Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 46
1.
Nanomedicine ; 55: 102724, 2024 Jan.
Article En | MEDLINE | ID: mdl-38007066

In recent decades, nanopores have become a promising diagnostic tool. Protein and solid-state nanopores are increasingly used for both RNA/DNA sequencing and small molecule detection. The latter is of great importance, as their detection is difficult or expensive using available methods such as HPLC or LC-MS. DNA aptamers are an excellent detection element for sensitive and specific detection of small molecules. Herein, a method for quantifying small molecules using a ready-to-use sequencing platform is described. Taking ethanolamine as an example, a strand displacement assay is developed in which the target-binding aptamer is displaced from the surface of magnetic particles by ethanolamine. Non-displaced aptamer and thus the ethanolamine concentration are detected by the nanopore system and can be quantified in the micromolar range using our in-house developed analysis software. This method is thus the first to describe a label-free approach for the detection of small molecules in a protein nanopore system.


Aptamers, Nucleotide , Biosensing Techniques , Nanopores , Ethanolamine/analysis , Ethanolamine/chemistry , Ethanolamines , DNA/chemistry , Base Sequence , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods
2.
Langmuir ; 39(28): 9671-9680, 2023 07 18.
Article En | MEDLINE | ID: mdl-37421360

Prebiotic membranes are one of the essential elements of the origin of life because they build compartments to keep genetic materials and metabolic machinery safe. Since modern cell membranes are made up of ethanolamine-based phospholipids, prebiotic membrane formation with ethanolamine-based amphiphiles and phosphates might act as a bridge between the prebiotic and contemporary eras. Here, we report the prebiotic synthesis of O-lauroyl ethanolamine (OLEA), O-lauroyl methyl ethanolamine (OLMEA), and O-lauroyl dimethylethanolamine (OLDMEA) under wet-dry cycles. Turbidimetric, NMR, DLS, fluorescence, microscopy, and glucose encapsulation studies highlighted that OLEA-ATP and OLMEA-ATP form protocellular membranes in a 3:1 ratio, where ATP acts as a template. OLDMEA with a dimethyl group did not form any membrane in the presence of ATP. ADP can also template OLEA to form vesicles in a 2:1 ratio, but the ADP-templated vesicles were smaller. This suggests the critical role of the phosphate backbone in controlling the curvature of supramolecular assembly. The mechanisms of hierarchical assembly and transient dissipative assembly are discussed based on templated-complex formation via electrostatic, hydrophobic, and H-bonding interactions. Our results suggest that N-methylethanolamine-based amphiphiles could be used to form prebiotic vesicles, but the superior H-bonding ability of the ethanolamine moiety likely provides an evolutionary advantage for stable protocell formation during the fluctuating environments of early earth.


Ethanolamine , Ethanolamines , Ethanolamine/analysis , Ethanolamines/analysis , Membranes/chemistry , Cell Membrane , Phospholipids , Phosphates
3.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Article En | MEDLINE | ID: mdl-34031247

Cell membranes are a key element of life because they keep the genetic material and metabolic machinery together. All present cell membranes are made of phospholipids, yet the nature of the first membranes and the origin of phospholipids are still under debate. We report here the presence of ethanolamine in space, [Formula: see text]OH, which forms the hydrophilic head of the simplest and second-most-abundant phospholipid in membranes. The molecular column density of ethanolamine in interstellar space is N = (1.51[Formula: see text]0.07)[Formula: see text], implying a molecular abundance with respect to [Formula: see text] of [Formula: see text] Previous studies reported its presence in meteoritic material, but they suggested that it is synthesized in the meteorite itself by decomposition of amino acids. However, we find that the proportion of the molecule with respect to water in the interstellar medium is similar to the one found in the meteorite ([Formula: see text]). These results indicate that ethanolamine forms efficiently in space and, if delivered onto early Earth, could have contributed to the assembling and early evolution of primitive membranes.


Ethanolamine/analysis , Exobiology , Meteoroids
4.
J Sep Sci ; 44(14): 2693-2704, 2021 Jul.
Article En | MEDLINE | ID: mdl-33939878

Oleoylethanolamide is an endogenous molecule with neuroprotective effects. It has been reported that exogenous oleoylethanolamide can be administered therapeutically, but the confounding presence of the endogenous molecule has led to conflicting reports regarding the mechanisms of the effects and highlights a need for an adequate methodology to differentiate them. We have developed a liquid chromatography-tandem mass spectrometry method to study oleoylethanolamide in rat plasma and brain using a 13 C-labeled isotope, 13 C-oleoylethanolamide. 13 C-oleoylethanolamide was extracted using a liquid-liquid extraction employing acetonitrile and tert-butyl methyl ether (1:4). Analysis was performed using a gradient with a total run time of 12 min. 13 C-oleoylethanolamide, d4 -oleoylethanolamide (internal standard), and 12 C-oleoylethanolamide (endogenous background) eluted simultaneously at 1.64 min. The method was validated for specificity, sensitivity, accuracy, and precision and found to be capable of quantification within acceptable limits of ±15% over the calibration range of 0.39-25 ng/mL for the plasma and 1.17-75 ng/g for the brain. It was then applied to quantify 13 C-oleoylethanolamide over 90 min after intravenous administration of a solution (1 mg/kg) in rats. Results suggest that 13 C-oleoylethanolamide does not reach therapeutic concentrations in the brain, despite a relatively prolonged plasma circulation, suggesting that rapid degradation in the brain remains an obstacle to its clinical application to neurological disease.


Brain/metabolism , Chromatography, Liquid/methods , Ethanolamine , Oleic Acids , Plasma/metabolism , Animals , Carbon Isotopes/pharmacokinetics , Chromatography, High Pressure Liquid/methods , Ethanolamine/analysis , Ethanolamine/pharmacokinetics , Liquid-Liquid Extraction/methods , Oleic Acids/analysis , Oleic Acids/pharmacokinetics , Rats , Reproducibility of Results , Tandem Mass Spectrometry/methods
5.
Article En | MEDLINE | ID: mdl-33657962

In this study, a lab-scale upflow anaerobic sludge blanket (UASB) reactor was applied to the treatment of artificial electronics industry wastewater containing tetramethylammonium-hydroxide (TMAH), monoethanolamine (MEA), and isopropyl-alcohol (IPA) in order to evaluate process performance and degradation properties. During 800 days of operation, 96% efficiency of chemical oxygen demand (COD) removal was stably achieved at an organic loading rate of 8.5 kgCOD/m3/day at 18-19 °C. MEA degradation, carried out by acid-forming eubacteria, was confirmed within a week. The physical properties of the retained granular sludge were degraded by feeding with TMAH wastewater, but maintained by feeding with MEA wastewater due to an accumulation of species from the genus Methanosaeta and family Geobacteraceae. Analysis of the microbial community structure via SEM and 16S rRNA genes showed a proliferation of Methanomethylovorans-like cells and Methanosaeta-like cells at the surface and in the core of the granular sludge with TMAH, MEA and IPA acclimation. Furthermore, a batch degradation experiment confirmed that process inhibition due to increasing chemical concentration was relatively stronger for TMAH than for MEA or IPA. Thus, controlling the TMAH concentration of the influent to below 1 gCOD/L will be important for the stable treatment of electronics industry wastewater by UASB technology.


Bioreactors/microbiology , Electronics , Microbiota/physiology , Sewage/microbiology , Waste Disposal, Fluid/methods , 2-Propanol/analysis , 2-Propanol/isolation & purification , 2-Propanol/metabolism , Bacteria/isolation & purification , Bacteria/metabolism , Ethanolamine/analysis , Ethanolamine/isolation & purification , Ethanolamine/metabolism , Quaternary Ammonium Compounds/analysis , Quaternary Ammonium Compounds/isolation & purification , Quaternary Ammonium Compounds/metabolism , Wastewater/chemistry
6.
Article En | MEDLINE | ID: mdl-32145641

Obesity has become a severe public health problem worldwide. An endogenous fatty acid ethanolamine oleoyl ethanolamine (OEA) is reported to be capable of reducing body weight and food intake by increasing striatal extracellular dopamine concentration. However, association between obesity and striatal OEA level remains unknown. As such, it is necessary to develop a sensitive and reliable method to quantitate OEA concentration in striatum. Because true endogenous analytes free blank matrix is not available, surrogate analyte, surrogate matrix and background subtraction methods are often employed for the analysis of endogenous compounds. In this study, three liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods were developed and validated for the determination of OEA concentration in mouse brain homogenate. Interestingly, stability results found that OEA-d4 degraded in brain homogenate under room temperature, while OEA level remarkably increased with time. Since lowering temperature could observably decelerate the endogenous transformation of OEA, sample collection and preparation were carried out under ice-bath condition. Hexane: isopropanol (9:1, v/v) was employed as an extractant for liquid-liquid extraction. After method validation, three methods were applied to quantify OEA in striatum homogenate from C57B6/L mice following normal and high fat diet feeding for 4 months. Results from three methods all showed the striatal OEA level in obesity group was significantly higher than control group and obesity-resist group, which indicated that obesity might be associated with elevated striatal OEA level.


Ethanolamine/analysis , Ethanolamine/metabolism , Ethanolamines/analysis , Ethanolamines/metabolism , Oleic Acids/analysis , Oleic Acids/metabolism , Animals , Biosensing Techniques/methods , Body Weight , Brain , Chromatography, High Pressure Liquid , Fatty Acids/metabolism , Feeding Behavior , Male , Mice , Mice, Inbred C57BL , Obesity/metabolism , Reproducibility of Results , Sensitivity and Specificity , Tandem Mass Spectrometry
7.
Dokl Biol Sci ; 495(1): 288-290, 2020 Nov.
Article En | MEDLINE | ID: mdl-33486666

The paper reports that the treatment of hatching turkey eggs with a mixture composed of colamine, succinic acid, serine, and pyridoxine hydrochloride increased the viability of embryos and reduced incubation wastes. This effect allowed increasing the hatching of turkey poults by 6.73% and the hatchability of eggs, by 4.43%. At the same time, a statistically significant decrease in the key lipid peroxidation products in one-day-old turkey poults was observed. In particular, the content of isolated double bonds decreased 1.47-fold (p < 0.01); diene conjugates, 1.67-fold (p < 0.01); triene conjugates, 1.46-fold (p < 0.05); oxidiene conjugates, 1.48-fold (p < 0.01); and Schiff bases, 1.3-fold compared to the control. All the above-mentioned positively affected survivability in the experimental group, which appeared to be increased by 1% compared to the control.


Breeding/methods , Fertility Agents/pharmacology , Ovum/drug effects , Turkeys/physiology , Animals , Ethanolamine/analysis , Ethanolamine/pharmacology , Fertility Agents/chemistry , Lipid Peroxidation , Ovum/metabolism , Pyridoxine/analysis , Pyridoxine/pharmacology , Schiff Bases/metabolism , Serine/analysis , Serine/pharmacology , Succinic Acid/analysis , Succinic Acid/pharmacology , Turkeys/growth & development
8.
Article En | MEDLINE | ID: mdl-31230515

This study investigated the feasibility of the methanogenic treatment of electronic industry wastewater containing tetramethylammonium hydroxide (TMAH), monoethanolamine (MEA) and sulfate in a lab-scale mesophilic up-flow anaerobic sludge blanket reactor. Feeding a mixture of electronic industry wastewater and co-substrate organics to the reactor for smooth acclimatization of sludge gave complete degradation of each organics within five days. When the reactor was fed only electronic industry wastewater, total COD removal, TMAH removal and MEA removal were achieved over 80, 99 and 99%, respectively, at an organic loading rate of 11.5 kg-COD m-3 day-1. 173 mg-S L-1 of influent sulfate was almost reduced simultaneously with the COD removal. In order to evaluate performance stability, the TMAH shock load event was performed under the conditions of 11,000 mg-COD L-1 for 24 h. Inflow of high TMAH concentration inhibited TMAH degradation and sulfate reduction for more than one month, however, not MEA. The batch feeding experiment and specific activity measurement revealed degradation pathways of each organics. TMAH was degraded via methanogenic pathway without sulfate reduction, MEA was degraded via methanogenic pathway with sulfate reduction. The results indicated that methanogenic treatment was applicable to electronic industry wastewater by appropriate reactor handling.


Bioreactors/microbiology , Ethanolamine/analysis , Quaternary Ammonium Compounds/analysis , Sulfates/analysis , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Water Purification/methods , Euryarchaeota/metabolism , Sewage/chemistry , Sewage/microbiology
9.
Chem Res Toxicol ; 32(4): 638-644, 2019 04 15.
Article En | MEDLINE | ID: mdl-30735032

Benzyl isothiocyanate (BITC), a dietary isothiocyanate (ITC) derived from cruciferous vegetables, has anticancer properties. It is believed that the ITC moiety (-N═C═S) that reacts predominantly with thiol compounds plays a central role in triggering the activities resulting from these properties. Recent studies have demonstrated that ITCs also covalently modify amino moieties in a protein. In this study, we examined the chemical reaction between BITC and the aminophospholipid, phosphatidylethanolamine (PE), in the cell membrane or lipoprotein particle. To detect the BITC-modified PE, the bond between ethanolamine (EA) and phosphatidic acid in PE was cleaved using phospholipase D to form the BITC-EA adduct, which was then measured. BITC-EA was detected from the BITC-treated unilamellar liposome and low-density lipoprotein even with only a few micromoles of BITC treatment, suggesting that BITC might react with not only a thiol/amino group of a protein but also an amino moiety of an aminophospholipid. Moreover, after incorporating BITC-PE included in the liposomes into the cultured cells or after direct exposure of BITC to the cells, free BITC-EA was excreted and accumulated in the medium in a time-dependent manner. It indicates that an intracellular enzyme catalyzes the cleavage of BITC-PE to produce BITC-EA. Because the ITC-amine adduct is stable, the ITC-EA adduct could be a promising indicator of ITC exposure in vivo.


Ethanolamine/metabolism , Isothiocyanates/metabolism , Phosphatidylethanolamines/metabolism , Animals , Ethanolamine/analysis , Isothiocyanates/analysis , Liposomes/chemistry , Liposomes/metabolism , Mice , Molecular Structure , Phosphatidylethanolamines/analysis , RAW 264.7 Cells
10.
Biochimie ; 158: 233-237, 2019 Mar.
Article En | MEDLINE | ID: mdl-30685448

There is a great need for fast, simple and precise diagnostic assays capable of direct quantification of biomarkers in complex biological matrices. Yet, the commonly used techniques such as ELISA/Immunoassays are tedious and involve various steps e.g. blocking, washing and signal development. Moreover, most of these assays have very limited ability of detecting small molecules and have hardly any multiplexing capabilities. The gold standard and alternative, mass-spectrometry, however, depends upon expensive hardware and is incompatible with point of care (POC) diagnostics. As opposed to POC assays for proteins or larger targets where variable formats are readily available. Here, we present a simple, versatile and fast one-step assay for detecting a small molecule, ethanolamine as example. The assay makes use of commonly available qPCR machines to detect target-concentration dependent shifts in the melting temperatures of aptamer beacons. The method allows detection of ethanolamine in the low nM range without requiring tedious elaboration of assay conditions as required for molecular beacons at room temperature. If generalizable, it may change the situation of small molecule assays significantly.


Aptamers, Nucleotide/chemistry , Ethanolamine/analysis , Fluorometry/methods , Humans
11.
BMC Biotechnol ; 18(1): 2, 2018 01 16.
Article En | MEDLINE | ID: mdl-29338716

BACKGROUND: The concept of tissue engineering is to deliver to the injury site biological scaffolds carrying functional cells that will enhance healing response. The preferred cell source is autologous in order to reduce immune response in the treated individual. However, in elderly patients age-related changes in synthetic activity of the implanted cells and subsequent alterations in tissue protein content may affect therapeutic outcomes. In this study we investigated the effect of donor age on proteome composition of tenocyte-derived tendon tissue-engineered constructs. RESULTS: Liquid chromatography tandem mass spectrometry was used to assess the proteome of tissue-engineered constructs derived from young and old equine tenocytes. Ageing was associated with altered extracellular matrix composition, especially accumulation of collagens (type I, III and XIV), and lower cytoskeletal turnover. Proteins involved in cell responsiveness to mechanical stimuli and cell-extracellular matrix interaction (calponin 1, palladin, caldesmon 1, cortactin) were affected. CONCLUSIONS: This study demonstrated significant changes in proteome of engineered tendon derived from young and old tenocytes, indicating the impact of donor age on composition of autologous constructs.


Proteome/metabolism , Tendons/cytology , Tenocytes/physiology , Tissue Engineering/methods , Age Factors , Animals , Cells, Cultured , Ethanolamine/analysis , Extracellular Matrix/physiology , Horses , Immunohistochemistry/methods , Proteome/analysis , Proteomics/methods , Tendons/physiology , Tenocytes/cytology
12.
Eur J Mass Spectrom (Chichester) ; 23(6): 427-444, 2017 Dec.
Article En | MEDLINE | ID: mdl-29183191

Glycerophospholipids are the major amphiphilic molecules found in the plasma membrane bilayer of all vertebrate cells. Involved in many biological processes, their huge structural diversity and large concentration scale make their thorough characterization extremely difficult in complex biological matrices. Mass spectrometry techniques are now recognized as being among the most powerful methods for the sensitive and comprehensive characterization of lipids. Depending on the experimental conditions used during electrospray ionization mass spectrometry experiments, glycerophospholipids can be detected as different molecular species (e.g. protonated, sodiated species) when analyzed either in positive or negative ionization modes or by direct introduction or hyphenated mass spectrometry-based methods. The observed ionized forms are characteristic of the corresponding phospholipid structures, and their formation is highly influenced by the polar head group. Although the fragmentation behavior of each phospholipid class has already been widely studied under low collision energy, there are no established rules based on charge-induced dissociation mechanisms for explaining the generation of fragment ions. In the present paper, we emphasize the crucial roles played by ion-dipole complexes and salt bridges within charge-induced dissociation processes. Under these conditions, we were able to readily explain almost all the fragment ions obtained under low-energy collision-induced dissociation for particular glycerophospholipids and lysoglycerophospholipids species including glycerophosphatidylcholines and glycerophosphatidylethanolamines. Thus, in addition to providing a basis for a better comprehension of phospholipid fragmentation processes, our work also highlighted some potentially new relevant diagnostic ions to signal the presence of particular lipid species.


Choline/analysis , Ethanolamine/analysis , Glycerophospholipids/chemistry , Ions/chemistry , Lipids/chemistry , Molecular Structure , Spectrometry, Mass, Electrospray Ionization
13.
Anal Chim Acta ; 936: 222-8, 2016 Sep 14.
Article En | MEDLINE | ID: mdl-27566359

A label-free sensing assay for ethanolamine (EA) detection based on G-quadruplex-EA binding interaction is presented by using G-rich aptamer DNA (Ap-DNA) and electrochemical impedance spectroscopy (EIS). The presence of K(+) induces the Ap-DNA to form a K(+)-stabilized G-quadruplex structure which provides binding sites for EA. The sensing mechanism was further confirmed by circular dichroism (CD) spectroscopy and EIS measurement. As a result, the charge transfer resistance (RCT) is strongly increased as demonstrated by using the ferro/ferricyanide ([Fe(CN)6](3-/4-)) as a redox probe. Under the optimized conditions, a linear relationship between ΔRCT and EA concentration was obtained over the range of 0.16 nM and 16 nM EA, with a detection limit of 0.08 nM. Interference by other selected chemicals with similar structure was negligible. Analytical results of EA spiked into tap water and serum by the sensor suggested the assay could be successfully applied to real sample analysis. With the advantages of high sensitivity, selectivity and simple sensor construction, this method is potentially suitable for the on-site monitoring of EA contamination.


Aptamers, Nucleotide/chemistry , Biosensing Techniques , Dielectric Spectroscopy , Ethanolamine/analysis
14.
Article En | MEDLINE | ID: mdl-27295010

Skin powders and aqueous alcohol extracts were obtained from waste marcs from different grape varieties (Barbera, Nebbiolo, Pinot Noir, Chardonnay, Moscato and Müller-Thurgau). Both skins and extracts were analysed for the content of chemical contaminants: ochratoxin A (OTA), biogenic amines (BIAs), pesticides and metals. OTA was detected in low concentrations in Barbera, Moscato and Nebbiolo skins, but only in Barbera and Moscato extracts. Cadaverine, putrescine, ethanolamine and ethylamine were found in extracts at very low levels, while potential allergenic amines, tyramine and histamine, were never detected. Different pesticides were present in both skins and extracts. Pb and Cd were found in trace only in the powders, and K, Ca and Mg were the most abundant elements in both skin powders and extracts. Concentrations of the different contaminants were related to fibre content or total phenolics content of powders and extracts, respectively, in order to evaluate their use in the food sector.


Food Safety , Fruit/chemistry , Vitis/chemistry , Waste Products/analysis , Biogenic Amines/analysis , Cadaverine/analysis , Calcium/analysis , Chromatography, High Pressure Liquid , Ethanolamine/analysis , Ethylamines/analysis , Humans , Liquid-Liquid Extraction/methods , Magnesium/analysis , Ochratoxins/analysis , Pesticides/analysis , Potassium/analysis , Powders , Putrescine/analysis
15.
Bioresour Technol ; 210: 68-73, 2016 Jun.
Article En | MEDLINE | ID: mdl-26888335

The aim of this work was to develop the scale-up microbial fuel cell technology for actual ethanolamine wastewater treatment, dual anode/cathode MFC stacks connected in series to achieve any desired current, treatment capacity, and volume capacity. However, after feeding actual wastewater into the MFC, maximum power density decreased while the corresponding internal resistance increased. With continuous electricity production, a stack of eight MFCs in series achieved 96.05% of COD removal and 97.30% of ammonia removal at a flow rate of 15.98L/d (HRT 12h). The scaled-up dual anode/cathode MFC stack system in this research was demonstrated to treat actual ETA wastewater with the added benefit of harvesting electricity energy.


Bioelectric Energy Sources , Ethanolamine/analysis , Wastewater/chemistry , Water Purification/methods , Ammonia/isolation & purification , Biological Oxygen Demand Analysis , Bioreactors , Electricity , Electrodes , Rheology
16.
Arch Pharm Res ; 39(1): 66-72, 2016 Jan.
Article En | MEDLINE | ID: mdl-26578210

Alkanolamines such as monoethanolamine (MEA), diethanolamine (DEA), and triethanolamine (TEA) are used as wetting agents in shampoos, lotions, creams, and other cosmetics. DEA is widely used to provide lather in shampoos and maintain a favorable consistency in lotions and creams. Although DEA is not harmful, it may react with other ingredients in the cosmetic formula after extended storage periods to form an extremely potent carcinogen called nitrosodiethanolamine (NDEA), which is readily absorbed through the skin and has been linked to the development of stomach, esophagus, liver, and bladder cancers. The purpose of this study was to develop a simultaneous quantification method for measurement of MEA, DEA, and TEA in cosmetic products. Liquid chromatography coupled tandem mass spectrometry (LC-MS/MS) was performed using a hydrophilic interaction liquid chromatography (HILIC) column with isocratic elution containing acetonitrile and 5 mM ammonium formate in water (88:12, v/v). Identification and quantification of alkanolamines were performed using MS/MS monitoring to assess the transition from precursor to product ion of MEA (m/z, 61.1 â†’ 44.0), DEA (m/z, 106.1 â†’ 88.0), TEA (m/z, 150.1 â†’ 130.0), and the internal standard triethylamine (m/z, 102.2 â†’ 58.0). Alkanolamines extractions were simplified using a single extraction with acetonitrile in the cosmetic matrix. Performance of the method was evaluated with quality parameters such as specificity, carry-over, linearity and calibration, correlation of determination (R(2)), detection limit, precision, accuracy, and recovery. Calibration curves of MEA (2.9-1000 ppb), DEA (1-1000 ppb), and TEA (1-1000 ppb) were constructed by plotting concentration versus peak-area ratio (analyte/internal standard with a correlation coefficient greater than 0.99). The intra- and inter-assay accuracy ranged from 92.92 to 101.15 % for all analytes. The intra- and inter-assay precision for MEA, DEA, and TEA showed all coefficients of variance were less than 9.38 % for QC samples. Limits of detection and limits of quantification were 2.00 and 15.63 ppb for MEA, 0.49 and 1.96 ppb for DEA, and 0.49 and 1.96 ppb for TEA, respectively. This novel quantification method simplified sample preparation and allowed accurate and reproducible quantification of alkanolamines in the ng/g cosmetic weight (ppb) range for several cosmetic products.


Cosmetics/analysis , Ethanolamine/analysis , Ethanolamines/analysis , Tandem Mass Spectrometry/methods , Chromatography, Liquid/methods , Chromatography, Liquid/standards , Cosmetics/chemistry , Ethanolamine/chemistry , Ethanolamines/chemistry , Reproducibility of Results , Tandem Mass Spectrometry/standards
17.
Rapid Commun Mass Spectrom ; 29(23): 2263-71, 2015 Dec 15.
Article En | MEDLINE | ID: mdl-26522319

RATIONALE: Compound-specific isotope analysis (CSIA) of nitrogen in amino acids has proven a valuable tool in many fields (e.g. ecology). Several intact polar lipids (IPLs) also contain nitrogen, and their nitrogen isotope ratios have the potential to elucidate food-web interactions or metabolic pathways. Here we have developed novel methodology for the determination of δ(15)N values of nitrogen-containing headgroups of IPLs using gas chromatography coupled with isotope-ratio mass spectrometry. METHODS: Intact polar lipids with nitrogen-containing headgroups were hydrolyzed and the resulting compounds were derivatized by (1) acetylation with pivaloyl chloride for compounds with amine and hydroxyl groups or (2) esterification using acidified 2-propanol followed by acetylation with pivaloyl chloride for compounds with both carboxyl and amine groups. The δ(15)N values of the derivatives were subsequently determined using gas chromatography/combustion/isotope-ratio mass spectrometry. RESULTS: Intact polar lipids with ethanolamine and amino acid headgroups, such as phosphatidylethanolamine and phosphatidylserine, were successfully released from the IPLs and derivatized. Using commercially available pure compounds it was established that δ(15)N values of ethanolamine and glycine were not statistically different from the offline-determined values. Application of the technique to microbial cultures and a microbial mat showed that the method works well for the release and derivatization of the headgroup of phosphatidylethanolamine, a common IPL in bacteria. CONCLUSIONS: A method to enable CSIA of nitrogen of selected IPLs has been developed. The method is suitable for measuring natural stable nitrogen isotope ratios in microbial lipids, in particular phosphatidylethanolamine, and will be especially useful for tracing the fate of nitrogen in deliberate tracer experiments.


Amino Acids/analysis , Ethanolamine/analysis , Gas Chromatography-Mass Spectrometry/methods , Lipids/chemistry , Nitrogen/analysis , Bacteria/chemistry , Hydrolysis , Nitrogen Isotopes/analysis , Phosphatidylethanolamines/chemistry , Phosphatidylserines/chemistry
18.
Article En | MEDLINE | ID: mdl-26528584

Since serotonin, homocysteine and oxytocin are known to fluctuate during mammalian gestation, we screened amines altered in pregnant-associated hypertensive (PAH) mice by tagging their amino groups with 6-aminoquinoline carbamoyl (AQC) group in concert with ultra high-performance liquid chromatography (UPLC). Interestingly, a candidate amine significantly increased in PAH mice was recovered to the basal level, when treated with antihypertensive drugs. Mass spectrometric analyses indicated that the molecular mass of this amine was 61.2, which was identified as ethanolamine.


Antihypertensive Agents/therapeutic use , Chromatography, High Pressure Liquid/methods , Ethanolamine/analysis , Fetus , Hypertension, Pregnancy-Induced , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Animals , Antihypertensive Agents/pharmacology , Ethanolamine/metabolism , Female , Fetus/drug effects , Fetus/metabolism , Hypertension, Pregnancy-Induced/drug therapy , Hypertension, Pregnancy-Induced/metabolism , Male , Mice , Pregnancy
19.
Environ Sci Technol ; 49(17): 10728-35, 2015 Sep 01.
Article En | MEDLINE | ID: mdl-26236921

Though the mechanism of MEA-CO2 system has been widely studied, there is few literature on the detailed mechanism of CO2 capture into MEA solution with different CO2 loading during absorption/desorption processes. To get a clear picture of the process mechanism, (13)C nuclear magnetic resonance (NMR) was used to analyze the reaction intermediates under different CO2 loadings and detailed mechanism on CO2 absorption and desorption in MEA was evaluated in this work. The results demonstrated that the CO2 absorption in MEA started with the formation of carbamate according to the zwitterion mechanism, followed by the hydration of CO2 to form HCO3(-)/CO3(2-), and accompanied by the hydrolysis of carbamate. It is interesting to find that the existence of carbamate will be influenced by CO2 loading and that it is rather unstable at high CO2 loading. At low CO2 loading, carbamate is formed fast by the reaction between CO2 and MEA. At high CO2 loading, it is formed by the reaction of CO3(-)/CO3(2-) with MEA, and the formed carbamate can be easily hydrolyzed by H(+). Moreover, CO2 desorption from the CO2-saturated MEA solution was proved to be a reverse process of absorption. Initially, some HCO3(-) were heated to release CO2 and other HCO3(-) were reacted with carbamic acid (MEAH(+)) to form carbamate, and the carbamate was then decomposed to MEA and CO2.


Carbon Dioxide/chemistry , Ethanolamine/analysis , Absorption, Physicochemical , Adsorption , Amines/chemistry , Carbamates/chemistry , Carbon-13 Magnetic Resonance Spectroscopy , Hydrolysis , Solutions
20.
Sci Total Environ ; 527-528: 185-202, 2015 Sep 15.
Article En | MEDLINE | ID: mdl-25958366

Carbon capture and storage (CCS) is a technological solution that can reduce the amount of carbon dioxide (CO2) emissions from the use of fossil fuel in power plants and other industries. A leading method today is amine based post-combustion capture, in which 2-aminoethanol (MEA) is one of the most studied absorption solvents. In this process, amines are released to the atmosphere through evaporation and entrainment from the CO2 absorber column. Modelling is a key instrument for simulating the atmospheric dispersion and chemical transformation of MEA, and for projections of ground-level air concentrations and deposition rates. In this study, the Weather Research and Forecasting model inline coupled with chemistry, WRF-Chem, was applied to quantify the impact of using a comprehensive MEA photo-oxidation sequence compared to using a simplified MEA scheme. Main discrepancies were found for iminoethanol (roughly doubled in the detailed scheme) and 2-nitro aminoethanol, short MEA-nitramine (reduced by factor of two in the detailed scheme). The study indicates that MEA emissions from a full-scale capture plant can modify regional background levels of isocyanic acid. Predicted atmospheric concentrations of isocyanic acid were however below the limit value of 1 ppbv for ambient exposure. The dependence of the formation of hazardous compounds in the OH-initiated oxidation of MEA on ambient level of nitrogen oxides (NOx) was studied in a scenario without NOx emissions from a refinery area in the vicinity of the capture plant. Hourly MEA-nitramine peak concentrations higher than 40 pg m(-3) did only occur when NOx mixing ratios were above 2 ppbv. Therefore, the spatial variability and temporal variability of levels of OH and NOx need to be taken into account in the health risk assessment. The health risk due to direct emissions of nitrosamines and nitramines from full-scale CO2 capture should be investigated in future studies.


Air Pollutants/analysis , Atmosphere/chemistry , Environmental Monitoring/methods , Ethanolamine/analysis , Models, Chemical , Fossil Fuels , Nitrosamines , Power Plants
...