Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 780
1.
BMC Genomics ; 25(1): 507, 2024 May 22.
Article En | MEDLINE | ID: mdl-38778248

BACKGROUND: Alpha-papillomavirus 9 (α-9) is a member of the human papillomavirus (HPV) α genus, causing 75% invasive cervical cancers worldwide. The purpose of this study was to provide data for effective treatment of HPV-induced cervical lesions in Taizhou by analysing the genetic variation and antigenic epitopes of α-9 HPV E6 and E7. METHODS: Cervical exfoliated cells were collected for HPV genotyping. Positive samples of the α-9 HPV single type were selected for E6 and E7 gene sequencing. The obtained nucleotide sequences were translated into amino acid sequences (protein primary structure) using MEGA X, and positive selection sites of the amino acid sequences were evaluated using PAML. The secondary and tertiary structures of the E6 and E7 proteins were predicted using PSIPred, SWISS-MODEL, and PyMol. Potential T/B-cell epitopes were predicted by Industrial Engineering Database (IEDB). RESULTS: From 2012 to 2023, α-9 HPV accounted for 75.0% (7815/10423) of high-risk HPV-positive samples in Taizhou, both alone and in combination with other types. Among these, single-type-positive samples of α-9 HPV were selected, and the entire E6 and E7 genes were sequenced, including 298 HPV16, 149 HPV31, 185 HPV33, 123 HPV35, 325 HPV52, and 199 HPV58 samples. Compared with reference sequences, 34, 12, 10, 2, 17, and 17 nonsynonymous nucleotide mutations were detected in HPV16, 31, 33, 35, 52, and 58, respectively. Among all nonsynonymous nucleotide mutations, 19 positive selection sites were selected, which may have evolutionary significance in rendering α-9 HPV adaptive to its environment. Immunoinformatics predicted 57 potential linear and 59 conformational B-cell epitopes, many of which are also predicted as CTL epitopes. CONCLUSION: The present study provides almost comprehensive data on the genetic variations, phylogenetics, positive selection sites, and antigenic epitopes of α-9 HPV E6 and E7 in Taizhou, China, which will be helpful for local HPV therapeutic vaccine development.


Oncogene Proteins, Viral , Phylogeny , China , Humans , Oncogene Proteins, Viral/genetics , Oncogene Proteins, Viral/immunology , Female , Papillomavirus E7 Proteins/genetics , Papillomavirus E7 Proteins/immunology , Alphapapillomavirus/genetics , Alphapapillomavirus/immunology , Epitopes, B-Lymphocyte/immunology , Epitopes, B-Lymphocyte/genetics , Epitopes/immunology , Epitopes/genetics , Epitopes, T-Lymphocyte/immunology , Epitopes, T-Lymphocyte/genetics , Papillomavirus Infections/virology , Amino Acid Sequence
2.
Int Immunopharmacol ; 134: 112160, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38710117

INTRODUCTION: Cholera is a severe gastrointestinal disease that manifests with rapid onset of diarrhea, vomiting, and high mortality rates. Due to its widespread occurrence in impoverished communities with poor water sanitation, there is an urgent demand for a cost-effective and highly efficient vaccine. Multi-epitope vaccines containing dominant immunological epitopes and adjuvant compounds have demonstrated potential in boosting the immune response. MATERIAL AND METHODS: B and T epitopes of OMPU, OMPW, TCPA, CTXA, and CTXB proteins were predicted using bioinformatics methods. Subsequently, highly antigenic multi-epitopes that are non-allergenic and non-toxic were synthesized. These multi-epitopes were then cloned into the pCOMB phagemid. A plasmid M13KO7ΔpIII containing all helper phage proteins except pIII was created to produce the recombinant phage. Female Balb/c mice were divided into three groups and immunized accordingly. The mice received the helper phage, recombinant phage or PBS via gavage feeding thrice within two weeks. Serum samples were collected before and after immunization for the ELISA test as well as evaluating immune system induction through ELISpot testing of spleen lymphocytes. RESULTS: The titer of the recombinant phage was determined to be 1011 PFU/ml. The presence of the recombinant phage was confirmed through differences in optical density between sample and control groups in the ELISA phage technique, as well as by observing transduction activity, which demonstrated successful production of a recombinant phage displaying the Vibrio multi-epitope on M13 phage pIII. ELISA results revealed significant differences in phage antibodies before and after inoculation, particularly notable in the negative control mice. Mice treated with multi-epitope phages exhibited antibodies against Vibrio cholerae lysate. Additionally, ELISpot results indicated activation of cellular immunity in mice receiving both Vibrio and helper phage. CONCLUSION: This study emphasizes the potential of multi-epitope on phage to enhance both cellular and humoral immunity in mice, demonstrating how phages can be used as adjuvants to stimulate mucosal immunity and act as promising candidates for oral vaccination.


Antibodies, Bacterial , Cholera Vaccines , Cholera , Immunity, Cellular , Immunity, Humoral , Mice, Inbred BALB C , Vibrio cholerae , Animals , Vibrio cholerae/immunology , Female , Cholera/prevention & control , Cholera/immunology , Cholera Vaccines/immunology , Cholera Vaccines/administration & dosage , Administration, Oral , Mice , Antibodies, Bacterial/blood , Epitopes, T-Lymphocyte/immunology , Epitopes, T-Lymphocyte/genetics , Immunization , Epitopes, B-Lymphocyte/immunology , Epitopes, B-Lymphocyte/genetics , Humans , Bacteriophages/immunology , Antigens, Bacterial/immunology , Antigens, Bacterial/genetics
3.
Viruses ; 16(5)2024 05 10.
Article En | MEDLINE | ID: mdl-38793639

African Swine Fever Virus (ASFV) is a large dsDNA virus that encodes at least 150 proteins. The complexity of ASFV and lack of knowledge of effector immune functions and protective antigens have hindered the development of safe and effective ASF vaccines. In this study, we constructed four Orf virus recombinant vectors expressing individual ASFV genes B602L, -CP204L, E184L, and -I73R (ORFVΔ121-ASFV-B602L, -CP204L, -E184L, and -I73R). All recombinant viruses expressed the heterologous ASFV proteins in vitro. We then evaluated the immunogenicity of the recombinants by immunizing four-week-old piglets. In two independent animal studies, we observed high antibody titers against ASFV p30, encoded by CP204L gene. Using Pepscan ELISA, we identified a linear B-cell epitope of 12 amino acids in length (Peptide 15) located in an exposed loop region of p30 as an immunodominant ASFV epitope. Additionally, antibodies elicited against ASFV p30 presented antibody-dependent cellular cytotoxicity (ADCC) activity. These results underscore the role of p30 on antibody responses elicited against ASFV and highlight an important functional epitope that contributes to p30-specific antibody responses.


African Swine Fever Virus , African Swine Fever , Antibodies, Viral , Antibody-Dependent Cell Cytotoxicity , Epitopes, B-Lymphocyte , Immunodominant Epitopes , African Swine Fever Virus/immunology , African Swine Fever Virus/genetics , Animals , Swine , Antibodies, Viral/immunology , Epitopes, B-Lymphocyte/immunology , Epitopes, B-Lymphocyte/genetics , Immunodominant Epitopes/immunology , Immunodominant Epitopes/genetics , African Swine Fever/immunology , African Swine Fever/virology , Viral Proteins/immunology , Viral Proteins/genetics , Viral Vaccines/immunology , Viral Vaccines/genetics
4.
Diagn Microbiol Infect Dis ; 109(3): 116338, 2024 Jul.
Article En | MEDLINE | ID: mdl-38718661

The diagnosis if leprosy is difficult, as it requires clinical expertise and sensitive laboratory tests. In this study, we develop a serological test for leprosy by using bioinformatics tools to identify specific B-cell epitopes from Mycobacterium leprae hypothetical proteins, which were used to construct a recombinant chimeric protein, M1. The synthetic peptides were obtained and showed good reactivity to detect leprosy patients, although the M1 chimera have showed sensitivity (Se) and specificity (Sp) values higher than 90.0% to diagnose both paucibacillary (PB) and multibacillary (MB) leprosy patients, but not those developing tegumentary or visceral leishmaniasis, tuberculosis, Chagas disease, malaria, histoplasmosis and aspergillosis, in ELISA experiments. Using sera from household contacts, values for Se and Sp were 100% and 65.3%, respectively. In conclusion, our proof-of-concept study has generated data that suggest that a new recombinant protein could be developed into a diagnostic antigen for leprosy.


Antigens, Bacterial , Bacterial Proteins , Epitopes, B-Lymphocyte , Leprosy , Mycobacterium leprae , Sensitivity and Specificity , Humans , Mycobacterium leprae/immunology , Mycobacterium leprae/genetics , Epitopes, B-Lymphocyte/immunology , Epitopes, B-Lymphocyte/genetics , Antigens, Bacterial/immunology , Antigens, Bacterial/genetics , Leprosy/diagnosis , Leprosy/immunology , Bacterial Proteins/immunology , Bacterial Proteins/genetics , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/genetics , Enzyme-Linked Immunosorbent Assay/methods , Adult , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Male , Female , Serologic Tests/methods , Computational Biology/methods , Middle Aged , Young Adult , Adolescent
5.
BMC Infect Dis ; 24(1): 476, 2024 May 07.
Article En | MEDLINE | ID: mdl-38714948

Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne viral disease caused by the SFTS virus (Dabie bandavirus), which has become a substantial risk to public health. No specific treatment is available now, that calls for an effective vaccine. Given this, we aimed to develop a multi-epitope DNA vaccine through the help of bioinformatics. The final DNA vaccine was inserted into a special plasmid vector pVAX1, consisting of CD8+ T cell epitopes, CD4+ T cell epitopes and B cell epitopes (six epitopes each) screened from four genome-encoded proteins--nuclear protein (NP), glycoprotein (GP), RNA-dependent RNA polymerase (RdRp), as well as nonstructural protein (NSs). To ascertain if the predicted structure would be stable and successful in preventing infection, an immunological simulation was run on it. In conclusion, we designed a multi-epitope DNA vaccine that is expected to be effective against Dabie bandavirus, but in vivo trials are needed to verify this claim.


Epitopes, T-Lymphocyte , Phlebovirus , Severe Fever with Thrombocytopenia Syndrome , Vaccines, DNA , Viral Vaccines , Vaccines, DNA/immunology , Vaccines, DNA/genetics , Phlebovirus/immunology , Phlebovirus/genetics , Severe Fever with Thrombocytopenia Syndrome/prevention & control , Severe Fever with Thrombocytopenia Syndrome/immunology , Epitopes, T-Lymphocyte/immunology , Epitopes, T-Lymphocyte/genetics , Viral Vaccines/immunology , Viral Vaccines/genetics , Humans , Computer-Aided Design , Epitopes, B-Lymphocyte/immunology , Epitopes, B-Lymphocyte/genetics , Animals , Computational Biology
6.
Vaccine ; 42(18): 3883-3898, 2024 Jul 11.
Article En | MEDLINE | ID: mdl-38777697

BACKGROUND: Community-acquired pneumonia often stems from the macrolide-resistant strain of Mycoplasma pneumoniae, yet no effective vaccine exists against it. METHODS: This study proposes a vaccine-immunoinformatics strategy for Mycoplasma pneumoniae and other pathogenic microbes. Specifically, dominant B and T cell epitopes of the Mycoplasma pneumoniae P30 adhesion protein were identified through immunoinformatics method. The vaccine sequence was then constructed by coupling with CTLA-4 extracellular region, a novel molecular adjuvant for antigen-presenting cells. Subsequently, the vaccine's physicochemical properties, antigenicity, and allergenicity were verified. Molecular dynamics modeling was employed to confirm interaction with TLR-2, TLR-4, B7-1, and B7-2. Finally, the vaccine underwent in silico cloning for expression. RESULTS: The vaccine exhibited both antigenicity and non-allergenicity. Molecular dynamics simulation, post-docking with TLR-2, TLR-4, B7-1, and B7-2, demonstrated stable interaction between the vaccine and these molecules. In silico cloning confirmed effective expression of the vaccine gene in insect baculovirus vectors. CONCLUSION: This vaccine-immunoinformatics approach holds promise for the development of vaccines against Mycoplasma pneumoniae and other pathogenic non-viral and non-bacterial microbes.


Bacterial Vaccines , CTLA-4 Antigen , Computational Biology , Epitopes, B-Lymphocyte , Epitopes, T-Lymphocyte , Mycoplasma pneumoniae , Pneumonia, Mycoplasma , Mycoplasma pneumoniae/immunology , Mycoplasma pneumoniae/genetics , Epitopes, T-Lymphocyte/immunology , Epitopes, T-Lymphocyte/genetics , Bacterial Vaccines/immunology , Bacterial Vaccines/genetics , Epitopes, B-Lymphocyte/immunology , Epitopes, B-Lymphocyte/genetics , Humans , Computational Biology/methods , Pneumonia, Mycoplasma/prevention & control , Pneumonia, Mycoplasma/immunology , CTLA-4 Antigen/immunology , Molecular Dynamics Simulation , Molecular Docking Simulation , Toll-Like Receptor 2/immunology , Immunoinformatics
7.
Viruses ; 16(4)2024 04 17.
Article En | MEDLINE | ID: mdl-38675963

Southern Africa Territories 2 (SAT2) foot-and-mouth disease (FMD) has crossed long-standing regional boundaries in recent years and entered the Middle East. However, the existing vaccines offer poor cross-protection against the circulating strains in the field. Therefore, there is an urgent need for an alternative design approach for vaccines in anticipation of a pandemic of SAT2 Foot-and-mouth disease virus (FMDV). The porcine parvovirus (PPV) VP2 protein can embed exogenous epitopes into the four loops on its surface, assemble into virus-like particles (VLPs), and induce antibodies and cytokines to PPV and the exogenous epitope. In this study, chimeric porcine parvovirus VP2 VLPs (chimeric PPV-SAT2-VLPs) expressing the T-and/or B-cell epitopes of the structural protein VP1 of FMDV SAT2 were produced using the recombinant pFastBac™ Dual vector of baculoviruses in Sf9 and HF cells We used the Bac-to-Bac system to construct the recombinant baculoviruses. The VP2-VLP--SAT2 chimeras displayed chimeric T-cell epitope (amino acids 21-40 of VP1) and/or the B-cell epitope (amino acids 135-174) of SAT FMDV VP1 by substitution of the corresponding regions at the N terminus (amino acids 2-23) and/or loop 2 and/or loop 4 of the PPV VP2 protein, respectively. In mice, the chimeric PPV-SAT2-VLPs induced specific antibodies against PPV and the VP1 protein of SAT2 FMDV. The VP2-VLP-SAT2 chimeras induced specific antibodies to PPV and the VP1 protein specific epitopes of FMDV SAT2. In this study, as a proof-of-concept, successfully generated chimeric PPV-VP2 VLPs expressing epitopes of the structural protein VP1 of FMDV SAT2 that has a potential to prevent FMDV SAT2 and PPV infection in pigs.


Antibodies, Viral , Antigens, Viral , Capsid Proteins , Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Parvovirus, Porcine , Vaccines, Virus-Like Particle , Viral Vaccines , Animals , Foot-and-Mouth Disease Virus/immunology , Foot-and-Mouth Disease Virus/genetics , Mice , Foot-and-Mouth Disease/immunology , Foot-and-Mouth Disease/prevention & control , Foot-and-Mouth Disease/virology , Capsid Proteins/immunology , Capsid Proteins/genetics , Parvovirus, Porcine/immunology , Parvovirus, Porcine/genetics , Antibodies, Viral/immunology , Antibodies, Viral/blood , Viral Vaccines/immunology , Viral Vaccines/genetics , Vaccines, Virus-Like Particle/immunology , Vaccines, Virus-Like Particle/genetics , Swine , Immunity, Humoral , Immunity, Cellular , Epitopes, T-Lymphocyte/immunology , Epitopes, T-Lymphocyte/genetics , Epitopes, B-Lymphocyte/immunology , Epitopes, B-Lymphocyte/genetics , Serogroup , Mice, Inbred BALB C , Female , Epitopes/immunology , Epitopes/genetics , Sf9 Cells , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood
8.
Int Immunopharmacol ; 132: 111952, 2024 May 10.
Article En | MEDLINE | ID: mdl-38555818

Yersinia pestis, the causative agent of plague, is a gram-negative bacterium that can be fatal if not treated properly. Three types of plague are currently known: bubonic, septicemic, and pneumonic plague, among which the fatality rate of septicemic and pneumonic plague is very high. Bubonic plague can be treated, but only if antibiotics are used at the initial stage of the infection. But unfortunately, Y. pestis has also shown resistance to certain antibiotics such as kanamycin, minocycline, tetracycline, streptomycin, sulfonamides, spectinomycin, and chloramphenicol. Despite tremendous progress in vaccine development against Y. pestis, there is no proper FDA-approved vaccine available to protect people from its infections. Therefore, effective broad-spectrum vaccine development against Y. pestis is indispensable. In this study, vaccinomics-assisted immunoinformatics techniques were used to find possible vaccine candidates by utilizing the core proteome prepared from 58 complete genomes of Y. pestis. Human non-homologous, pathogen-essential, virulent, and extracellular and membrane proteins are potential vaccine targets. Two antigenic proteins were prioritized for the prediction of lead epitopes by utilizing reverse vaccinology approaches. Four vaccine designs were formulated using the selected B- and T-cell epitopes coupled with appropriate linkers and adjuvant sequences capable of inducing potent immune responses. The HLA allele population coverage of the T-cell epitopes selected for vaccine construction was also analyzed. The V2 constructs were top-ranked and selected for further analysis on the basis of immunological, physicochemical, and immune-receptor docking interactions and scores. Docking and molecular dynamic simulations confirmed the stability of construct V2 interactions with the host immune receptors. Immune simulation analysis anticipated the strong immune profile of the prioritized construct. In silico restriction cloning ensured the feasible cloning ability of the V2 construct in the expression system of E. coli strain K12. It is anticipated that the designed vaccine construct may be safe, effective, and able to elicit strong immune responses against Y. pestis infections and may, therefore, merit investigation using in vitro and in vivo assays.


Plague , Yersinia pestis , Yersinia pestis/immunology , Yersinia pestis/genetics , Humans , Plague/prevention & control , Plague/immunology , Plague Vaccine/immunology , Plague Vaccine/genetics , Genome, Bacterial , Vaccine Development , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Epitopes, B-Lymphocyte/immunology , Epitopes, B-Lymphocyte/genetics , Vaccines, Synthetic/immunology , Animals
9.
Acta Parasitol ; 69(1): 1005-1015, 2024 Mar.
Article En | MEDLINE | ID: mdl-38498251

PURPOSE: Fascioliasis is a common parasitic disease in humans and herbivores which is caused by Fasciola hepatica and Fasciola gigantica and has a worldwide distribution. Serological tests such as the enzyme-linked immunosorbent assay (ELISA) technique play a prominent role in the fast diagnosis of the disease. However, there are diagnostic limitations, including cross-reactivity with other worms, which decline the specificity of the results. This study aimed to evaluate the structure of a recombinant multi-epitope antigen produced from linear and conformational B-cell epitopes of three parasitic proteins with sera of individuals with fasciolosis, healthy controls, and those with other diseases to gain accurate sensitivity and specificity. METHODS: After designing the multi-epitope structure of cathepsin L1, FhTP16.5, and SAP-2 antigens and then synthesizing, cloning, and expressing, the extracted purified protein was evaluated by indirect ELISA to detect IgG antibodies against Fasciola hepatica parasite among the sera of 39 serum samples of Fasciola hepatica, 35 healthy individual samples, and 20 samples of other types of parasitic diseases. The synthesized multi-epitope produced from cathepsin L1, FhTP16.5, and SAP-2 antigens was evaluated using the indirect ELISA. RESULTS: The analysis of the samples mentioned for IgG antibody diagnosis against Fasciola hepatica showed 97.43% (95% confidence interval, 94.23-100%) sensitivity and 100% (95% confidence interval, 97-100%) specificity. CONCLUSION: The recombinant B-cell multi-epitope with high antigenic potency may increase the specificity of epitopic peptides and ultimately help improve and develop indirect ELISA commercial kits for the diagnosis of fascioliasis in humans.


Antibodies, Helminth , Antigens, Helminth , Enzyme-Linked Immunosorbent Assay , Fasciola hepatica , Fascioliasis , Immunoglobulin G , Recombinant Proteins , Sensitivity and Specificity , Serologic Tests , Fascioliasis/diagnosis , Fascioliasis/immunology , Animals , Humans , Antigens, Helminth/immunology , Antigens, Helminth/genetics , Enzyme-Linked Immunosorbent Assay/methods , Fasciola hepatica/immunology , Fasciola hepatica/genetics , Antibodies, Helminth/blood , Serologic Tests/methods , Recombinant Proteins/immunology , Recombinant Proteins/genetics , Immunoglobulin G/blood , Epitopes, B-Lymphocyte/immunology , Epitopes, B-Lymphocyte/genetics , Helminth Proteins/immunology , Helminth Proteins/genetics , Epitopes/immunology , Cathepsin L/immunology , Cathepsin L/genetics
10.
Vaccine ; 42(7): 1630-1647, 2024 Mar 07.
Article En | MEDLINE | ID: mdl-38336561

Emergence of SARS-CoV-2 Omicron variant has presented a significant challenge to global health, demanding rapid development of mRNA-based vaccines. The mRNA-guided vaccine platforms offer various advantages over traditional vaccine platforms. The mRNA by nature is a short-lived molecule that guides the cells to manufacture antigenic proteins. In the present work, we have created an omicron spike antigenic protein sequence characterized by base composition analysis, modeling, and docking with the ACE-2 receptor. Further, we predicted the B-cell and T-cell epitopes followed by antigenicity, toxicity, and allergenicity. Finally, the protein was reverse translated, codon-optimized, and encoding mRNA sequence was checked for its stability by predicting the secondary structures. A comprehensive examination of in-silico data revealed 628.2 as a potent antigenic candidate that was finally used in Gemcovac®-OM, a heterologous booster mRNA vaccine for COVID-19.


COVID-19 , mRNA Vaccines , Humans , Immunoinformatics , COVID-19 Vaccines , SARS-CoV-2/genetics , COVID-19/prevention & control , Antigens, Viral , Epitopes, T-Lymphocyte/genetics , RNA, Messenger , Epitopes, B-Lymphocyte/genetics , Molecular Docking Simulation
11.
Arch Microbiol ; 206(3): 90, 2024 Feb 05.
Article En | MEDLINE | ID: mdl-38315222

Trueperella pyogenes (T. pyogenes) is an opportunistic pathogen that causes infertility, mastitis, and metritis in animals. T. pyogenes is also a zoonotic disease and is considered an economic loss agent in the livestock industry. Therefore, vaccine development is necessary. Using an immunoinformatics approach, this study aimed to construct a multi-epitope vaccine against T. pyogenes. The collagen adhesion protein, fimbriae, and pyolysin (PLO) sequences were initially retrieved. The HTL, CTL, and B cell epitopes were predicted. The vaccine was designed by binding these epitopes with linkers. To increase vaccine immunogenicity, profilin was added to the N-terminal of the vaccine construct. The antigenic features and safety of the vaccine model were investigated. Docking, molecular dynamics simulation of the vaccine with immune receptors, and immunological simulation were used to evaluate the vaccine's efficacy. The vaccine's sequence was then optimized for cloning. The vaccine construct was designed based on 18 epitopes of T. pyogenes. The computational tools validated the vaccine as non-allergenic, non-toxic, hydrophilic, and stable at different temperatures with acceptable antigenic features. The vaccine model had good affinity and stability to bovine TLR2, 4, and 5 as well as stimulation of IgM, IgG, IL-2, IFN-γ, and Th1 responses. This vaccine also increased long-lived memory cells, dendritic cells, and macrophage population. In addition, codon optimization was done and cloned in the E. coli K12 expression vector (pET-28a). For the first time, this study introduced a novel multi-epitope vaccine candidate based on collagen adhesion protein, fimbriae, and PLO of T. pyogenes. It is expected this vaccine stimulates an effective immune response to prevent T. pyogenes infection.


Bacterial Proteins , Bacterial Toxins , Hemolysin Proteins , Immunoinformatics , Vaccines , Female , Animals , Cattle , Escherichia coli/metabolism , Epitopes, B-Lymphocyte/genetics , Epitopes, B-Lymphocyte/chemistry , Collagen , Computational Biology
12.
Appl Microbiol Biotechnol ; 108(1): 78, 2024 Dec.
Article En | MEDLINE | ID: mdl-38194141

African swine fever virus (ASFV) is a complex DNA virus and the only member of the Asfarviridae family. It causes high mortality and severe economic losses in pigs. The ASFV pB602L protein plays a key role in virus assembly and functions as a molecular chaperone of the major capsid protein p72. In addition, pB602L is an important target for the development of diagnostic tools for African swine fever (ASF) because it is a highly immunogenic antigen against ASFV. In this study, we expressed and purified ASFV pB602L and validated its immunogenicity in serum from naturally infected pigs with ASFV. Furthermore, we successfully generated an IgG2a κ subclass monoclonal antibody (mAb 7E7) against pB602L using hybridoma technology. Using western blot and immunofluorescence assays, mAb 7E7 specifically recognized the ASFV Pig/HLJ/2018/strain and eukaryotic recombinant ASFV pB602L protein in vitro. The 474SKENLTPDE482 epitope in the ASFV pB602L C-terminus was identified as the minimal linear epitope for mAb 7E7 binding, with dozens of truncated pB602l fragments characterized by western blot assay. We also showed that this antigenic epitope sequence has a high conservation and antigenic index. Our study contributes to improved vaccine and antiviral development and provides new insights into the serologic diagnosis of ASF. KEY POINTS: • We developed a monoclonal antibody against ASFV pB602L, which can specifically recognize the ASFV Pig/HLJ/2018/ strain. • This study found one novel conserved B-cell epitope 474SKENLTPDE482. • In the 3D structure, 474SKENLTPDE482 is exposed on the surface of ASFV pB602L, forming a curved linear structure.


African Swine Fever Virus , African Swine Fever , Animals , Swine , African Swine Fever Virus/genetics , Epitopes, B-Lymphocyte/genetics , Antibodies, Monoclonal , Blotting, Western
13.
Toxicon ; 238: 107584, 2024 Feb 01.
Article En | MEDLINE | ID: mdl-38185287

Clostridium perfringens is a bacterium that causes gastrointestinal diseases in humans and animals. The several powerful toxins such as alpha toxin (CPA), beta toxin (CPB), enterotoxin (CPE), Epsilon toxin (ETX), and theta toxin, play a major role in its pathogenesis. Traditional vaccine development methods are time-consuming and costly. In silico approaches offer an alternative strategy for designing vaccines by analyzing biological data and predicting immunogenic peptides. In this study, computational tools were utilized to design a RNA vaccine targeting C. perfringens toxins. Toxin protein sequences were retrieved and their linear B-cell, MHCI, and MHCII binding epitopes were predicted. Allergenicity, toxigenicity, and IFN-γ induction were assessed to select non-allergenic, non-toxic, and IFN-γ-inducing epitopes. Molecular docking was performed to identify epitopes that fit within the binding cleft of MHC alleles. A final peptide vaccine construct was designed with selected epitopes separated by a linker sequence. The antigenicity and physicochemical properties of the vaccine were evaluated. Immune response simulation showed enhanced secondary and tertiary immune responses, increased levels of immunoglobulins, cytotoxic T lymphocytes, helper T lymphocytes, macrophage activity, and elevated levels IFN-γ and interleukin-2. Docking analysis was done to assess interactions between the vaccine structure and Toll-like receptors. Codon optimization was performed, and a final RNA vaccine construct was designed. The secondary structure of the RNA vaccine was predicted and validated. Overall, this study demonstrates the potential of in silico approaches for designing an RNA vaccine against C. perfringens toxins, contributing to improved prevention and control of associated diseases.


Clostridium perfringens , Vaccines , Humans , Animals , mRNA Vaccines , Molecular Docking Simulation , Epitopes , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/genetics , Vaccines, Subunit , Computational Biology
14.
Virus Res ; 341: 199328, 2024 03.
Article En | MEDLINE | ID: mdl-38262569

The outbreak of African Swine Fever (ASF) has caused huge economic losses to the pig industry. There are no safe and effective vaccines or diagnostics available. The p30 protein serves as a key target for the detection of ASFV antibodies and is an essential antigenic protein for early serological diagnosis. Here, the p30 protein was purified after being expressed in E. coli and its immunogenicity was verified in sera from pigs naturally infected with ASFV. Furthermore, a monoclonal antibody (McAb) designated as McAb 1B4G2-4 (subtype IgG1/kappa-type) was produced and it was verified to specifically recognize the ASFV Pig/HLJ/2018/strain and eukaryotic recombinant ASFV p30 protein. The epitope identified by McAb 1B4G2-4, defining the unique B-cell epitope 164HNFIQTI170, was located using peptide scanning. Comparing amino acid (aa) sequence revealed that this epitope is conserved in all reference ASFV strains from different regions of China, including the highly pathogenic strain Georgia 2007/1 (NC_044959.2) that is widely distributed. It is also exposed to the surface of the p30 protein, suggesting that it could be an important B-cell epitope. Our study may serve as a basis for the development of serological diagnostic methods and subunit vaccines.


African Swine Fever Virus , African Swine Fever , Swine , Animals , African Swine Fever Virus/genetics , Epitopes, B-Lymphocyte/genetics , Viral Proteins/metabolism , Antibodies, Monoclonal , Escherichia coli/metabolism , Recombinant Proteins , Antibodies, Viral
15.
Virology ; 591: 109990, 2024 03.
Article En | MEDLINE | ID: mdl-38224661

Getah virus (GETV) is an emerging mosquito-borne alphavirus that can infect horses, pigs and other animals. Given the public health threat posed by GETV, research on its pathogenesis, diagnosis and prevention is urgently needed. In the current study, prokaryotic expression systems were used to express the capsid protein of GETV. This protein was then used to immunize BALB/c mice in order to generate monoclonal antibodies (mAbs). Subsequently, hybridoma cells secreting a mAb (2B11-4) against the capsid protein were obtained using the hybridoma technique. A B cell linear epitope, 18-PAYRPWR-24, located at the capsid protein's N-terminal region was identified using western blotting analysis with the produced mAb, 2B11-4. Sequence alignment indicated that this epitope was highly conserved in group III (GIII) strains of GETV, but varied among the other genotypes. Western blotting showed that mAb 2B11-4 could discriminate Group III GETVs from other genotypes. This study describes the preparation of a mAb against the GETV capsid protein and the identification of the specific localization of B-cell epitopes, and will contribute towards a better understanding of the biological importance of the GETV capsid protein. It will also pave the way for developing immunological detection methods and genotype diagnosis for GETVs.


Alphavirus , Culicidae , Mice , Animals , Swine , Horses , Alphavirus/genetics , Capsid Proteins/genetics , Antibodies, Monoclonal , Epitopes, B-Lymphocyte/genetics
16.
Int J Biol Macromol ; 255: 128085, 2024 Jan.
Article En | MEDLINE | ID: mdl-37977454

Rabies has been with humans for a long time, and its special transmission route and almost 100 % lethality rate made it once a nightmare for humans. In this study, by predicting the rabies virus glycoprotein outer membrane region and nucleoprotein B-cell antigenic epitopes, the coding sequence of the predicted highly antigenic polypeptide region obtained was assembled using the eukaryotic expression vector pcDNA3.1(-), and then E. coli was used as the delivery vector. The immunogenicity and protective properties of the vaccine were verified by in vivo and in vitro experiments, which demonstrated that the vaccine could produce antibodies in mice and prolong the survival time of mice exposed to the strong virus without any side effects. This study demonstrated that the preparation of an oral rabies DNA vaccine using food-borne microorganisms as a transport vehicle is feasible and could be a new strategy to eradicate rabies starting with wild animals.


Rabies Vaccines , Rabies virus , Rabies , Vaccines, DNA , Humans , Animals , Mice , Rabies/prevention & control , Escherichia coli , Antibodies, Viral , Rabies Vaccines/genetics , Rabies virus/genetics , Epitopes, B-Lymphocyte/genetics
17.
J Virol Methods ; 324: 114855, 2024 Feb.
Article En | MEDLINE | ID: mdl-38013021

The L1 protein of Human papillomavirus (HPV), the main capsid protein, induces the formation of neutralizing antibodies. In this study, HPV52 L1 protein was induced to be expressed. Monoclonal antibody (mAb) 6A7 against L1 protein were screened by cell fusion techniques. Western Blot and immunofluorescence assay (IFA) demonstrated the specificity of the mAb. The L1 protein was truncated for prokaryotic expression (N1∼N7) and Dot-ELISA showed that 6A7 recognized N3 (aa 200-350). The immunodominant regions were truncated again for expression, with 6A7 recognizing N6 (aa 251-305). The N6 proteins were further truncated and then were constructed an four-segment eukaryotic expression vector. IFA showed that 6A7 could recognize amino acid 262-279. Amino acid 262-279 was selected to be truncated into short peptides P1 and P2. Finally, Peptide-ELISA and Dot-ELISA showed that the epitope regions of mAb 6A7 were amino acid 262-273. The mAbs with defined epitopes can lay the foundation for the analysis of antigenic epitope characteristics and promote the development of epitope peptide vaccines.


Capsid Proteins , Epitopes, B-Lymphocyte , Humans , Epitopes, B-Lymphocyte/genetics , Epitopes, B-Lymphocyte/chemistry , Antibodies, Monoclonal , Papillomaviridae , Amino Acids , Antibodies, Viral , Epitope Mapping
18.
Front Immunol ; 14: 1278534, 2023.
Article En | MEDLINE | ID: mdl-38124749

The application of B-cell epitope identification to develop therapeutic antibodies and vaccine candidates is well established. However, the validation of epitopes is time-consuming and resource-intensive. To alleviate this, in recent years, multiple computational predictors have been developed in the immunoinformatics community. Brewpitopes is a pipeline that curates bioinformatic B-cell epitope predictions obtained by integrating different state-of-the-art tools. We used additional computational predictors to account for subcellular location, glycosylation status, and surface accessibility of the predicted epitopes. The implementation of these sets of rational filters optimizes in vivo antibody recognition properties of the candidate epitopes. To validate Brewpitopes, we performed a proteome-wide analysis of SARS-CoV-2 with a particular focus on S protein and its variants of concern. In the S protein, we obtained a fivefold enrichment in terms of predicted neutralization versus the epitopes identified by individual tools. We analyzed epitope landscape changes caused by mutations in the S protein of new viral variants that were linked to observed immune escape evidence in specific strains. In addition, we identified a set of epitopes with neutralizing potential in four SARS-CoV-2 proteins (R1AB, R1A, AP3A, and ORF9C). These epitopes and antigenic proteins are conserved targets for viral neutralization studies. In summary, Brewpitopes is a powerful pipeline that refines B-cell epitope bioinformatic predictions during public health emergencies in a high-throughput capacity to facilitate the optimization of experimental validation of therapeutic antibodies and candidate vaccines.


Epitopes, B-Lymphocyte , Viral Vaccines , Humans , Epitopes, B-Lymphocyte/genetics , Epitopes, T-Lymphocyte , Emergencies , Public Health , SARS-CoV-2
19.
Microbiol Spectr ; 11(6): e0205923, 2023 Dec 12.
Article En | MEDLINE | ID: mdl-37882566

IMPORTANCE: Since the escape immunity of influenza A viruses (IAVs) is mainly caused by the continuous antigenic variations in HA, the identification of key antigenic epitopes is crucial for better understanding of the escape immunity and vaccine development for IAVs. The antigenic sites of several HA subtypes, including H1, H3, H5, and H9, have been well characterized, whereas those of H6 subtype are poorly understood. Here, we mapped nine key residues of antigenic epitopes in H6 through escape mutants using a panel of MAbs. Moreover, MAbs 4C2 and 6E3, targeting 140 and 89 residues, respectively, could protect mice against lethal challenge of MA E-Teal/417. These key residues of antigenic epitopes identified here provide the molecular targets for further elucidating the antigenic evolution of H6 and better preparing the vaccine against H6 IAV.


Influenza A virus , Influenza, Human , Animals , Mice , Humans , Influenza A virus/genetics , Hemagglutinins , Epitopes, B-Lymphocyte/genetics , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Antibodies, Viral , Influenza, Human/prevention & control
20.
Database (Oxford) ; 20232023 09 30.
Article En | MEDLINE | ID: mdl-37776561

The 2019 Novel Coronavirus (SARS-CoV-2) has infected millions of people worldwide and caused millions of deaths. The virus has gone numerous mutations to replicate faster, which can overwhelm the immune system of the host. Linear B-cell epitopes are becoming promising in prevention of various deadly infectious diseases, breaking the general idea of their low immunogenicity and partial protection. However, there is still no public repository to host the linear B-cell epitopes for facilitating the development vaccines against SARS-CoV-2. Therefore, we developed BCEDB, a linear B-cell epitopes database specifically designed for hosting, exploring and visualizing linear B-cell epitopes and their features. The database provides a comprehensive repository of computationally predicted linear B-cell epitopes from Spike protein; a systematic annotation of epitopes including sequence, antigenicity score, genomic locations of epitopes, mutations in different virus lineages, mutation sites on the 3D structure of Spike protein and a genome browser to visualize them in an interactive manner. It represents a valuable resource for peptide-based vaccine development. Database URL: http://www.oncoimmunobank.cn/bcedbindex.


COVID-19 , Viral Vaccines , Humans , SARS-CoV-2 , Epitopes, B-Lymphocyte/genetics , Epitopes, B-Lymphocyte/chemistry , COVID-19 Vaccines , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Viral Vaccines/chemistry , Viral Vaccines/genetics , Epitopes, T-Lymphocyte/genetics
...