated Tlr2, Tlr4, and Tlr6 transcripts and their associated signaling molecules Cd14, Ticam1, and Traf6 in the cauda epididymidis but not in the initial segment. In these epididymal regions, LPS and LTA differentially modulated Tlr2, Tlr4, Tlr6, Cd14, Myd88, Ticam1, Traf3, and Traf6 expression levels. NFKB and AP1 activation was required for LPS- and LTA-induced up-regulation of TLR-associated signaling transcripts in the cauda epididymidis and initial segment, respectively. CONCLUSION: The dynamic modulation of TLR4 and TLR2/TLR6 signaling pathways gene expression during epididymitis indicates bacterial-derived antigens elicit an increased tissue sensitivity to combat microbial infection in a spatial manner in the epididymis. Differential activation of TLR-associated signaling pathways may contribute to fine-tuning inflammatory responses along the epididymis.


Epididymitis , Lipopolysaccharides , Signal Transduction , Teichoic Acids , Toll-Like Receptor 2 , Toll-Like Receptor 4 , Animals , Male , Epididymitis/genetics , Epididymitis/metabolism , Epididymitis/microbiology , Mice , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 2/genetics , Toll-Like Receptor 2/metabolism , Teichoic Acids/pharmacology , Uropathogenic Escherichia coli , Escherichia coli Infections/immunology , Escherichia coli Infections/genetics , Toll-Like Receptor 6/genetics , Toll-Like Receptor 6/metabolism , Epididymis/metabolism , TNF Receptor-Associated Factor 6/metabolism , TNF Receptor-Associated Factor 6/genetics , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Mice, Inbred C57BL , Acute Disease
15.
Sci Rep ; 14(1): 3933, 2024 02 16.
Article En | MEDLINE | ID: mdl-38365877

Naja nigricollis Venom (NnV) contains complex toxins that affects various vital systems functions after envenoming. The venom toxins have been reported to induce male reproductive disorders in envenomed rats. This present study explored the ameliorative potential of kaempferol on NnV-induced male reproductive toxicity. Fifty male wistar rats were sorted randomly into five groups (n = 10) for this study. Group 1 were noted as the control, while rats in groups 2 to 5 were injected with LD50 of NnV (1.0 mg/kg bw; i.p.). Group 2 was left untreated post envenomation while group 3 was treated with 0.2 ml of polyvalent antivenom. Groups 4 and 5 were treated with 4 and 8 mg/kg of kaempferol, respectively. NnV caused substantial reduction in concentrations of follicle stimulating hormone, testosterone and luteinizing hormone, while sperm motility, volume and counts significantly (p < 0.05) decreased in envenomed untreated rats. The venom enhanced malondialdehyde levels and substantially decreased glutathione levels, superoxide dismutase and glutathione peroxidase activities in the testes and epididymis of envenomed untreated rats. Additionally, epididymal and testicular myeloperoxidase activity and nitric oxide levels were elevated which substantiated severe morphological defects noticed in the reproductive organs. However, treatment of envenomed rats with kaempferol normalized the reproductive hormones with significant improvement on sperm functional parameters. Elevated inflammatory and oxidative stress biomarkers in testis and epididymis were suppressed post kaempferol treatment. Severe histopathological lesions in the epididymal and testicular tissues were ameliorated in the envenomed treated groups. Results highlights the significance of kaempferol in mitigating reproductive toxicity induced after snakebite envenoming.


Antioxidants , Kaempferols , Rats , Male , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Kaempferols/pharmacology , Kaempferols/metabolism , Sperm Motility , Semen/metabolism , Testis/metabolism , Epididymis/metabolism , Spermatozoa/metabolism , Rats, Wistar , Testosterone/metabolism , Oxidative Stress , Anti-Inflammatory Agents/pharmacology , Naja
16.
Int J Mol Sci ; 25(3)2024 Jan 26.
Article En | MEDLINE | ID: mdl-38338845

The increasing incidence of male infertility in humans and animals creates the need to search for new factors that significantly affect the course of reproductive processes. Therefore, the aim of this study was to determine the temporospatial expression of aquaglyceroporins (AQP3, AQP7 and AQP9) in the bovine (Bos taurus) reproductive system using immunohistochemistry and Western blotting. The study also included morphological analysis and identification of GATA-4. In brief, in immature individuals, AQP3 and AQP7 were found in gonocytes. In reproductive bulls, AQP3 was observed in spermatocytes and spermatogonia, while AQP7 was visible in all germ cells and the Sertoli cells. AQP7 and AQP9 were detected in the Leydig cells. Along the entire epididymis of reproductive bulls, aquaglyceroporins were visible, among others, in basal cells (AQP3 and AQP7), in epididymal sperm (AQP7) and in the stereocilia of the principal cells (AQP9). In males of all ages, aquaglyceroporins were identified in the principal and basal cells of the vas deferens. An increase in the expression of AQP3 in the testis and cauda epididymis and a decrease in the abundance of AQP7 in the vas deferens with age were found. In conclusion, age-related changes in the expression and/or distribution patterns of AQP3, AQP7 and AQP9 indicate the involvement of these proteins in the normal development and course of male reproductive processes in cattle.


Aquaglyceroporins , Aquaporins , Humans , Cattle , Male , Animals , Aquaporin 3/genetics , Aquaporin 3/metabolism , Aquaporins/metabolism , Semen/metabolism , Epididymis/metabolism , Aquaglyceroporins/metabolism
17.
Curr Protoc ; 4(1): e975, 2024 Jan.
Article En | MEDLINE | ID: mdl-38284221

Spermatozoa are formed in the testis but must transit through the epididymis to acquire motility and the ability to fertilize. The epididymis is a single convoluted tubule comprising several anatomically and physiologically distinct regions. The pseudostratified epithelium consists of multiple cell types, including principal cells, clear cells, narrow cells, and apical cells, that line the lumen of the epididymis. Basal cells are present at the base of the epithelium, and halo cells, which includes macrophages/monocytes, mononuclear phagocytes, and T lymphocytes, are also present in the epithelium. Several aspects of this complex spermatozoan maturation process are well established, but a great deal remains poorly understood. Given that dysfunction of the epididymis has been associated with male infertility, in vitro tools to study epididymal function and epididymal sperm maturation are required. Our lab and others have previously developed human, rat, and mouse epithelial principal cell lines, which have been used to address certain questions, such as about the regulation of junctional proteins in the epididymis, as well as the toxicity of nonylphenols. Given that the epididymal epithelium comprises multiple cell types, however, a 3D in vitro model provides a more comprehensive and realistic tool that can be used to study and elucidate the multiple aspects of epididymal function. The purpose of this article is to provide detailed information regarding the preparation, maintenance, passaging, and immunofluorescent staining of rat epididymal organoids derived from adult basal cells, which we have demonstrated to be a type of adult stem cell in the rat epididymis. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Isolation of epididymal cells Basic Protocol 2: Magnetic activated cell sorting and isolation of basal cells Basic Protocol 3: Preparation and culture of epididymal basal cell organoids Basic Protocol 4: Passage of epididymal basal cell organoids Basic Protocol 5: Freezing and thawing of epididymal basal cell organoids Basic Protocol 6: Immunofluorescent staining of epididymal basal cell organoids.


Epididymis , Semen , Mice , Male , Rats , Humans , Animals , Epididymis/metabolism , Testis , Organoids , Cell Culture Techniques, Three Dimensional
18.
Gene ; 899: 148133, 2024 Mar 20.
Article En | MEDLINE | ID: mdl-38181930

Spermatogenesis is highly conserved among mammalians, but its gene expression and regulatory profile are not entirely known. As transcription factors (TFs) and miRNAs are crucial for gene expression regulation, identifying genes negatively regulated by miRNAs and positively regulated by TFs in the testis and epididymis can provide a deeper understanding of gene expression and regulatory patterns. To do this, we used expression data coming from RNA-Seq and miRNA-Seq experiments made with biopsies from testicular parenchyma, head of the epididymis, and tail of the epididymis of four Brahman bulls. We identified miRNA differentially expressed (DE) by comparing the three distinct tissues. A co-expression analysis combined with a regulatory impact factor approach identified miRNAs and TFs with regulatory impact over gene expression regulation in the Bos indicus tissues studied. We identified 116 DE miRNAs, 206 miRNAs and 237 TFs with a significant regulatory impact on mRNA patterns in the tissues' comparisons. bta-miR-196b was the only DE miRNA for all tissue comparisons and it may be a regulator of spermatogenesis through its links with adipogenesis and insulin biosynthesis. DE genes and TFs involved in contrary regulations between the epididymis head and testis parenchyma were associated with spermatogenesis, sexual reproduction, and sperm motility. Our results provide possible mechanisms, governed by the contrary effect of miRNA and TF, leading to the differential expression between the studied tissues. We have demonstrated that our predictions of miRNAs and TFs co-regulations over target DE genes can retrieve known regulatory mechanisms and predict new ones that merit further validation.


MicroRNAs , Male , Cattle , Animals , MicroRNAs/metabolism , Transcription Factors/metabolism , Testis/metabolism , Epididymis/metabolism , Gene Regulatory Networks , Gene Expression Profiling/methods , Sperm Motility , Gene Expression , Mammals/genetics
19.
Reprod Biol Endocrinol ; 22(1): 3, 2024 Jan 02.
Article En | MEDLINE | ID: mdl-38169386

The maturation of spermatozoa is a regulated process, influenced by genes expressing essential secreted proteins in the proximal epididymis. Recent genetic studies in rodents have identified the non-sex steroidal molecular signals that regulate gene expression in the proximal epididymis. Germ cells in the testis secrete ligand proteins into the seminiferous tubule lumen The ligand proteins travel through the male reproductive tract lumen to the epididymis, where they bind to receptors, triggering the differentiation of the luminal epithelium for sperm maturation. It is, however, not fully unveiled if such a testis-epididymis trans-luminal signaling mechanism exists in other species, especially humans. In the present study, the rodent-type testis-epididymis trans-luminal signaling in the human male reproductive tract was evaluated in a step-by-step manner by analyzing testis and epididymis gene expression and signaling mediator protein function. There was a significant correlation between the epididymal expressions of mouse genes upregulated by the trans-luminal signaling and those of their human orthologs, as evaluated by the correlation coefficient of 0.604. The transcript expression of NELL2 and NICOL encoding putative ligand proteins was also observed in human testicular cells. In vitro experiments demonstrated that purified recombinant human NELL2 and NICOL formed a molecular complex with similar properties to rodent proteins, which was evaluated by a dissociation equilibrium constant of 110 nM. Recombinant human NELL2 also specifically bound to its putative receptor human ROS1 in vitro. Collectively, these findings suggest that the rodent-type testis-epididymis secreted signaling mechanism is also possible in the human male reproductive tract.


Protein-Tyrosine Kinases , Proto-Oncogene Proteins , Humans , Male , Mice , Animals , Ligands , Proto-Oncogene Proteins/metabolism , Semen , Testis/metabolism , Epididymis/metabolism , Spermatozoa/metabolism , Nerve Tissue Proteins
20.
BMC Bioinformatics ; 25(1): 29, 2024 Jan 17.
Article En | MEDLINE | ID: mdl-38233783

The impairment of sperm maturation is one of the major pathogenic factors in male subfertility, a serious medical and social problem affecting millions of global couples. Regrettably, the existing research on sperm maturation is slow, limited, and fragmented, largely attributable to the lack of a global molecular view. To fill the data gap, we newly established a database, namely the Sperm Maturation Database (SperMD, http://bio-add.org/SperMD ). SperMD integrates heterogeneous multi-omics data (170 transcriptomes, 91 proteomes, and five human metabolomes) to illustrate the transcriptional, translational, and metabolic manifestations during the entire lifespan of sperm maturation. These data involve almost all crucial scenarios related to sperm maturation, including the tissue components of the epididymal microenvironment, cell constituents of tissues, different pathological states, and so on. To the best of our knowledge, SperMD could be one of the limited repositories that provide focused and comprehensive information on sperm maturation. Easy-to-use web services are also implemented to enhance the experience of data retrieval and molecular comparison between humans and mice. Furthermore, the manuscript illustrates an example application demonstrated to systematically characterize novel gene functions in sperm maturation. Nevertheless, SperMD undertakes the endeavor to integrate the islanding omics data, offering a panoramic molecular view of how the spermatozoa gain full reproductive abilities. It will serve as a valuable resource for the systematic exploration of sperm maturation and for prioritizing the biomarkers and targets for precise diagnosis and therapy of male subfertility.


Infertility, Male , Sperm Maturation , Male , Humans , Animals , Mice , Sperm Maturation/genetics , Semen , Spermatozoa/metabolism , Epididymis/metabolism , Infertility, Male/metabolism
...