Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 128
1.
Appl Microbiol Biotechnol ; 108(1): 323, 2024 May 07.
Article En | MEDLINE | ID: mdl-38713233

Ergot alkaloids (EAs) are a diverse group of indole alkaloids known for their complex structures, significant pharmacological effects, and toxicity to plants. The biosynthesis of these compounds begins with chanoclavine-I aldehyde (CC aldehyde, 2), an important intermediate produced by the enzyme EasDaf or its counterpart FgaDH from chanoclavine-I (CC, 1). However, how CC aldehyde 2 is converted to chanoclavine-I acid (CC acid, 3), first isolated from Ipomoea violacea several decades ago, is still unclear. In this study, we provide in vitro biochemical evidence showing that EasDaf not only converts CC 1 to CC aldehyde 2 but also directly transforms CC 1 into CC acid 3 through two sequential oxidations. Molecular docking and site-directed mutagenesis experiments confirmed the crucial role of two amino acids, Y166 and S153, within the active site, which suggests that Y166 acts as a general base for hydride transfer, while S153 facilitates proton transfer, thereby increasing the acidity of the reaction. KEY POINTS: • EAs possess complicated skeletons and are widely used in several clinical diseases • EasDaf belongs to the short-chain dehydrogenases/reductases (SDRs) and converted CC or CC aldehyde to CC acid • The catalytic mechanism of EasDaf for dehydrogenation was analyzed by molecular docking and site mutations.


Molecular Docking Simulation , Mutagenesis, Site-Directed , Ergot Alkaloids/biosynthesis , Ergot Alkaloids/chemistry , Ergot Alkaloids/metabolism , Aldehydes/metabolism , Aldehydes/chemistry , Oxidation-Reduction , Catalytic Domain , Oxidoreductases/metabolism , Oxidoreductases/genetics , Oxidoreductases/chemistry
2.
Appl Environ Microbiol ; 89(8): e0079323, 2023 08 30.
Article En | MEDLINE | ID: mdl-37432119

Ergot alkaloids are fungal specialized metabolites that are important in agriculture and serve as sources of several pharmaceuticals. Aspergillus leporis is a soil saprotroph that possesses two ergot alkaloid biosynthetic gene clusters encoding lysergic acid amide production. We identified two additional, partial biosynthetic gene clusters within the A. leporis genome containing some of the ergot alkaloid synthesis (eas) genes required to make two groups of clavine ergot alkaloids, fumigaclavines and rugulovasines. Clavines possess unique biological properties compared to lysergic acid derivatives. Bioinformatic analyses indicated the fumigaclavine cluster contained functional copies of easA, easG, easD, easM, and easN. Genes resembling easQ and easH, which are required for rugulovasine production, were identified in a separate gene cluster. The pathways encoded by these partial, or satellite, clusters would require intermediates from the previously described lysergic acid amide pathway to synthesize a product. Chemical analyses of A. leporis cultures revealed the presence of fumigaclavine A. However, rugulovasine was only detected in a single sample, prompting a heterologous expression approach to confirm functionality of easQ and easH. An easA knockout strain of Metarhizium brunneum, which accumulates the rugulovasine precursor chanoclavine-I aldehyde, was chosen as expression host. Strains of M. brunneum expressing easQ and easH from A. leporis accumulated rugulovasine as demonstrated through mass spectrometry analysis. These data indicate that A. leporis is exceptional among fungi in having the capacity to synthesize products from three branches of the ergot alkaloid pathway and for utilizing an unusual satellite cluster approach to achieve that outcome. IMPORTANCE Ergot alkaloids are chemicals produced by several species of fungi and are notable for their impacts on agriculture and medicine. The ability to make ergot alkaloids is typically encoded by a clustered set of genes that are physically adjacent on a chromosome. Different ergot alkaloid classes are formed via branching of a complex pathway that begins with a core set of the same five genes. Most ergot alkaloid-producing fungi have a single cluster of genes that is complete, or self-sufficient, and produce ergot alkaloids from one or occasionally two branches from that single cluster. Our data show that Aspergillus leporis is exceptional in having the genetic capacity to make products from three pathway branches. Moreover, it uses a satellite cluster approach, in which gene products of partial clusters rely on supplementation with a chemical intermediate produced via another gene cluster, to diversify its biosynthetic potential without duplicating all the steps.


Ergot Alkaloids , Gas Chromatography-Mass Spectrometry , Ergot Alkaloids/metabolism , Aspergillus/genetics , Aspergillus/metabolism , Multigene Family
3.
Appl Environ Microbiol ; 89(6): e0041523, 2023 06 28.
Article En | MEDLINE | ID: mdl-37212708

Opportunistically pathogenic fungi have varying potential to cause disease in animals. Factors contributing to their virulence include specialized metabolites, which in some cases evolved in contexts unrelated to pathogenesis. Specialized metabolites that increase fungal virulence in the model insect Galleria mellonella include the ergot alkaloids fumigaclavine C in Aspergillus fumigatus (syn. Neosartorya fumigata) and lysergic acid α-hydroxyethylamide (LAH) in the entomopathogen Metarhizium brunneum. Three species of Aspergillus recently found to accumulate high concentrations of LAH were investigated for their pathogenic potential in G. mellonella. Aspergillus leporis was most virulent, A. hancockii was intermediate, and A. homomorphus had very little pathogenic potential. Aspergillus leporis and A. hancockii emerged from and sporulated on dead insects, thus completing their asexual life cycles. Inoculation by injection resulted in more lethal infections than did topical inoculation, indicating that A. leporis and A. hancockii were preadapted for insect pathogenesis but lacked an effective means to breach the insect's cuticle. All three species accumulated LAH in infected insects, with A. leporis accumulating the most. Concentrations of LAH in A. leporis were similar to those observed in the entomopathogen M. brunneum. LAH was eliminated from A. leporis through a CRISPR/Cas9-based gene knockout, and the resulting strain had reduced virulence to G. mellonella. The data indicate that A. leporis and A. hancockii have considerable pathogenic potential and that LAH increases the virulence of A. leporis. IMPORTANCE Certain environmental fungi infect animals occasionally or conditionally, whereas others do not. Factors that affect the virulence of these opportunistically pathogenic fungi may have originally evolved to fill some other role for the fungus in its primary environmental niche. Among the factors that may improve the virulence of opportunistic fungi are specialized metabolites--chemicals that are not essential for basic life functions but provide producers with an advantage in particular environments or under specific conditions. Ergot alkaloids are a large family of fungal specialized metabolites that contaminate crops in agriculture and serve as the foundations of numerous pharmaceuticals. Our results show that two ergot alkaloid-producing fungi that were not previously known to be opportunistic pathogens can infect a model insect and that, in at least one of the species, an ergot alkaloid increases the virulence of the fungus.


Ergot Alkaloids , Animals , Ergot Alkaloids/metabolism , Aspergillus/metabolism , Aspergillus fumigatus/genetics , Fungi/metabolism , Insecta
4.
New Phytol ; 238(4): 1351-1361, 2023 05.
Article En | MEDLINE | ID: mdl-36727281

Heritable fungal endosymbiosis is underinvestigated in plant biology and documented in only three plant families (Convolvulaceae, Fabaceae, and Poaceae). An estimated 40% of morning glory species in the tribe Ipomoeeae (Convolvulaceae) have associations with one of two distinct heritable, endosymbiotic fungi (Periglandula and Chaetothyriales) that produce the bioactive metabolites ergot alkaloids, indole diterpene alkaloids, and swainsonine, which have been of interest for their toxic effects on animals and potential medical applications. Here, we report the occurrence of ergot alkaloids, indole diterpene alkaloids, and swainsonine in the Convolvulaceae; and the fungi that produce them based on synthesis of previous studies and new indole diterpene alkaloid data from 27 additional species in a phylogenetic, geographic, and life-history context. We find that individual morning glory species host no more than one metabolite-producing fungal endosymbiont (with one possible exception), possibly due to costs to the host and overlapping functions of the alkaloids. The symbiotic morning glory lineages occur in distinct phylogenetic clades, and host species have significantly larger seed size than nonsymbiotic species. The distinct and widely distributed endosymbiotic relationships in the morning glory family and their alkaloids provide an accessible study system for understanding heritable plant-fungal symbiosis evolution and their potential functions for host plants.


Alkaloids , Convolvulaceae , Ergot Alkaloids , Ipomoea , Animals , Convolvulaceae/metabolism , Convolvulaceae/microbiology , Swainsonine/metabolism , Phylogeny , Ipomoea/genetics , Ipomoea/metabolism , Ipomoea/microbiology , Ergot Alkaloids/metabolism , Alkaloids/metabolism , Diterpene Alkaloids
5.
Microb Biotechnol ; 16(4): 742-756, 2023 04.
Article En | MEDLINE | ID: mdl-36636806

Ergot alkaloids are a large family of fungal specialized metabolites that are important as toxins in agriculture and as the foundation of powerful pharmaceuticals. Fungi from several lineages and diverse ecological niches produce ergot alkaloids from at least one of several branches of the ergot alkaloid pathway. The biochemical and genetic bases for the different branches have been established and are summarized briefly herein. Several pathway branches overlap among fungal lineages and ecological niches, indicating activities of ergot alkaloids benefit fungi in different environments and conditions. Understanding the functions of the multiple genes in each branch of the pathway allows researchers to parse the abundant genomic sequence data available in public databases in order to assess the ergot alkaloid biosynthesis capacity of previously unexplored fungi. Moreover, the characterization of the genes involved in the various branches provides opportunities and resources for the biotechnological manipulation of ergot alkaloids for experimentation and pharmaceutical development.


Ergot Alkaloids , Ergot Alkaloids/chemistry , Ergot Alkaloids/metabolism , Fungi/genetics , Fungi/metabolism
6.
Theriogenology ; 197: 71-83, 2023 Feb.
Article En | MEDLINE | ID: mdl-36476505

Canadian standards allow ≤3000 µg ergot alkaloids/kg cattle feed. A concentration-response relationship was hypothesized between ergot in feed and reductions in plasma prolactin, sperm motility, sperm function, and increase in sperm abnormalities. The study consisted of pre-treatment (12 weeks), treatment (9 weeks), and post-treatment periods (10 weeks). Adult bulls were fed 1113 (n = 8; low ergot group) or 2227 (n = 6; high) µg/kg of dry matter intake. Endpoints were measured every two weeks. Ejaculates were analyzed for sperm concentration, total and progressive motility, plasma membrane and acrosome integrity, mitochondrial membrane potential and sperm abnormalities. Data were analyzed by repeated measures MIXED PROC in SAS. Average outside ambient temperature during the pre-treatment, treatment, and post-treatment periods was -13 (-31 to 1), 0.5 (-18 to 19), and 21 (13-28) °C. Plasma prolactin decreased markedly during treatment (-52.4%; Experimental period p < 0.01). Rectal temperature increased during the treatment and post-treatment periods (EP p < 0.01) but was within the normal physiological range. Bull weight increased during the study (EP p < 0.01). Scrotal circumference in low ergot group increased during treatment (+0.8 cm; Tx∗EP p = 0.05). Progressive motility in high ergot group decreased during treatment (-7%; Tx∗EP p = 0.05), however, semen volume and sperm concentrations were unaffected (p ≥ 0.11). Live sperm with high and medium MMP decreased during treatment (-1.4 and -3.7%; EP p < 0.01). Results suggest that feeding ≤2227 µg ergot alkaloids/kg has only minor effects on adult bull semen quality.


Ergot Alkaloids , Semen Analysis , Male , Animals , Cattle , Semen Analysis/veterinary , Semen/physiology , Prolactin , Sperm Motility , Canada , Spermatozoa/physiology , Ergot Alkaloids/pharmacology , Ergot Alkaloids/metabolism
7.
BMC Res Notes ; 15(1): 183, 2022 May 18.
Article En | MEDLINE | ID: mdl-35585609

OBJECTIVE: The fungus Metarhizium brunneum produces ergot alkaloids of the lysergic acid amide class, most abundantly lysergic acid α-hydroxyethylamide (LAH). Genes for making ergot alkaloids are clustered in the genomes of producers. Gene clusters of LAH-producing fungi contain an α/ß hydrolase fold protein-encoding gene named easP whose presence correlates with LAH production but whose contribution to LAH synthesis in unknown. We tested whether EasP contributes to LAH accumulation through gene knockout studies. RESULTS: We knocked out easP in M. brunneum via a CRISPR/Cas9-based approach, and accumulation of LAH was reduced to less than half the amount observed in the wild type. Because LAH accumulation was reduced and not eliminated, we identified and mutated the only close homolog of easP in the M. brunneum genome, a gene we named estA. An easP/estA double mutant did not differ from the easP mutant in lysergic acid amide accumulation, indicating estA had no role in the pathway. We conclude EasP contributes to LAH accumulation but is not absolutely required. Either a gene encoding redundant function and lacking sequence identity with easP resides outside the ergot alkaloid synthesis gene cluster, or EasP plays an accessory role in the synthesis of LAH.


Ergot Alkaloids , Metarhizium , Ergot Alkaloids/genetics , Ergot Alkaloids/metabolism , Lysergic Acid Diethylamide/analogs & derivatives , Metarhizium/genetics , Metarhizium/metabolism
8.
Sci Rep ; 12(1): 4899, 2022 03 22.
Article En | MEDLINE | ID: mdl-35318361

Bovine fescue toxicosis (FT) is caused by grazing ergot alkaloid-producing endophyte (Epichloë coenophiala)-infected tall fescue. Endophyte's effects on the animal's microbiota and metabolism were investigated recently, but its effects in planta or on the plant-animal interactions have not been considered. We examined multi-compartment microbiota-metabolome perturbations using multi-'omics (16S and ITS2 sequencing, plus untargeted metabolomics) in Angus steers grazing non-toxic (Max-Q) or toxic (E+) tall fescue for 28 days and in E+ plants. E+ altered the plant/animal microbiota, decreasing most ruminal fungi, with mixed effects on rumen bacteria and fecal microbiota. Metabolic perturbations occurred in all matrices, with some plant-animal overlap (e.g., Vitamin B6 metabolism). Integrative interactomics revealed unique E+ network constituents. Only E+ had ruminal solids OTUs within the network and fecal fungal OTUs in E+ had unique taxa (e.g., Anaeromyces). Three E+-unique urinary metabolites that could be potential biomarkers of FT and targeted therapeutically were identified.


Ergot Alkaloids , Festuca , Lolium , Mycotoxicosis , Animal Feed/analysis , Animals , Cattle , Ergot Alkaloids/metabolism , Ergot Alkaloids/toxicity , Festuca/metabolism , Lolium/microbiology
9.
J Am Chem Soc ; 144(12): 5485-5493, 2022 03 30.
Article En | MEDLINE | ID: mdl-35302734

Ergopeptines constitute one of the representative classes of ergoline alkaloids and carry a tripeptide extension on the lysergic acid core. In the current study, we discovered and structurally characterized newly isolated ergopeptine-like compounds named lentopeptins from a filamentous fungus Aspergillus lentulus, a close relative of A. fumigatus. Interestingly, in lentopeptins, the common lysergic acid moiety of ergopeptines is replaced by a cinnamic acid moiety at the N-terminus of the peptide segment. Moreover, lentopeptins lack the C-terminal proline residue necessary for the spontaneous cyclization of the peptide extension. Herein, we report the atypical lentopeptin biosynthetic pathway identified through targeted deletion of the len cluster biosynthetic genes predicted from the genome sequence. Further in vitro characterizations of the thiolation-terminal condensation-like (T-CT) didomain of the nonribosomal peptide synthetase LenA and its site-specific mutants revealed the mechanism of peptide release via diketopiperazine formation, an activity previously unreported for CT domains. Most intriguingly, in vitro assays of the cytochrome P450 LenC illuminated the unique mechanisms to generate two diastereomeric products. Lentopeptin A forms via a stereospecific hydroxylation, followed by a spontaneous bicyclic lactam core formation, while lentopeptin B is produced through an initial dehydrogenation, followed by a bicyclic lactam core formation and stereospecific hydration. Our results showcase how nature exploits common biosynthetic enzymes to forge new complex natural products effectively (213/250).


Alkaloids , Ergot Alkaloids , Lysergic Acid , Biosynthetic Pathways , Ergot Alkaloids/chemistry , Ergot Alkaloids/genetics , Ergot Alkaloids/metabolism , Lactams , Lysergic Acid/chemistry , Lysergic Acid/metabolism , Peptides/metabolism
10.
Nat Commun ; 13(1): 712, 2022 02 07.
Article En | MEDLINE | ID: mdl-35132076

The ergot alkaloids are a class of natural products known for their pharmacologically privileged molecular structure that are used in the treatment of neurological ailments, such as Parkinsonism and dementia. Their synthesis via chemical and biological routes are therefore of industrial relevance, but suffer from several challenges. Current chemical synthesis methods involve long, multi-step reactions with harsh conditions and are not enantioselective; biological methods utilizing ergot fungi, produce an assortment of products that complicate product recovery, and are susceptible to strain degradation. Reconstituting the ergot alkaloid pathway in a strain strongly amenable for liquid fermentation, could potentially resolve these issues. In this work, we report the production of the main ergoline therapeutic precursor, D-lysergic acid, to a titre of 1.7 mg L-1 in a 1 L bioreactor. Our work demonstrates the proof-of-concept for the biological production of ergoline-derived compounds from sugar in an engineered yeast chassis.


Lysergic Acid/metabolism , Saccharomyces cerevisiae/metabolism , Biosynthetic Pathways , Ergot Alkaloids/chemistry , Ergot Alkaloids/metabolism , Fermentation , Lysergic Acid/chemistry , Molecular Structure , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
11.
Metab Eng ; 69: 198-208, 2022 01.
Article En | MEDLINE | ID: mdl-34902590

Privileged ergot alkaloids (EAs) produced by the fungal genus Claviceps are used to treat a wide range of diseases. However, their use and research have been hampered by the challenging genetic engineering of Claviceps. Here we systematically refactored and rationally engineered the EA biosynthetic pathway in heterologous host Aspergillus nidulans by using a Fungal-Yeast-Shuttle-Vector protocol. The obtained strains allowed the production of diverse EAs and related intermediates, including prechanoclavine (PCC, 333.8 mg/L), chanoclavine (CC, 241.0 mg/L), agroclavine (AC, 78.7 mg/L), and festuclavine (FC, 99.2 mg/L), etc. This fungal platform also enabled the access to the methyl-oxidized EAs (MOEAs), including elymoclavine (EC), lysergic acid (LA), dihydroelysergol (DHLG), and dihydrolysergic acid (DHLA), by overexpressing a P450 enzyme CloA. Furthermore, by optimizing the P450 electron transfer (ET) pathway and using multi-copy of cloA, the titers of EC and DHLG have been improved by 17.3- and 9.4-fold, respectively. Beyond our demonstration of A. nidulans as a robust platform for EA overproduction, our study offers a proof of concept for engineering the eukaryotic P450s-contained biosynthetic pathways in a filamentous fungal host.


Claviceps , Ergot Alkaloids , Biosynthetic Pathways/genetics , Claviceps/genetics , Claviceps/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Ergot Alkaloids/genetics , Ergot Alkaloids/metabolism , Saccharomyces cerevisiae/metabolism
12.
Toxins (Basel) ; 13(3)2021 03 09.
Article En | MEDLINE | ID: mdl-33803203

Grazing endophyte-infected, toxic tall fescue reduces cow/calf production; therefore, this study examines alternate strategies such as use of novel endophyte fescue varieties during late gestation and early lactation or genetic selection of resistant cows. Pregnant cows (n = 75) were randomly assigned to fescue endophyte type: 1) endophyte-infected ergot alkaloid producing tall fescue (E+) or 2) novel endophyte-infected, non-toxic tall fescue (NOV) within maternal (A|A, n = 38 and G|G, n = 37) DRD2 genotype to examine changes in cow/calf performance and milk production during late gestation and early lactation. Grazing E+ fescue pastures during late gestation reduced cow body weight gain but did not alter calf birth weight compared to NOV. Milk production and calf ADG during the first 30 day of lactation were lower for E+ than NOV. The calving rate was reduced, but not calving interval for E+ cows. The adjusted 205-day weight of calves was lower in those grazing E+ with their dams compared to NOV. There were no interactions between DRD2 genotype and fescue endophyte type indicating that genotype was not associated with response to E+ fescue in this study. Overall, grazing NOV tall fescue pastures rather than E+ during critical stages of production improved cow gain during late gestation, calving rate, early milk production and calf growth.


Endophytes/metabolism , Ergot Alkaloids/metabolism , Lactation , Lolium/microbiology , Polymorphism, Single Nucleotide , Receptors, Dopamine D2/genetics , Animal Feed/microbiology , Animals , Animals, Suckling , Birth Weight , Cattle , Endophytes/growth & development , Ergot Alkaloids/toxicity , Female , Food Microbiology , Genotype , Gestational Age , Gestational Weight Gain , Herbivory , Pregnancy , Receptors, Dopamine D2/metabolism , Time Factors
13.
J Sci Food Agric ; 101(12): 5214-5224, 2021 Sep.
Article En | MEDLINE | ID: mdl-33609041

BACKGROUND: Ergot alkaloids are secondary metabolites produced by fungi in the genus Claviceps. They contaminate a large variety of cereals, such as rye, triticale, wheat and barley. The ingestion of contaminated cereals might cause adverse health effects in humans and animals. In fact, pigs, cattle, sheep, and poultry are involved in sporadic outbreaks and, although there are several studies about occurrence of ergot alkaloids in grain cereals, there are scarce studies focused on compound feed. RESULTS: Twelve ergot alkaloids have been quantified in 228 feed samples intended for swine. The analytes were extracted using QuEChERS with Z-Sep+ as sorbent in the clean-up step, which reduced the matrix effect, allowing limits of quantification between 2.1 and 21.7 µg kg-1 . The analytes were subsequently quantified by ultra-high-performance liquid chromatography with tandem mass spectrometry (UHPLC-MS/MS). A total of 29 samples (12.7%) revealed contamination by at least one ergot alkaloid, and among contaminated samples, 65% were contaminated by more than one. Only 6 of 12 target ergot alkaloids showed concentrations above the limit of quantification. The concentrations for individual ergot alkaloids ranged between 5.9 µg kg-1 for ergosinine to 145.3 µg kg-1 for ergometrine (the predominant ergot alkaloid), while the total ergot alkaloid content ranged from 5.9 to 158.7 µg kg-1 . CONCLUSIONS: The occurrence of ergot alkaloids in feed samples in Spain seems to be lower than in other regions of Europe. All the samples fulfilled current recommendations of the feed industry about practical limits for ergot alkaloids in pig feeds. This suggests that the feeds are safe for pig consumption, regarding the presence of ergot alkaloids. © 2021 Society of Chemical Industry.


Animal Feed/analysis , Ergot Alkaloids/analysis , Animals , Chromatography, High Pressure Liquid , Edible Grain/chemistry , Edible Grain/metabolism , Edible Grain/microbiology , Ergot Alkaloids/metabolism , Europe , Food Contamination/analysis , Fungi/metabolism , Hordeum/chemistry , Hordeum/metabolism , Hordeum/microbiology , Swine/metabolism , Tandem Mass Spectrometry , Triticum/chemistry , Triticum/metabolism , Triticum/microbiology
14.
Comput Biol Chem ; 89: 107409, 2020 Dec.
Article En | MEDLINE | ID: mdl-33157472

The fumigaclavines represent a small group of clavine-type alkaloids produced by the pathogenic fungus Aspergillus fumigatus. The leading compound in the family is fumigaclavine C (Fm-C) endowed with potent anti-inflammatory properties. Fm-C represses the production of several inflammatory cytokines in cells via a mechanism implicating a reduced nucleo-cytoplasmic transport and extracellular export of the alarmin protein HMGB1, through a direct drug-protein interaction, and a down-regulation of HMGB1 expression. We have investigated the interaction of Fm-C with HMGB1 using two complementary forms of the HMG-box protein, in its free and DNA-bound configurations, using molecular modeling. We identified up to six potential binding sites for Fm-C in the vicinity of the B-box of HMGB1, with the site designated Lys-103 being the most favored and maintained when the protein is bound to a 16-base pair DNA oligonucleotide. Structure-binding relationships have been explored through the comparison of the HMGB1-binding properties of fumigaclavines A, B and C, and the related alkaloid lysergic acid diethylamide (LSD). Both the C-9 acetyl group and C-2 dimethylallyl side chain of Fm-C contribute importantly to the protein interaction. LSD appears also to form stable complexes with free HMGB1. According to the calculated empirical energies of interaction (ΔE), the compounds rank in the order: Fm-C ∼ LSD < Fm-A < Fm-B, for binding to HMGB1. The study helps to better comprehend the mechanism of action of Fm-C, and its anti-inflammatory and anticancer properties.


DNA/metabolism , Ergot Alkaloids/metabolism , HMGB1 Protein/metabolism , Indole Alkaloids/metabolism , Binding Sites , Ergot Alkaloids/chemistry , HMGB1 Protein/chemistry , Humans , Indole Alkaloids/chemistry , Molecular Docking Simulation , Molecular Structure , Protein Binding/drug effects
15.
Toxins (Basel) ; 12(10)2020 10 01.
Article En | MEDLINE | ID: mdl-33019560

Rapid scientific advances are increasing our understanding of the way complex biological interactions integrate to maintain homeostatic balance and how seemingly small, localized perturbations can lead to systemic effects. The 'omics movement, alongside increased throughput resulting from statistical and computational advances, has transformed our understanding of disease mechanisms and the multi-dimensional interaction between environmental stressors and host physiology through data integration into multi-dimensional analyses, i.e., integrative interactomics. This review focuses on the use of high-throughput technologies in farm animal research, including health- and toxicology-related papers. Although limited, we highlight recent animal agriculture-centered reports from the integrative multi-'omics movement. We provide an example with fescue toxicosis, an economically costly disease affecting grazing livestock, and describe how integrative interactomics can be applied to a disease with a complex pathophysiology in the pursuit of novel treatment and management approaches. We outline how 'omics techniques have been used thus far to understand fescue toxicosis pathophysiology, lay out a framework for the fescue toxicosis integrome, identify some challenges we foresee, and offer possible means for addressing these challenges. Finally, we briefly discuss how the example with fescue toxicosis could be used for other agriculturally important animal health and welfare problems.


Animal Feed/toxicity , Environmental Exposure/adverse effects , Epichloe/metabolism , Ergot Alkaloids/toxicity , Ergotism/veterinary , Lolium/microbiology , Metabolomics , Toxicology , Animal Husbandry , Animal Welfare , Animals , Ergot Alkaloids/metabolism , Ergotism/metabolism , Ergotism/microbiology , Ergotism/prevention & control , Gastrointestinal Microbiome , High-Throughput Screening Assays
16.
Appl Environ Microbiol ; 86(19)2020 09 17.
Article En | MEDLINE | ID: mdl-32769181

Ergot alkaloids are important specialized fungal metabolites that are used to make potent pharmaceuticals for neurological diseases and disorders. Lysergic acid (LA) and dihydrolysergic acid (DHLA) are desirable lead compounds for pharmaceutical semisynthesis but are typically transient intermediates in the ergot alkaloid and dihydroergot alkaloid pathways. Previous work with Neosartorya fumigata demonstrated strategies to produce these compounds as pathway end products, but their percent yield (percentage of molecules in product state as opposed to precursor state) was low. Moreover, ergot alkaloids in N. fumigata are typically retained in the fungus as opposed to being secreted. We used clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated protein 9 (Cas9) and heterologous expression approaches to engineer these compounds in Metarhizium brunneum, representing an alternate expression host from a different lineage of fungi. The relative percent yields of LA (86.9%) and DHLA (72.8%) were much higher than those calculated here for previously engineered strains of N. fumigata (2.6% and 2.0%, respectively). Secretion of these alkaloids also was measured, with averages of 98.4% of LA and 87.5% of DHLA being secreted into the growth medium; both values were significantly higher than those measured for the N. fumigata derivatives (both of which were less than 5.6% secreted). We used a similar approach to engineer a novel dihydroergot alkaloid in M. brunneum and, through high-performance liquid chromatography-mass spectrometry (LC-MS) analyses, provisionally identified it as the dihydrogenated form of lysergic acid α-hydroxyethylamide (dihydro-LAH). The engineering of these strains provides a strategy for producing novel and pharmaceutically important chemicals in a fungus more suitable for their production.IMPORTANCE Ergot alkaloids derived from LA or DHLA are the bases for numerous pharmaceuticals with applications in the treatment of dementia, migraines, hyperprolactinemia, and other conditions. However, extraction of ergot alkaloids from natural sources is inefficient, and their chemical synthesis is expensive. The ability to control and redirect ergot alkaloid synthesis in fungi may allow more efficient production of these important chemicals and facilitate research on novel derivatives. Our results show that Metarhizium brunneum can be engineered to efficiently produce and secrete LA and DHLA and, also, to produce a novel derivative of DHLA not previously found in nature. The engineering of dihydroergot alkaloids, including a novel species, is important because very few natural sources of these compounds are known. Our approach establishes a platform with which to use M. brunneum to study the production of other ergot alkaloids, specifically those classified as lysergic acid amides and dihydroergot alkaloids.


CRISPR-Cas Systems , Ergot Alkaloids/metabolism , Metabolic Networks and Pathways/genetics , Metarhizium/genetics , Metarhizium/metabolism , Microorganisms, Genetically-Modified/genetics , Microorganisms, Genetically-Modified/metabolism
17.
Sci Rep ; 10(1): 9714, 2020 06 16.
Article En | MEDLINE | ID: mdl-32546814

The complex ergot alkaloids, ergovaline and ergotamine, cause dysregulation of physiological functions, characterised by vasoconstriction as well as thermoregulatory and cardiovascular effects in grazing livestock. To assess the effect of the mycotoxins, blood pressure and heart rate of male mice were measured, and metabolite profiling undertaken to determine relative abundances of both ergotamine and its metabolic products in body and brain tissue. Ergotamine showed similar cardiovascular effects to ergovaline, causing elevations in blood pressure and reduced heart rate. Bradycardia was preserved at low-levels of ergovaline despite no changes in blood pressure. Ergotamine was identified in kidney, liver and brainstem but not in other regions of the brain, which indicates region-specific effects of the toxin. The structural configuration of two biotransformation products of ergotamine were determined and identified in the liver and kidney, but not the brain. Thus, the dysregulation in respiratory, thermoregulatory, cardiac and vasomotor function, evoked by ergot alkaloids in animals observed in various studies, could be partially explained by dysfunction in the autonomic nervous system, located in the brainstem.


Ergot Alkaloids/metabolism , Ergot Alkaloids/toxicity , Mycotoxins/toxicity , Animal Feed/analysis , Animals , Blood Pressure/drug effects , Ergot Alkaloids/chemistry , Ergotamine/metabolism , Ergotamine/pharmacology , Ergotamine/toxicity , Ergotamines/metabolism , Ergotamines/pharmacology , Ergotamines/toxicity , Male , Mice , Mice, Inbred C57BL , Mycotoxins/metabolism , Mycotoxins/pharmacology , Toxins, Biological/pharmacology , Vasoconstriction/drug effects
18.
World J Microbiol Biotechnol ; 36(7): 92, 2020 Jun 19.
Article En | MEDLINE | ID: mdl-32562008

All plants harbor many microbial species including bacteria and fungi in their tissues. The interactions between the plant and these microbes could be symbiotic, mutualistic, parasitic or commensalistic. Mutualistic microorganisms are endophytic in nature and are known to play a role in plant growth, development and fitness. Endophytes display complex diversity depending upon the agro-climatic conditions and this diversity could be exploited for crop improvement and sustainable agriculture. Plant-endophyte partnerships are highly specific, several genetic and molecular cascades play a key role in colonization of endophytes in host plants leading to rapid changes in host and endophyte metabolism. This results in the accumulation of secondary metabolites, which play an important role in plant defense against biotic and abiotic stress conditions. Alkaloids are one of the important class of metabolites produced by Epichloë genus and other related classes of endophytes and confer protection against insect and mammalian herbivory. In this context, this review discusses the evolutionary aspects of the Epichloë genus along with key molecular mechanisms determining the lifestyle of Epichloë endophytes in host system. Novel hypothesis is proposed to outline the initial cellular signaling events during colonization of Epichloë in cool season grasses. Complex clustering of alkaloid biosynthetic genes and molecular mechanisms involved in the production of alkaloids have been elaborated in detail. The natural defense and advantages of the endophyte derived metabolites have also been extensively discussed. Finally, this review highlights the importance of endophyte-arbitrated plant immunity to develop novel approaches for eco-friendly agriculture.


Endophytes/metabolism , Epichloe/metabolism , Plant Immunity , Poaceae/microbiology , Alkaloids/metabolism , Aspergillus/classification , Aspergillus/metabolism , Calcineurin/metabolism , Endophytes/isolation & purification , Epichloe/isolation & purification , Ergolines/metabolism , Ergot Alkaloids/metabolism , Evolution, Molecular , Fungal Proteins/metabolism , Indole Alkaloids/metabolism , Lysergic Acid/metabolism , Multigene Family , NADPH Oxidases/metabolism , Protein Kinases/metabolism , Reactive Oxygen Species/metabolism , Stress, Physiological , Symbiosis , Transcriptome
19.
Appl Environ Microbiol ; 86(14)2020 07 02.
Article En | MEDLINE | ID: mdl-32385081

Genomic sequence data indicate that certain fungi in the genus Metarhizium have the capacity to produce lysergic acid-derived ergot alkaloids, but accumulation of ergot alkaloids in these fungi has not been demonstrated previously. We assayed several Metarhizium species grown under different conditions for accumulation of ergot alkaloids. Isolates of M. brunneum and M. anisopliae accumulated the lysergic acid amides lysergic acid α-hydroxyethyl amide, ergine, and ergonovine on sucrose-yeast extract agar but not on two other tested media. Isolates of six other Metarhizium species did not accumulate ergot alkaloids on sucrose-yeast extract agar. Conidia of M. brunneum lacked detectable ergot alkaloids, and mycelia of this fungus secreted over 80% of their ergot alkaloid yield into the culture medium. Isolates of M. brunneum, M. flavoviride, M. robertsii, M. acridum, and M. anisopliae produced high concentrations of ergot alkaloids in infected larvae of the model insect Galleria mellonella, but larvae infected with M. pingshaense, M. album, M. majus, and M. guizhouense lacked detectable ergot alkaloids. Alkaloid concentrations were significantly higher when insects were alive (as opposed to killed by freezing or gas) at the time of inoculation with M. brunneum Roots of corn and beans were inoculated with M. brunneum or M. flavoviride and global metabolomic analyses indicated that the inoculated roots were colonized, though no ergot alkaloids were detected. The data demonstrate that several Metarhizium species produce ergot alkaloids of the lysergic acid amide class and that production of ergot alkaloids is tightly regulated and associated with insect colonization.IMPORTANCE Our discovery of ergot alkaloids in fungi of the genus Metarhizium has agricultural and pharmaceutical implications. Ergot alkaloids produced by other fungi in the family Clavicipitaceae accumulate in forage grasses or grain crops; in this context they are considered toxins, though their presence also may deter or kill insect pests. Our data report ergot alkaloids in Metarhizium species and indicate a close association of ergot alkaloid accumulation with insect colonization. The lack of accumulation of alkaloids in spores of the fungi and in plants colonized by the fungi affirms the safety of using Metarhizium species as biocontrol agents. Ergot alkaloids produced by other fungi have been exploited to produce powerful pharmaceuticals. The class of ergot alkaloids discovered in Metarhizium species (lysergic acid amides) and their secretion into the growth medium make Metarhizium species a potential platform for future studies on ergot alkaloid synthesis and modification.


Ergot Alkaloids/metabolism , Metarhizium/metabolism , Species Specificity
20.
J Anim Sci ; 96(11): 4912-4922, 2018 Nov 21.
Article En | MEDLINE | ID: mdl-30476153

Ergot alkaloids from endophyte-infected (Epichloë coenophiala) tall fescue (Lolium arundinaceum) induce vasoconstriction. Previous work has shown that serotonin receptor subtype, 5HT2A, is present in bovine ruminal (R) and mesenteric (M) vasculature, plays a role in vasoconstriction, and could be influenced by ergot alkaloids. To determine the influence of ergot alkaloids on 5HT2A, the vasoactivity of an agonist selective for 5HT2A, (4-bromo-3,6-dimethoxybenzocyclobuten-1-yl) methylamine HCl (TCB-2), was evaluated using bovine ruminal and mesenteric arteries and veins (RA, RV, MA, MV) that were exposed to ergovaline (ERV) prior to or during the TCB-2 additions. Ruminal and mesenteric blood vessel segments were collected, cleaned, and cut into 2- to 3-mm cross-sections. Vessel segments were incubated in Krebs-Henseleit buffer containing 0, 0.01 or 1 µM ERV for 2 h prior to TCB-2 dose response or exposed to ERV concentrations simultaneously during TCB-2 dose response. For the dose response portion of the study, vessels were suspended in a multimyograph containing 5 mL of continuously oxygenated Krebs-Henseleit buffer and equilibrated to 1 g tension for 90 min. Vessels were exposed to increasing concentrations of TCB-2 every 15 min and contractile response data were normalized as a percentage of the maximum contractile response induced by 120 mM KCl reference. Analysis of variance was evaluated separately for each vessel and each ERV exposure experiment using the mixed models procedure of SAS for effects of TCB-2 and ERV concentrations. All blood vessels with previous ERV exposure had significantly lower contractile responses to TCB-2 (P < 0.01). All blood vessels with simultaneous exposure to 1 µM ERV had higher (P < 0.01) contractile responses at lower concentrations of TCB-2. Simultaneous ERV addition at 1 × 10-4 M TCB-2 did not affect contractility of RV, MA, MV (P > 0.05), but decreased contractility of RA (P < 0.01). These results indicate that ergopeptine alkaloid exposure influences contractility of bovine ruminal and mesenteric blood vessels through serotonin receptor subtype 5HT2A by acting as both an agonist and antagonist. Additional work is needed to determine if ergot alkaloids like ERV simply occupy receptor binding sites competitively, or influence receptor internalization to cause the observed divergent responses.


Cattle/physiology , Epichloe/physiology , Ergotamines/metabolism , Festuca/chemistry , Receptor, Serotonin, 5-HT2A/metabolism , Vasoconstriction/drug effects , Animals , Endophytes/chemistry , Ergot Alkaloids/metabolism , Festuca/microbiology , Male , Mesenteric Arteries/drug effects
...