Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 426
1.
PLoS Pathog ; 19(12): e1011872, 2023 Dec.
Article En | MEDLINE | ID: mdl-38096325

Deubiquitination of cellular substrates by viral proteases is a mechanism used to interfere with host cellular signaling processes, shared between members of the coronavirus- and arterivirus families. In the case of Arteriviruses, deubiquitinating and polyprotein processing activities are accomplished by the virus-encoded papain-like protease 2 (PLP2). Several studies have implicated the deubiquitinating activity of the porcine reproductive and respiratory syndrome virus (PRRSV) PLP2 in the downregulation of cellular interferon production, however to date, the only arterivirus PLP2 structure described is that of equine arteritis virus (EAV), a distantly related virus. Here we describe the first crystal structure of the PRRSV PLP2 domain both in the presence and absence of its ubiquitin substrate, which reveals unique structural differences in this viral domain compared to PLP2 from EAV. To probe the role of PRRSV PLP2 deubiquitinating activity in host immune evasion, we selectively removed this activity from the domain by mutagenesis and found that the viral domain could no longer downregulate cellular interferon production. Interestingly, unlike EAV, and also unlike the situation for MERS-CoV, we found that recombinant PRRSV carrying PLP2 DUB-specific mutations faces significant selective pressure to revert to wild-type virus in MARC-145 cells, suggesting that the PLP2 DUB activity, which in PRRSV is present as three different versions of viral protein nsp2 expressed during infection, is critically important for PRRSV replication.


Equartevirus , Porcine respiratory and reproductive syndrome virus , Animals , Horses , Swine , Humans , Papain/chemistry , Papain/genetics , Papain/metabolism , Porcine respiratory and reproductive syndrome virus/genetics , Porcine respiratory and reproductive syndrome virus/metabolism , Mutagenesis , Peptide Hydrolases/genetics , Virus Replication , Interferons/genetics , Viral Nonstructural Proteins/metabolism
2.
J Virol Methods ; 319: 114756, 2023 09.
Article En | MEDLINE | ID: mdl-37268046

Equine arteritis virus (EAV) is an Alphaarterivirus (family Arteriviridae, order Nidovirales) that frequently causes an influenza-like illness in adult horses, but can also cause the abortions in mares and death of newborn foals. Once primary infection has been established, EAV can persist in the reproductive tract of some stallions. However, the mechanisms enabling this persistence, which depends on testosterone, remain largely unknown. We aimed to establish an in vitro model of non-cytopathic EAV infection to study viral persistence. In this work, we infected several cell lines originating from the male reproductive tract of different species. EAV infection was fully cytopathic for 92BR (donkey cells) and DDT1 MF-2 (hamster cells) cells, and less cytopathic for PC-3 cells (human cells); ST cells (porcine cells) seemed to eliminate the virus; LNCaP (human cells) and GC-1 spg (murine cells) cells were not permissive to EAV infection; finally, TM3 cells (murine cells) were permissive to EAV infection without any overt cytopathic effects. Infected TM3 cells can be maintained at least 7 days in culture without any subculture. They can also be subcultured over 39 days (subculturing them at 1:2 the first time at 5 dpi and then every 2-3 days), but in this case, the percentage of infected cells remains low. Infected TM3 cells may therefore provide a new model to study the host-pathogen interactions and to help determine the mechanisms involved in EAV persistence in stallion reproductive tract.


Arterivirus Infections , Equartevirus , Horse Diseases , Cricetinae , Pregnancy , Male , Horses , Animals , Humans , Female , Mice , Swine , Host-Pathogen Interactions , Genitalia , Cell Line , Arterivirus Infections/veterinary
3.
Viruses ; 15(1)2023 01 16.
Article En | MEDLINE | ID: mdl-36680295

Equine viral arteritis is an infectious disease of equids caused by equine arteritis virus (EAV), an RNA virus of the family Arteriviridae. Dendritic cells (DC) are important modulators of the immune response with the ability to present antigen to naïve T cells and can be generated in vitro from monocytes (MoDC). DC are important targets for many viruses and this interaction is crucial for the establishment-or rather not-of an anti-viral immunity. Little is known of the effect EAV has on host immune cells, particularly DC. To study the interaction of eqDC with EAV in vitro, an optimized eqMoDC system was used, which was established in a previous study. MoDC were infected with strains of different genotypes and pathogenicity. Virus replication was determined through titration and qPCR. The effect of the virus on morphology, phenotype and function of cells was assessed using light microscopy, flow cytometry and in vitro assays. This study confirms that EAV replicates in monocytes and MoDC. The replication was most efficient in mature MoDC, but variable between strains. Only the virulent strain caused a significant down-regulation of certain proteins such as CD14 and CD163 on monocytes and of CD83 on mature MoDC. Functional studies conducted after infection showed that EAV inhibited the endocytic and phagocytic capacity of Mo and mature MoDC with minimal effect on immature MoDC. Infected MoDC showed a reduced ability to stimulate T cells. Ultimately, EAV replication resulted in an apoptosis-mediated cell death. Thus, EAV evades the host anti-viral immunity both by inhibition of antigen presentation early after infection and through killing infected DC during replication.


Equartevirus , Animals , Horses , Equartevirus/genetics , Monocytes , Virulence , Dendritic Cells , Cell Differentiation
4.
Viruses ; 14(9)2022 08 26.
Article En | MEDLINE | ID: mdl-36146687

Using the commercially available PEPperCHIP® microarray platform, a peptide microarray was developed to identify immunodominant epitopes for the detection of antibodies against Equine arteritis virus (EAV). For this purpose, the whole EAV Bucyrus sequence was used to design a total of 1250 peptides that were synthesized and spotted onto a microarray slide. A panel of 28 serum samples representing a selection of EAV strains was tested using the microarray. Of the 1250 peptides, 97 peptides (7.76%) showed reactivity with the EAV-positive samples. No single peptide was detected by all the positive serum samples. Seven peptides repeatedly showed reactivity above the cut-off and were considered to have diagnostic potential. Five of these peptides were within the immunodominant GP5 protein and two were within the replicase polyprotein regions NSP2 and NSP10, located in ORF1. The diagnostic sensitivity of the seven peptides selected was low, ranging from 5% to 55%; however, the combined diagnostic sensitivity and specificity of the seven peptides was 90% and 100%, respectively. This data demonstrate that multiple peptide sequences would be required to design a comprehensive serological test to cover the diversity of the EAV strains and the individual immune responses of horses.


Equartevirus , Horse Diseases , Amino Acid Sequence , Animals , Horses , Immunodominant Epitopes , Peptides , Polyproteins
5.
Viruses ; 14(4)2022 04 01.
Article En | MEDLINE | ID: mdl-35458479

Equine arteritis virus (EAV), an enveloped positive-strand RNA virus, is an important pathogen of horses and the prototype member of the Arteiviridae family. Unlike many other enveloped viruses, which possess homotrimeric spikes, the spike responsible for cellular tropism in Arteriviruses is a heterotrimer composed of 3 glycoproteins: GP2, GP3, and GP4. Together with the hydrophobic protein E they are the minor components of virus particles. We describe the expression of all 3 minor glycoproteins, each equipped with a different tag, from a multi-cassette system in mammalian BHK-21 cells. Coprecipitation studies suggest that a rather small faction of GP2, GP3, and GP4 form dimeric or trimeric complexes. GP2, GP3, and GP4 co-localize with each other and also, albeit weaker, with the E-protein. The co-localization of GP3-HA and GP2-myc was tested with markers for ER, ERGIC, and cis-Golgi. The co-localization of GP3-HA was the same regardless of whether it was expressed alone or as a complex, whereas the transport of GP2-myc to cis-Golgi was higher when this protein was expressed as a complex. The glycosylation pattern was also independent of whether the proteins were expressed alone or together. The recombinant spike might be a tool for basic research but might also be used as a subunit vaccine for horses.


Arterivirus , Equartevirus , Animals , Equartevirus/genetics , Equartevirus/metabolism , Glycoproteins/genetics , Guanidines , Horses , Mammals , Piperazines , Viral Envelope Proteins/metabolism
6.
J Periodontol ; 93(7): e116-e124, 2022 07.
Article En | MEDLINE | ID: mdl-34730843

BACKGROUND: It is well recognized that dental procedures represent a potential way of infection transmission. With the COVID-19 pandemic, the focus of dental procedure associated transmission has rapidly changed from bacteria to viruses. The aim was to develop an experimental setup for testing the spread of viruses by ultrasonic scaler (USS) generated dental spray and evaluate its mitigation by antiviral coolants. METHODS: In a virus transmission tunnel, the dental spray was generated by USS with saline coolant and suspension of Equine Arteritis Virus (EAV) delivered to the USS tip. Virus transmission by settled droplets was evaluated with adherent RK13 cell lines culture monolayer. The suspended droplets were collected by a cyclone aero-sampler. Antiviral activity of 0.25% NaOCl and electrolyzed oxidizing water (EOW) was tested using a suspension test. Antiviral agents' transmission prevention ability was evaluated by using them as a coolant. RESULTS: In the suspension test with 0.25% NaOCl or EOW, the TCID50/mL was below the detection limit after 5 seconds. With saline coolant, the EAV-induced cytopathic effect on RK13 cells was found up to the distance of 45 cm, with the number of infected cells decreasing with distance. By aero-sampler, viral particles were detected in concentration ≤4.2 TCID50/mL. With both antiviral agents used as coolants, no EAV-associated RK-13 cell infection was found. CONCLUSION: We managed to predictably demonstrate EAV spread by droplets because of USS action. More importantly, we managed to mitigate the spread by a simple substitution of the USS coolant with NaOCl or EOW.


COVID-19 , Equartevirus , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Horses , Humans , Pandemics , Ultrasonics
7.
Viruses ; 13(11)2021 10 24.
Article En | MEDLINE | ID: mdl-34834949

(1) Background: Equine arteritis virus (EAV) infection causes reproductive losses and systemic vasculitis in susceptible equidae. The intact male becomes the virus' reservoir upon EAV infection, as it causes a chronic-persistent infection of the accessory sex glands. Infected semen is the main source of virus transmission. (2) Here, we describe acute EAV infection and spread in a stallion population after introduction of new members to the group. (3) Conclusions: acute clinical signs, acute phase detection of antigen via (PCR) nasal swabs or (EDTA) blood, and seroconversion support the idea of transmission via seminal fluids into the respiratory tract(s) of others. This outbreak highlights EAV's horizontal transmission via the respiratory tract. This route should be considered in a chronic-persistently infected herd, when seronegative animals are added to the group.


Arterivirus Infections/epidemiology , Arterivirus Infections/veterinary , Disease Outbreaks , Equartevirus , Horse Diseases/epidemiology , Animals , Arterivirus Infections/transmission , Arterivirus Infections/virology , Disease Transmission, Infectious , Horse Diseases/virology , Horses , Male , Masturbation , Persistent Infection , Respiratory System/virology , Semen/virology
8.
Vet Rec ; 187(12): e113, 2020 Dec 19.
Article En | MEDLINE | ID: mdl-33288633

In early 2019, four stallions in the south of England tested positive for equine viral arteritis following routine prebreeding screening. Here, a team from Defra and the APHA describe the epidemiological investigation that was carried out to determine the origin of infection and the potential for its transmission across the country.


Arteritis/veterinary , Horse Diseases/epidemiology , Horse Diseases/virology , Animals , Arteritis/epidemiology , Arteritis/prevention & control , Arteritis/virology , Disease Outbreaks , Equartevirus , Horse Diseases/prevention & control , Horses , Male , United Kingdom/epidemiology
9.
Infect Genet Evol ; 85: 104455, 2020 11.
Article En | MEDLINE | ID: mdl-32668365

Susceptibility to long-term persistent infection with Equine Arteritis Virus (EAV) in stallions is related with EqCXCL16 gene alleles of the host. In our study EqCXCL16 gene alleles were determined for 63 EAV shedders and 126 non-shedders of various horse breeds. In total, 60 (31.7%) out of 189 tested stallions were identified as carriers of susceptible variants of EqCXCL16 by real time PCR and Sanger sequencing. The presence of susceptible genotype was related to horse breed with the highest percentage in Wielkopolska breed, Polish coldblood and Silesian breed horses. Strong correlation between EqCXCL16 susceptible genotypes and EAV shedding in semen (p < .0001) was observed.


Arterivirus Infections/veterinary , Arterivirus Infections/virology , Chemokine CXCL16/genetics , Equartevirus/genetics , Horse Diseases/virology , Horses/virology , Alleles , Amino Acid Sequence , Animals , Genotype , Phylogeny , Poland/epidemiology , RNA, Viral , Semen/virology , Sequence Analysis
10.
Sci Rep ; 10(1): 10100, 2020 06 22.
Article En | MEDLINE | ID: mdl-32572069

RNA viruses are responsible for a large variety of animal infections. Equine Arteritis Virus (EAV) is a positive single-stranded RNA virus member of the family Arteriviridae from the order Nidovirales like the Coronaviridae. EAV causes respiratory and reproductive diseases in equids. Although two vaccines are available, the vaccination coverage of the equine population is largely insufficient to prevent new EAV outbreaks around the world. In this study, we present a high-throughput in vitro assay suitable for testing candidate antiviral molecules on equine dermal cells infected by EAV. Using this assay, we identified three molecules that impair EAV infection in equine cells: the broad-spectrum antiviral and nucleoside analog ribavirin, and two compounds previously described as inhibitors of dihydroorotate dehydrogenase (DHODH), the fourth enzyme of the pyrimidine biosynthesis pathway. These molecules effectively suppressed cytopathic effects associated to EAV infection, and strongly inhibited viral replication and production of infectious particles. Since ribavirin is already approved in human and small animal, and that several DHODH inhibitors are in advanced clinical trials, our results open new perspectives for the management of EAV outbreaks.


Arterivirus Infections/drug therapy , Equartevirus/metabolism , Ribavirin/pharmacology , Animals , Antiviral Agents/pharmacology , Arterivirus Infections/veterinary , Cell Line , Cytopathogenic Effect, Viral/drug effects , Dihydroorotate Dehydrogenase , Horse Diseases/virology , Horses/genetics , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Purines/antagonists & inhibitors , Purines/biosynthesis , Purines/pharmacology , Pyrimidines/antagonists & inhibitors , Pyrimidines/biosynthesis , Pyrimidines/pharmacology , RNA/pharmacology , Virus Replication/drug effects , Virus Replication/physiology
11.
Viruses ; 12(2)2020 02 14.
Article En | MEDLINE | ID: mdl-32075207

Porcine reproductive and respiratory syndrome virus (PRRSV) is prevalent throughout the world and has caused great economic losses to the swine industry. Nonstructural protein 10 (nsp10) is a superfamily 1 helicase participating in multiple processes of virus replication and one of the three most conserved proteins in nidoviruses. Here we report three high resolution crystal structures of highly pathogenic PRRSV nsp10. PRRSV nsp10 has multiple domains, including an N-terminal zinc-binding domain (ZBD), a ß-barrel domain, a helicase core with two RecA-like domains, and a C-terminal domain (CTD). The CTD adopts a novel fold and is required for the overall structure and enzymatic activities. Although each domain except the CTD aligns well with its homologs, PRRSV nsp10 adopts an unexpected extended overall structure in crystals and solution. Moreover, structural and functional analyses of PRRSV nsp10 versus its closest homolog, equine arteritis virus nsp10, suggest that DNA binding might induce a profound conformational change of PRRSV nsp10 to exert functions, thus shedding light on the mechanisms of activity regulation of this helicase.


DNA Helicases/chemistry , Porcine respiratory and reproductive syndrome virus/enzymology , Viral Nonstructural Proteins/chemistry , Crystallization , DNA Helicases/genetics , Equartevirus/genetics , Porcine respiratory and reproductive syndrome virus/pathogenicity , Protein Structure, Secondary , Viral Nonstructural Proteins/genetics , Virus Replication
12.
Sci Rep ; 10(1): 2909, 2020 02 19.
Article En | MEDLINE | ID: mdl-32076048

Equine arteritis virus (EAV) is maintained in the horse populations through persistently infected stallions. The aims of the study were to monitor the spread of EAV among Polish Hucul horses, to analyse the variability of circulating EAVs both between- and within-horses, and to identify allelic variants of the serving stallions EqCXCL16 gene that had been previously shown to strongly correlate with long-term EAV persistence in stallions. Serum samples (n = 221) from 62 horses including 46 mares and 16 stallions were collected on routine basis between December 2010 and May 2013 and tested for EAV antibodies. In addition, semen from 11 stallions was tested for EAV RNA. A full genomic sequence of EAV from selected breeding stallions was determined using next generation sequencing. The proportion of seropositive mares among the tested population increased from 7% to 92% during the study period, while the proportion of seropositive stallions remained similar (64 to 71%). The EAV genomes from different stallions were 94.7% to 99.6% identical to each other. A number (41 to 310) of single nucleotide variants were identified within EAV sequences from infected stallions. Four stallions possessed EqCXCL16S genotype correlated with development of long-term carrier status, three of which were persistent shedders and the shedder status of the remaining one was undetermined. None of the remaining 12 stallions with EqCXCL16R genotype was identified as a persistent shedder.


Chemokine CXCL16/genetics , Equartevirus/physiology , Horses/genetics , Horses/virology , Quasispecies/genetics , Semen/virology , Alleles , Animals , Arterivirus Infections/blood , Arterivirus Infections/genetics , Arterivirus Infections/veterinary , Female , Genome, Viral , Genotype , Horse Diseases/genetics , Horse Diseases/virology , Horses/blood , Male , Phylogeny , Polymorphism, Single Nucleotide/genetics
13.
Viruses ; 11(8)2019 08 09.
Article En | MEDLINE | ID: mdl-31404947

Equine arteritis virus (EAV) is a prototype member of the Arterivirus family, comprising important pathogens of domestic animals. Minor glycoproteins of Arteriviruses are responsible for virus entry and cellular tropism. The experimental methods for studying minor Arterivirus proteins are limited because of the lack of antibodies and nested open reading frames (ORFs). In this study, we generated recombinant EAV with separated ORFs 3 and 4, and Gp3 carrying HA-tag (Gp3-HA). The recombinant viruses were stable on passaging and replicated in titers similar to the wild-type EAV. Gp3-HA was incorporated into the virion particles as monomers and as a Gp2/Gp3-HA/Gp4 trimer. Gp3-HA localized in ER and, to a lesser extent, in the Golgi, it also co-localized with the E protein but not with the N protein. The co-localization of Gp3-HA and the E protein with ERGIC was reduced. Moreover, EAV with Gp3-HA could become a valuable research tool for identifying host cell factors during infection and the role of Gp3 in virus attachment and entry.


Arterivirus Infections/veterinary , Equartevirus/genetics , Equartevirus/metabolism , Horse Diseases/virology , Host-Pathogen Interactions , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism , Animals , Cell Line , Genetic Engineering , Genome, Viral , Golgi Apparatus/metabolism , Horses , Intracellular Space , Mutation , Open Reading Frames , Protein Transport , Virus Replication
15.
PLoS Pathog ; 15(7): e1007950, 2019 07.
Article En | MEDLINE | ID: mdl-31356622

Equine arteritis virus (EAV) has the unique ability to establish long-term persistent infection in the reproductive tract of stallions and be sexually transmitted. Previous studies showed that long-term persistent infection is associated with a specific allele of the CXCL16 gene (CXCL16S) and that persistence is maintained despite the presence of local inflammatory and humoral and mucosal antibody responses. Here, we performed transcriptomic analysis of the ampullae, the primary site of EAV persistence in long-term EAV carrier stallions, to understand the molecular signatures of viral persistence. We demonstrated that the local CD8+ T lymphocyte response is predominantly orchestrated by the transcription factors eomesodermin (EOMES) and nuclear factor of activated T-cells cytoplasmic 2 (NFATC2), which is likely modulated by the upregulation of inhibitory receptors. Most importantly, EAV persistence is associated with an enhanced expression of CXCL16 and CXCR6 by infiltrating lymphocytes, providing evidence of the implication of this chemokine axis in the pathogenesis of persistent EAV infection in the stallion reproductive tract. Furthermore, we have established a link between the CXCL16 genotype and the gene expression profile in the ampullae of the stallion reproductive tract. Specifically, CXCL16 acts as a "hub" gene likely driving a specific transcriptional network. The findings herein are novel and strongly suggest that RNA viruses such as EAV could exploit the CXCL16/CXCR6 axis in order to modulate local inflammatory and immune responses in the male reproductive tract by inducing a dysfunctional CD8+ T lymphocyte response and unique lymphocyte homing in the reproductive tract.


CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/virology , Equartevirus/immunology , Equartevirus/pathogenicity , Animals , Arterivirus Infections/genetics , Arterivirus Infections/immunology , Arterivirus Infections/veterinary , Carrier State/immunology , Carrier State/veterinary , Carrier State/virology , Chemokine CXCL16/genetics , Chemokine CXCL16/immunology , Gene Expression Profiling , Genitalia, Male/immunology , Genitalia, Male/pathology , Genitalia, Male/virology , Horse Diseases/genetics , Horse Diseases/immunology , Horse Diseases/virology , Horses , Host Microbial Interactions/genetics , Host Microbial Interactions/immunology , Male , Receptors, CXCR6/genetics , Receptors, CXCR6/immunology , Receptors, Virus/immunology , Transcription Factors/immunology , Virus Shedding/genetics , Virus Shedding/immunology
16.
J Virol ; 93(18)2019 09 15.
Article En | MEDLINE | ID: mdl-31243130

Previously, the cyclophilin inhibitors cyclosporine (CsA) and alisporivir (ALV) were shown to inhibit the replication of diverse RNA viruses, including arteriviruses and coronaviruses, which both belong to the order Nidovirales In this study, we aimed to identify arterivirus proteins involved in the mode of action of cyclophilin inhibitors and to investigate how these compounds inhibit arterivirus RNA synthesis in the infected cell. Repeated passaging of the arterivirus prototype equine arteritis virus (EAV) in the presence of CsA revealed that reduced drug sensitivity is associated with the emergence of adaptive mutations in nonstructural protein 5 (nsp5), one of the transmembrane subunits of the arterivirus replicase polyprotein. Introduction of singular nsp5 mutations (nsp5 Q21R, Y113H, or A134V) led to an ∼2-fold decrease in sensitivity to CsA treatment, whereas combinations of mutations further increased EAV's CsA resistance. The detailed experimental characterization of engineered EAV mutants harboring CsA resistance mutations implicated nsp5 in arterivirus RNA synthesis. Particularly, in an in vitro assay, EAV RNA synthesis was far less sensitive to CsA treatment when nsp5 contained the adaptive mutations mentioned above. Interestingly, for increased sensitivity to the closely related drug ALV, CsA-resistant nsp5 mutants required the incorporation of an additional adaptive mutation, which resided in nsp2 (H114R), another transmembrane subunit of the arterivirus replicase. Our study provides the first evidence for the involvement of nsp2 and nsp5 in the mechanism underlying the inhibition of arterivirus replication by cyclophilin inhibitors.IMPORTANCE Currently, no approved treatments are available to combat infections with nidoviruses, a group of positive-stranded RNA viruses, including important zoonotic and veterinary pathogens. Previously, the cyclophilin inhibitors cyclosporine (CsA) and alisporivir (ALV) were shown to inhibit the replication of diverse nidoviruses (both arteriviruses and coronaviruses), and they may thus represent a class of pan-nidovirus inhibitors. In this study, using the arterivirus prototype equine arteritis virus, we have established that resistance to CsA and ALV treatment is associated with adaptive mutations in two transmembrane subunits of the viral replication machinery, nonstructural proteins 2 and 5. This is the first evidence for the involvement of specific replicase subunits of arteriviruses in the mechanism underlying the inhibition of their replication by cyclophilin inhibitors. Understanding this mechanism of action is of major importance to guide future drug design, both for nidoviruses and for other RNA viruses inhibited by these compounds.


Equartevirus/genetics , RNA-Dependent RNA Polymerase/genetics , Viral Nonstructural Proteins/metabolism , Arterivirus/genetics , Cell Line , Cyclophilins/metabolism , Cyclosporine/antagonists & inhibitors , Equartevirus/metabolism , HEK293 Cells , Humans , Mutation , Nidovirales/genetics , Nidovirales/metabolism , Nucleic Acid Synthesis Inhibitors/metabolism , RNA, Viral/genetics , RNA-Dependent RNA Polymerase/metabolism , Viral Nonstructural Proteins/genetics , Virus Replication
17.
J Virol ; 93(12)2019 06 15.
Article En | MEDLINE | ID: mdl-30944180

Equine arteritis virus (EAV) and porcine reproductive and respiratory syndrome virus (PRRSV) represent two members of the family Arteriviridae and pose major threats for the horse- and swine-breeding industries worldwide. A previous study suggested that PRRSV nsp4, a 3C-like protease, antagonizes interferon beta (IFN-ß) production by cleaving the NF-κB essential modulator (NEMO) at a single site, glutamate 349 (E349). Here, we demonstrated that EAV nsp4 also inhibited virus-induced IFN-ß production by targeting NEMO for proteolytic cleavage and that the scission occurred at four sites: E166, E171, glutamine 205 (Q205), and E349. Additionally, we found that, besides the previously reported cleavage site E349 in NEMO, scission by PRRSV nsp4 took place at two additional sites, E166 and E171. These results imply that while cleaving NEMO is a common strategy utilized by EAV and PRRSV nsp4 to antagonize IFN induction, EAV nsp4 adopts a more complex substrate recognition mechanism to target NEMO. By analyzing the abilities of the eight different NEMO fragments resulting from EAV or PRRSV nsp4 scission to induce IFN-ß production, we serendipitously found that a NEMO fragment (residues 1 to 349) could activate IFN-ß transcription more robustly than full-length NEMO, whereas all other NEMO cleavage products were abrogated for the IFN-ß-inducing capacity. Thus, NEMO cleavage at E349 alone may not be sufficient to completely inactivate the IFN response via this signaling adaptor. Altogether, our findings suggest that EAV and PRRSV nsp4 cleave NEMO at multiple sites and that this strategy is critical for disarming the innate immune response for viral survival.IMPORTANCE The arterivirus nsp4-encoded 3C-like protease (3CLpro) plays an important role in virus replication and immune evasion, making it an attractive target for antiviral therapeutics. Previous work suggested that PRRSV nsp4 suppresses type I IFN production by cleaving NEMO at a single site. In contrast, the present study demonstrates that both EAV and PRRSV nsp4 cleave NEMO at multiple sites and that this strategy is essential for disruption of type I IFN production. Moreover, we reveal that EAV nsp4 also cleaves NEMO at glutamine 205 (Q205), which is not targeted by PRRSV nsp4. Notably, targeting a glutamine in NEMO for cleavage has been observed only with picornavirus 3C proteases (3Cpro) and coronavirus 3CLpro In aggregate, our work expands knowledge of the innate immune evasion mechanisms associated with NEMO cleavage by arterivirus nsp4 and describes a novel substrate recognition characteristic of EAV nsp4.


Equartevirus/metabolism , Interferon-beta/biosynthesis , Viral Nonstructural Proteins/metabolism , Animals , Arteriviridae/metabolism , Arterivirus/metabolism , Cell Line , Equartevirus/physiology , HEK293 Cells , Horses , Humans , I-kappa B Kinase/metabolism , I-kappa B Kinase/physiology , Immune Evasion , Immunity, Innate , Interferon-beta/metabolism , Porcine respiratory and reproductive syndrome virus/metabolism , Proteolysis , Signal Transduction , Swine , Virus Replication
18.
J Virol ; 93(12)2019 06 15.
Article En | MEDLINE | ID: mdl-30918077

Equine arteritis virus (EAV) is the causative agent of equine viral arteritis (EVA), a reproductive and respiratory disease of horses. Following natural infection, 10 to 70% of infected stallions can become carriers of EAV and continue to shed virus in the semen. In this study, sequential viruses isolated from nasal secretions, buffy coat cells, and semen of seven experimentally infected and two naturally infected EAV carrier stallions were deep sequenced to elucidate the intrahost microevolutionary process after a single transmission event. Analysis of variants from nasal secretions and buffy coat cells lacked extensive positive selection; however, characteristics of the mutant spectra were different in the two sample types. In contrast, the initial semen virus populations during acute infection have undergone a selective bottleneck, as reflected by the reduction in population size and diversifying selection at multiple sites in the viral genome. Furthermore, during persistent infection, extensive genome-wide purifying selection shaped variant diversity in the stallion reproductive tract. Overall, the nonstochastic nature of EAV evolution during persistent infection was driven by active intrahost selection pressure. Among the open reading frames within the viral genome, ORF3, ORF5, and the nsp2-coding region of ORF1a accumulated the majority of nucleotide substitutions during persistence, with ORF3 and ORF5 having the highest intrahost evolutionary rates. The findings presented here provide a novel insight into the evolutionary mechanisms of EAV and identified critical regions of the viral genome likely associated with the establishment and maintenance of persistent infection in the stallion reproductive tract.IMPORTANCE EAV can persist in the reproductive tract of infected stallions, and consequently, long-term carrier stallions constitute its sole natural reservoir. Previous studies demonstrated that the ampullae of the vas deferens are the primary site of viral persistence in the stallion reproductive tract and the persistence is associated with a significant inflammatory response that is unable to clear the infection. This is the first study that describes EAV full-length genomic evolution during acute and long-term persistent infection in the stallion reproductive tract using next-generation sequencing and contemporary sequence analysis techniques. The data provide novel insight into the intrahost evolution of EAV during acute and persistent infection and demonstrate that persistent infection is characterized by extensive genome-wide purifying selection and a nonstochastic evolutionary pattern mediated by intrahost selective pressure, with important nucleotide substitutions occurring in ORF1a (region encoding nsp2), ORF3, and ORF5.


Arterivirus Infections/genetics , Equartevirus/genetics , Host-Pathogen Interactions/genetics , Amino Acid Sequence/genetics , Animals , Arterivirus Infections/virology , Base Sequence/genetics , Carrier State/virology , Equartevirus/metabolism , Equartevirus/pathogenicity , Evolution, Molecular , Genome, Viral/genetics , Horse Diseases/virology , Horses/genetics , Male , Open Reading Frames/genetics , Phylogeny , Semen/virology , Sequence Analysis/methods
19.
Biotech Histochem ; 94(2): 115-125, 2019 Feb.
Article En | MEDLINE | ID: mdl-30350720

Equine arteritis virus (EAV) induces apoptosis in infected cells. Cell death caused by EAV has been studied mainly using three cell lines, BHK-21, RK-13 and Vero cells. The mechanism of apoptosis varies among cell lines and results cannot be correlated owing to differences in EAV strains used. We evaluated different markers for apoptosis in BHK-21, RK-13 and Vero cell lines using the Bucyrus EAV reference strain. Acridine orange/ethidium bromide staining revealed morphological changes in infected cells, while flow cytometry indicated the extent of apoptosis. We also observed DNA fragmentation, but the DNA ladder was detected at different times post-infection depending on the cell line, i.e., 48, 72 and 96 h post-infection in RK-13, Vero and BHK-21 cells, respectively. Measurement of viral titers obtained with each cell line indicated that apoptosis causes interference with viral replication and therefore decreased viral titers. As an unequivocal marker of apoptosis, we measured the expression of caspase-3 and caspases-8 and -9 as extrinsic and intrinsic markers of apoptosis pathways, respectively. Caspase-8 in BHK-21 cells was the only protease that was not detected at any of the times assayed. We found that Bucyrus EAV strain exhibited a distinctive apoptosis pathway depending on the cell line.


Apoptosis/physiology , Equartevirus/pathogenicity , Vero Cells , Virus Replication/physiology , Animals , Cell Line/virology , Chlorocebus aethiops/virology , Cricetinae , Haplorhini
20.
Arch Virol ; 163(6): 1469-1478, 2018 Jun.
Article En | MEDLINE | ID: mdl-29435711

Quantitation of virions is one of the important indexes in virological studies. To establish a sensitive and rapid quantitative detection method for equine arteritis virus (EAV), an antigen-capture enzyme-linked immunosorbent assay (AC-ELISA) was developed by using two EAV nucleoprotein monoclonal antibodies (mAbs), 2B9 and 2B3, prepared in this study. After condition optimization, mAb 2B9 was used as the capture antibody, and HRP-labeled 2B3 was chosen as the detecting antibody. The AC-ELISA had a good standard curve when viral particles of the Bucyrus EAV strain were used as a reference standard. The detection limit for the Bucyrus EAV strain was 36 PFU, and the method had a good linear relationship between 72-2297 PFU. The AC-ELISA could specifically detect the Bucyrus EAV strain and had no cross-reaction with other equine viruses. The sensitivity of the AC-ELISA was much higher than that of a western blotting assay but lower than that of a real-time PCR method. However, as a quantitative antigen detection method, the sensitivity of the AC-ELISA was approximately 300 times than the western blotting assay. Furthermore, the AC-ELISA assay could be successfully used in quantification of viral content in an in vitro infection assay, such as a one-step growth curve of EAV, as well as in a transfection assay, such as virus rescue from an infectious cDNA clone of EAV. These results show that the AC-ELISA established in this study is a good alternative for antigen detection of EAV, being a simple, convenient and quantitative detection method for EAV antigens.


Antibodies, Monoclonal/chemistry , Antibodies, Viral/chemistry , Antigens, Viral/analysis , Arterivirus Infections/veterinary , Enzyme-Linked Immunosorbent Assay/methods , Equartevirus/isolation & purification , Horse Diseases/diagnosis , Animals , Antibodies, Monoclonal/biosynthesis , Antibodies, Monoclonal/isolation & purification , Antibodies, Viral/biosynthesis , Antibodies, Viral/isolation & purification , Antigens, Viral/genetics , Antigens, Viral/immunology , Arterivirus Infections/diagnosis , Arterivirus Infections/virology , Blotting, Western , Cell Line , Enzyme-Linked Immunosorbent Assay/standards , Enzyme-Linked Immunosorbent Assay/veterinary , Epithelial Cells , Equartevirus/genetics , Equartevirus/immunology , Female , HEK293 Cells , Horse Diseases/virology , Horseradish Peroxidase/chemistry , Horses , Humans , Immunization , Limit of Detection , Mice , Mice, Inbred BALB C , Virion/genetics , Virion/immunology
...