Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 671
1.
Neurobiol Dis ; 196: 106518, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38679112

Resting tremor is the most common presenting motor symptom in Parkinson's disease (PD). The supplementary motor area (SMA) is a main target of the basal-ganglia-thalamo-cortical circuit and has direct, facilitatory connections with the primary motor cortex (M1), which is important for the execution of voluntary movement. Dopamine potentially modulates SMA and M1 activity, and both regions have been implicated in resting tremor. This study investigated SMA-M1 connectivity in individuals with PD ON and OFF dopamine medication, and whether SMA-M1 connectivity is implicated in resting tremor. Dual-site transcranial magnetic stimulation was used to measure SMA-M1 connectivity in PD participants ON and OFF levodopa. Resting tremor was measured using electromyography and accelerometry. Stimulating SMA inhibited M1 excitability OFF levodopa, and facilitated M1 excitability ON levodopa. ON medication, SMA-M1 facilitation was significantly associated with smaller tremor than SMA-M1 inhibition. The current findings contribute to our understanding of the neural networks involved in PD which are altered by levodopa medication and provide a neurophysiological basis for the development of interventions to treat resting tremor.


Antiparkinson Agents , Electromyography , Levodopa , Motor Cortex , Parkinson Disease , Transcranial Magnetic Stimulation , Tremor , Humans , Levodopa/therapeutic use , Levodopa/pharmacology , Parkinson Disease/drug therapy , Parkinson Disease/physiopathology , Male , Motor Cortex/drug effects , Motor Cortex/physiopathology , Female , Tremor/physiopathology , Tremor/drug therapy , Aged , Middle Aged , Transcranial Magnetic Stimulation/methods , Antiparkinson Agents/therapeutic use , Antiparkinson Agents/pharmacology , Neural Pathways/physiopathology , Neural Pathways/drug effects , Evoked Potentials, Motor/drug effects , Evoked Potentials, Motor/physiology
2.
Brain Stimul ; 17(2): 421-430, 2024.
Article En | MEDLINE | ID: mdl-38574852

BACKGROUND: Studies in animals and humans have shown that cortical neuroplasticity can be modulated by increasing serotonin levels by administering selective serotonin reuptake inhibitors (SSRI). However, little is known about the mechanistic background, especially the contribution of intracortical inhibition and facilitation, which depend on gamma-aminobutyric acid (GABA) and glutamate. OBJECTIVE: We aimed to explore the relevance of drivers of plasticity (glutamate- and GABA-dependent processes) for the effects of serotonin enhancement on tDCS-induced plasticity in healthy humans. METHODS: A crossover, partially double-blinded, randomized, and sham-controlled study was conducted in 21 healthy right-handed individuals. In each of the 7 sessions, plasticity was induced via transcranial direct current stimulation (tDCS). Anodal, cathodal, and sham tDCS were applied to the left motor cortex under SSRI (20 mg/40 mg citalopram) or placebo. Short-interval cortical inhibition (SICI) and intracortical facilitation (ICF) were monitored by paired-pulse transcranial magnetic stimulation for 5-6 h after intervention. RESULTS: Under placebo, anodal tDCS-induced LTP-like plasticity decreased SICI and increased ICF. In contrast, cathodal tDCS-elicited LTD-like plasticity induced the opposite effect. Under 20 mg and 40 mg citalopram, anodal tDCS did not affect SICI largely, while ICF was enhanced and prolonged. For cathodal tDCS, citalopram converted the increase of SICI and decrease of ICF into antagonistic effects, and this effect was dosage-dependent since it lasted longer under 40 mg when compared to 20 mg. CONCLUSION: We speculate that the main effects of acute serotonergic enhancement on tDCS-induced plasticity, the increase and prolongation of LTP-like plasticity effects, involves mainly the glutamatergic system.


Cross-Over Studies , Motor Cortex , Neuronal Plasticity , Selective Serotonin Reuptake Inhibitors , Transcranial Direct Current Stimulation , Humans , Neuronal Plasticity/physiology , Neuronal Plasticity/drug effects , Male , Adult , Double-Blind Method , Female , Motor Cortex/physiology , Motor Cortex/drug effects , Selective Serotonin Reuptake Inhibitors/pharmacology , Selective Serotonin Reuptake Inhibitors/administration & dosage , Young Adult , Transcranial Magnetic Stimulation , Serotonin/metabolism , Citalopram/pharmacology , Evoked Potentials, Motor/physiology , Evoked Potentials, Motor/drug effects , gamma-Aminobutyric Acid/metabolism , Glutamic Acid/metabolism
3.
J Physiol ; 602(10): 2253-2264, 2024 May.
Article En | MEDLINE | ID: mdl-38638084

Short- and long-latency afferent inhibition (SAI and LAI respectively) are phenomenon whereby the motor evoked potential induced by transcranial magnetic stimulation (TMS) is inhibited by a sensory afferent volley consequent to nerve stimulation. It remains unclear whether dopamine participates in the genesis or modulation of SAI and LAI. The present study aimed to determine if SAI and LAI are modulated by levodopa (l-DOPA). In this placebo-controlled, double-anonymized study Apo-Levocarb (100 mg l-DOPA in combination with 25 mg carbidopa) and a placebo were administered to 32 adult males (mean age 24 ± 3 years) in two separate sessions. SAI and LAI were evoked by stimulating the median nerve and delivering single-pulse TMS over the motor hotspot corresponding to the first dorsal interosseous muscle of the right hand. SAI and LAI were quantified before and 1 h following ingestion of drug or placebo corresponding to the peak plasma concentration of Apo-Levocarb. The results indicate that Apo-Levocarb increases SAI and does not significantly alter LAI. These findings support literature demonstrating increased SAI following exogenous dopamine administration in neurodegenerative disorders. KEY POINTS: Short- and long-latency afferent inhibition (SAI and LAI respectively) are measures of corticospinal excitability evoked using transcranial magnetic stimulation. SAI and LAI are reduced in conditions such as Parkinson's disease which suggests dopamine may be involved in the mechanism of afferent inhibition. 125 mg of Apo-Levocarb (100 mg dopamine) increases SAI but not LAI. This study increases our understanding of the pharmacological mechanism of SAI and LAI.


Carbidopa , Evoked Potentials, Motor , Levodopa , Transcranial Magnetic Stimulation , Humans , Male , Levodopa/pharmacology , Adult , Evoked Potentials, Motor/drug effects , Transcranial Magnetic Stimulation/methods , Carbidopa/pharmacology , Young Adult , Neural Inhibition/drug effects , Double-Blind Method , Dopamine Agents/pharmacology , Dopamine/pharmacology , Drug Combinations , Median Nerve/physiology , Median Nerve/drug effects
4.
J Neurosci ; 44(19)2024 May 08.
Article En | MEDLINE | ID: mdl-38553046

Exercise is known to benefit motor skill learning in health and neurological disease. Evidence from brain stimulation, genotyping, and Parkinson's disease studies converge to suggest that the dopamine D2 receptor, and shifts in the cortical excitation and inhibition (E:I) balance, are prime candidates for the drivers of exercise-enhanced motor learning. However, causal evidence using experimental pharmacological challenge is lacking. We hypothesized that the modulatory effect of the dopamine D2 receptor on exercise-induced changes in the E:I balance would determine the magnitude of motor skill acquisition. To test this, we measured exercise-induced changes in excitation and inhibition using paired-pulse transcranial magnetic stimulation (TMS) in 22 healthy female and male humans, and then had participants learn a novel motor skill-the sequential visual isometric pinch task (SVIPT). We examined the effect of D2 receptor blockade (800 mg sulpiride) on these measures within a randomized, double-blind, placebo-controlled design. Our key result was that motor skill acquisition was driven by an interaction between the D2 receptor and E:I balance. Specifically, poorer skill learning was related to an attenuated shift in the E:I balance in the sulpiride condition, whereas this interaction was not evident in placebo. Our results demonstrate that exercise-primed motor skill acquisition is causally influenced by D2 receptor activity on motor cortical circuits.


Exercise , Motor Cortex , Motor Skills , Receptors, Dopamine D2 , Transcranial Magnetic Stimulation , Humans , Male , Female , Receptors, Dopamine D2/metabolism , Adult , Motor Skills/physiology , Motor Skills/drug effects , Transcranial Magnetic Stimulation/methods , Young Adult , Motor Cortex/physiology , Motor Cortex/drug effects , Exercise/physiology , Double-Blind Method , Neural Inhibition/physiology , Neural Inhibition/drug effects , Learning/physiology , Evoked Potentials, Motor/physiology , Evoked Potentials, Motor/drug effects , Sulpiride/pharmacology , Dopamine Antagonists/pharmacology
5.
Exp Neurol ; 347: 113899, 2022 01.
Article En | MEDLINE | ID: mdl-34678230

BACKGROUND AND PURPOSE: Traumatic brain injury (TBI) destroys white matter, and this destruction is aggravated by secondary neuroinflammatory reactions. Although white matter injury (WMI) is strongly correlated with poor neurological function, understanding of white matter integrity maintenance is limited, and no available therapies can effectively protect white matter. One candidate approach that may fulfill this goal is cannabinoid receptor 2 (CB2) agonist treatment. Here, we confirmed that a selective CB2 agonist, JWH133, protected white matter after TBI. METHODS: The motor evoked potentials (MEPs), open field test, and Morris water maze test were used to assess neurobehavioral outcomes. Brain tissue loss, WM damage, Endoplasmic reticulum stress (ER stress), microglia responses were evaluated after TBI. The functional integrity of WM was measured by diffusion tensor imaging (DTI) and transmission electron microscopy (TEM). Primary microglia and oligodendrocyte cocultures were used for additional mechanistic studies. RESULTS: JWH133 increased myelin basic protein (MBP) and neurofilament heavy chain (NF200) levels and anatomic preservation of myelinated axons revealed by DTI and TEM. JWH133 also increased the numbers of oligodendrocyte precursor cells and mature oligodendrocytes. Furthermore, JWH133 drove microglial polarization toward the protective M2 phenotype and modulated the redistribution of microglia in the striatum. Further investigation of the underlying mechanism revealed that JWH133 downregulated phosphorylation of the protein kinase R (PKR)-like endoplasmic reticulum (ER) kinase (PERK) signaling pathway and its downstream signals eukaryotic translation initiation factor 2 α (eIF2α), activating transcription factor 4 (ATF4) and Growth arrest and DNA damage-inducible protein (GADD34); this downregulation was followed by p-Protein kinase B(p-Akt) upregulation. In primary cocultures of microglia and oligodendrocytes, JWH133 decreased phosphorylated PERK expression in microglia stimulated with tunicamycin and facilitated oligodendrocyte survival. These data reveal that JWH133 ultimately alleviates WMI and improves neurological behavior following TBI. However, these effects were prevented by SR144528, a selective CB2 antagonist. CONCLUSIONS: This work illustrates the PERK-mediated interaction between microglia and oligodendrocytes. In addition, the results are consistent with recent findings that microglial polarization switching accelerates WMI, highlighting a previously unexplored role for CB2 agonists. Thus, CB2 agonists are potential therapeutic agents for TBI and other neurological conditions involving white matter destruction.


Cannabinoids/pharmacology , Receptor, Cannabinoid, CB2/agonists , Receptor, Cannabinoid, CB2/metabolism , Signal Transduction/physiology , White Matter/metabolism , eIF-2 Kinase/biosynthesis , Animals , Cannabinoid Receptor Agonists/pharmacology , Cannabinoid Receptor Agonists/therapeutic use , Cannabinoids/therapeutic use , Cells, Cultured , Disease Models, Animal , Evoked Potentials, Motor/drug effects , Evoked Potentials, Motor/physiology , Male , Microglia/drug effects , Microglia/metabolism , Rats , Rats, Sprague-Dawley , White Matter/diagnostic imaging , White Matter/drug effects , White Matter/injuries , eIF-2 Kinase/antagonists & inhibitors
6.
BMC Anesthesiol ; 21(1): 240, 2021 10 07.
Article En | MEDLINE | ID: mdl-34620093

BACKGROUND: Better protection can be provided during neurosurgery due to the establishment of somatosensory-evoked potential (SEP) and motor-evoked potential (MEP) monitoring technologies. However, some studies have showed that inhaled halogenated anesthetics have a significant impact on neurophysiological monitoring. METHODS: A total of 40 consecutive patients undergoing neurosurgery were randomly assigned to two groups receiving inhaled anesthetics, either desflurane or sevoflurane. Multiples levels (concentrations of 0.3, 0.6 and 0.9) of anesthetics were administered at minimum alveolar concentration (MAC), and then the latencies and amplitudes of SEPs and MEPs were recorded. RESULTS: SEP and MEP signals were well preserved in patients who underwent neurosurgery under general anesthesia supplemented with desflurane or sevoflurane at concentrations of 0.3, 0.6 and 0.9 MAC. In each desflurane or sevoflurane group, the amplitudes of SEPs and MEPs decreased and the latencies of SEPs were prolonged significantly as the MAC increased (P < 0.05). The SEP latencies of both the upper and lower limbs in the desflurane group were significantly longer, and the SEP amplitudes were significantly lower than those in the sevoflurane group (P < 0.05). The MEP amplitudes in the desflurane group were significantly lower than those in the sevoflurane group (P < 0.05), only the amplitudes of the upper limbs at 0.3 MAC did not vary significantly. CONCLUSIONS: SEPs and MEPs were inhibited in a dose-dependent manner by both desflurane and sevoflurane. At the same MAC concentration, desflurane appeared to have a stronger inhibitory effect than sevoflurane. All patients studied had normal neurological examination findings, hence, these results may not be applicable to patients with preexisting deficits. TRIAL REGISTRATION: The study registered on the Chinese Clinical Trial Registry ( www.chictr.org.cn ), Clinical Trials identifier ChiCTR2100045504 (18/04/2021).


Desflurane/pharmacology , Evoked Potentials, Motor/drug effects , Evoked Potentials, Somatosensory/drug effects , Monitoring, Intraoperative/methods , Neurosurgical Procedures , Sevoflurane/pharmacology , Adult , Anesthetics, Inhalation/pharmacology , Female , Humans , Male , Middle Aged
7.
Clin Neurophysiol ; 132(8): 1770-1776, 2021 08.
Article En | MEDLINE | ID: mdl-34130243

OBJECTIVES: Major Depressive Disorder (MDD) is associated with glutamatergic alterations, including the N-methyl-D-aspartate receptor (NMDA-R). The NMDA-R plays an important role in synaptic plasticity, and individuals with MDD have been shown to have impairments in repetitive Transcranial Magnetic Stimulation (rTMS) motor plasticity. Here, we test whether D-cycloserine, a NMDA-R partial agonist, can rescue TMS motor plasticity in MDD. METHODS: We conducted randomized double-blind placebo-controlled crossover studies in healthy (n = 12) and MDD (n = 12) participants. We stimulated motor cortex using TMS intermittent theta burst stimulation (iTBS) with placebo or D-cycloserine (100 mg). Motor evoked potentials (MEPs) were sampled before and after iTBS. Stimulus response curves (SRC) were characterized at baseline, +90 minutes, and the following day. RESULTS: Acute iTBS MEP facilitation is reduced in MDD and is not rescued by D-cycloserine. After iTBS, SRCs shift to indicate sustained decrease in excitability in healthy participants, yet increased in excitability in MDD participants. D-cycloserine normalized SRC changes from baseline to the following day in MDD participants. In both healthy and MDD participants, D-cycloserine stabilized changes in SRC. CONCLUSION: MDD is associated with alterations in motor plasticity that are rescued and stabilized by NMDA-R agonism. SIGNIFICANCE: Agonism of NMDA receptors rescues iTBS motor plasticity in MDD.


Cycloserine/therapeutic use , Depressive Disorder, Major/therapy , Motor Cortex/physiology , Neuronal Plasticity/physiology , Theta Rhythm/physiology , Transcranial Magnetic Stimulation/methods , Adult , Cross-Over Studies , Cycloserine/pharmacology , Depressive Disorder, Major/physiopathology , Double-Blind Method , Evoked Potentials, Motor/drug effects , Evoked Potentials, Motor/physiology , Female , Humans , Male , Middle Aged , Motor Cortex/drug effects , Neuronal Plasticity/drug effects , Receptors, N-Methyl-D-Aspartate/agonists , Receptors, N-Methyl-D-Aspartate/physiology , Theta Rhythm/drug effects , Young Adult
8.
Elife ; 102021 06 04.
Article En | MEDLINE | ID: mdl-34085932

Pathological oscillations including elevated beta activity in the subthalamic nucleus (STN) and between STN and cortical areas are a hallmark of neural activity in Parkinson's disease (PD). Oscillations also play an important role in normal physiological processes and serve distinct functional roles at different points in time. We characterised the effect of dopaminergic medication on oscillatory whole-brain networks in PD in a time-resolved manner by employing a hidden Markov model on combined STN local field potentials and magnetoencephalography (MEG) recordings from 17 PD patients. Dopaminergic medication led to coherence within the medial and orbitofrontal cortex in the delta/theta frequency range. This is in line with known side effects of dopamine treatment such as deteriorated executive functions in PD. In addition, dopamine caused the beta band activity to switch from an STN-mediated motor network to a frontoparietal-mediated one. In contrast, dopamine did not modify local STN-STN coherence in PD. STN-STN synchrony emerged both on and off medication. By providing electrophysiological evidence for the differential effects of dopaminergic medication on the discovered networks, our findings open further avenues for electrical and pharmacological interventions in PD.


Antiparkinson Agents/therapeutic use , Brain Waves/drug effects , Dopamine Agents/therapeutic use , Dopaminergic Neurons/drug effects , Levodopa/therapeutic use , Motor Cortex/drug effects , Parkinson Disease/drug therapy , Subthalamic Nucleus/drug effects , Aged , Dopaminergic Neurons/metabolism , Evoked Potentials, Motor/drug effects , Female , Humans , Machine Learning , Magnetoencephalography , Male , Markov Chains , Middle Aged , Motor Cortex/metabolism , Motor Cortex/physiopathology , Parkinson Disease/diagnosis , Parkinson Disease/metabolism , Parkinson Disease/physiopathology , Signal Processing, Computer-Assisted , Subthalamic Nucleus/metabolism , Subthalamic Nucleus/physiopathology , Time Factors , Treatment Outcome
9.
Respir Physiol Neurobiol ; 292: 103704, 2021 10.
Article En | MEDLINE | ID: mdl-34058433

Repetitive transcranial magnetic stimulation (rTMS) is a promising, innovative, and non-invasive therapy used clinically. Efficacy of rTMS has been demonstrated to ameliorate psychiatric disorders and neuropathic pain through neuromodulation of affected neural circuits. However, little is known about the mechanisms and the specific neural circuits via which rTMS facilitates these functional effects. The aim of this study was to begin revealing the mechanisms by which rTMS may tap into existing neural circuits, by using a well characterized spinal motor circuit - the phrenic circuit. Here we hypothesized that rTMS can be used to enhance phrenic motoneuron excitability in anesthetized Sprague Dawley rats. Multiple acute rTMS protocols were used revealing 10 Hz rTMS protocol induced a robust, long-lasting increase in phrenic motoneuron excitability, functionally evaluated by diaphragm motor evoked potentials (59.1 ± 21.1 % of increase compared to baseline 60 min after 10 Hz protocol against 6.0 ± 5.8 % (p = 0.007) for Time Control, -5.8 ± 7.4 % (p < 0.001) for 3 Hz, and 5.2 ± 12.5 % (p = 0.008) for 30 Hz protocols). A deeper analyze allowed to discriminate "responder" and "non-responder" subgroups among 10 Hz rTMS treated animals. Intravenous injections of GABAA and GABAB receptor agonists prior to 10 Hz rTMS treatment, abolished the enhanced phrenic motoneuron excitability, suggesting GABAergic input plays a mechanistic role in rTMS-induced phrenic excitability. These data demonstrate that a single high frequency rTMS protocol at 10 Hz increases phrenic motoneuron excitability, mediated by a local GABAergic "disinhibition". By understanding how rTMS can be used to affect neural circuits non-invasively we can begin to harness the therapeutic potential of this neuromodulatory strategy to promote recovery after disease or injury to the central nervous system.


Evoked Potentials, Motor/physiology , GABA-A Receptor Agonists/pharmacology , GABA-B Receptor Agonists/pharmacology , Motor Neurons/physiology , Nerve Net/physiology , Phrenic Nerve/physiology , Transcranial Magnetic Stimulation , Animals , Diaphragm/drug effects , Diaphragm/physiology , Evoked Potentials, Motor/drug effects , Female , Motor Neurons/drug effects , Nerve Net/drug effects , Nerve Net/metabolism , Phrenic Nerve/drug effects , Phrenic Nerve/metabolism , Rats , Rats, Sprague-Dawley
10.
Best Pract Res Clin Anaesthesiol ; 35(2): 221-229, 2021 Jul.
Article En | MEDLINE | ID: mdl-34030806

Dexmedetomidine can be used for sedation and analgesia and has been approved for this use by the European Medicines Agency since 2017. It causes an arousable state of sedation, which is beneficial during neurosurgical procedures that require the patient to cooperate with neurological tests (i.e. tumor surgery or implantation of deep brain stimulators). During procedures where monitoring of somatosensory evoked potentials and/or motor evoked potentials is required, dexmedetomidine can be used as an adjunct to general anesthesia with GABAergic drugs to decrease the dose of the latter when these drugs impair the monitoring signals. The use of dexmedetomidine has also been associated with neuroprotective effects and a decreased incidence of delirium, but studies confirming these effects in the peri-operative (neuro-)surgical setting are lacking. Although dexmedetomidine does not cause respiratory depression, its hemodynamic effects are complex and careful patient selection, choice of dose, and monitoring must be performed.


Dexmedetomidine/administration & dosage , Evoked Potentials, Motor/drug effects , Evoked Potentials, Somatosensory/drug effects , Hypnotics and Sedatives/administration & dosage , Neurosurgical Procedures/methods , Dexmedetomidine/adverse effects , Evoked Potentials, Motor/physiology , Evoked Potentials, Somatosensory/physiology , Humans , Respiratory Insufficiency/chemically induced , Respiratory Insufficiency/physiopathology , Respiratory Insufficiency/prevention & control
11.
Muscle Nerve ; 64(2): 215-219, 2021 08.
Article En | MEDLINE | ID: mdl-34008857

INTRODUCTION/AIMS: Cortical hyperexcitability is a feature of amyotrophic lateral sclerosis (ALS) and cortical excitability can be measured using transcranial magnetic stimulation (TMS). Resting motor threshold (MT) is a measure of cortical excitability, largely driven by glutamate. Perampanel, a glutamate α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor blocker, is predicted to increase the cortical excitability threshold. This study aimed to evaluate TMS to functionally assess target engagement in a study of perampanel in ALS. METHOD: We studied the MT of ALS patients randomized to a single dose of perampanel or placebo 5:1 hourly for 4 h. Twelve patients participated at 4 mg and 7 returned for dosing and retesting at 8 mg. The study was terminated in April 2020 due to coronavirus disease 2019-related restrictions, after 7 out of 12 planned patients had received the 8 mg dose. Serum concentrations were also measured. RESULTS: Ten patients received the 4 mg dose (2 received placebo) and 5 received the 8 mg dose (2 received placebo). Motor Threshold increased at 2 h after dosing in the combined treatment group +7% of maximal stimulator output (P < .01). Change could be detected in the larger 4 mg group (P = .02), but not in the smaller 8 mg dose group (P = .1). No side effects were reported after single dose exposure. DISCUSSION: This study shows that perampanel effects the physiology of upper motor neurons. Studies aiming at gauging the effect of perampanel on ALS disease progression are already ongoing. Motor threshold may serve as a marker of biological target engagement.


Amyotrophic Lateral Sclerosis/drug therapy , Cortical Excitability/drug effects , Motor Neurons/drug effects , Pyridones/administration & dosage , Receptors, AMPA/antagonists & inhibitors , Aged , Amyotrophic Lateral Sclerosis/blood , Amyotrophic Lateral Sclerosis/diagnosis , Cortical Excitability/physiology , Double-Blind Method , Evoked Potentials, Motor/drug effects , Evoked Potentials, Motor/physiology , Female , Humans , Male , Middle Aged , Motor Neurons/physiology , Nitriles , Pilot Projects , Pyridones/blood , Receptors, AMPA/physiology , Transcranial Magnetic Stimulation/methods
12.
Article En | MEDLINE | ID: mdl-33757860

Fragile X syndrome (FXS) is a rare genetic disorder characterized by a deficit of the fragile X mental retardation protein (FMRP), encoded by the fragile X mental retardation gene (FMR1) on the X chromosome. It has been hypothesized that the absence of FRMP leads to higher levels of Insulin-like Growth Factor 1 (IGF-1) in the brain, possibly contributing to the intellectual impairment characteristic of the disorder. Preclinical studies have shown that metformin downregulates the insulin/IGF-1 signaling pathway, corrects dendritic defects, and improves repetitive behavior in Fmr1 knockout mice. Here, we conducted an open-label study to evaluate: (1) the safety of metformin in normoglycemic individuals with FXS; and (2) the efficacy of metformin to improve aberrant behavior, attention, and to modulate cortical functioning. Fifteen patients with FXS, aged from 17 to 44, received 500 mg of metformin twice/daily over a 9-week treatment period. The primary outcome measures were: (1) the incidence of adverse events (AE); (2) the decrease in IGF-1 levels; and (3) the global score of the Aberrant Behavior Checklist-Community, Fragile X. The secondary outcomes were: (1) the Test of Attentional Performance for children (KiTAP); and (2) the Transcranial Magnetic Stimulation (TMS) parameters measuring cortical excitability. The metformin treatment was well tolerated, with no significant related AE. The TMS data showed an increase in corticospinal inhibition mediated by GABAA and GABAB mechanisms. This study demonstrates the safety of metformin in normoglycemic patients with FXS, and suggests the potential of this medication in modifying GABA-mediated inhibition, a hallmark of FXS pathophysiology. Implications for future clinical trials are discussed.


Evoked Potentials, Motor/drug effects , Fragile X Syndrome/drug therapy , Fragile X Syndrome/physiopathology , Hypoglycemic Agents/therapeutic use , Metformin/therapeutic use , Transcranial Magnetic Stimulation/methods , Adolescent , Adult , Evoked Potentials, Motor/physiology , Female , Fragile X Syndrome/psychology , Humans , Hypoglycemic Agents/pharmacology , Male , Metformin/pharmacology , Motor Cortex/drug effects , Motor Cortex/physiology , Neuropsychological Tests , Treatment Outcome , Young Adult
13.
Clin Neurophysiol ; 132(6): 1367-1379, 2021 06.
Article En | MEDLINE | ID: mdl-33762129

OBJECTIVE: We examined the effects of caffeine, time of day, and alertness fluctuation on plasticity effects after transcranial alternating current stimulation (tACS) or 25 ms paired associative stimulation (PAS25) in caffeine-naïve and caffeine-adapted subjects. METHODS: In two randomised, double-blinded, cross-over or placebo-controlled (caffeine) studies, we measured sixty subjects in eight sessions (n = 30, Male: Female = 1:1 in each study). RESULTS: We found caffeine increased motor cortex excitability in caffeine naïve subjects. The aftereffects in caffeine naïve subjects were enhanced and prolonged when combined with PAS 25. Caffeine also increased alertness and the motor evoked potentials (MEPs) were reduced under light deprivation in caffeine consumers both with and without caffeine. In caffeine consumers, the time of day had no effect on tACS-induced plasticity. CONCLUSIONS: We conclude that caffeine should be avoided or controlled as confounding factor for brain stimulation protocols. It is also important to keep the brightness constant in all sessions and study groups should not be mixed with caffeine-naïve and caffeine consuming participants. SIGNIFICANCE: Caffeine is one of the confounding factors in the plasticity induction studies and it induces different excitability effects in caffeine-naïve and caffeine-adapted subjects. This study was registered in the ClinicalTrials.gov with these registration IDs: 1) NCT03720665 https://clinicaltrials.gov/ct2/results?cond=NCT03720665&term=&cntry=&state=&city=&dist= 2) NCT04011670 https://clinicaltrials.gov/ct2/results?cond=&term=NCT04011670&cntry=&state=&city=&dist=.


Caffeine/pharmacology , Evoked Potentials, Motor/drug effects , Motor Cortex/drug effects , Neuronal Plasticity/drug effects , Adult , Double-Blind Method , Female , Humans , Male , Transcranial Direct Current Stimulation , Young Adult
14.
Psychoneuroendocrinology ; 127: 105201, 2021 05.
Article En | MEDLINE | ID: mdl-33740589

The modulatory effects of non-invasive brain stimulation (NIBS) are highly variable between subjects. This variability may be due to uncontrolled caffeine consumption and circadian rhythms. Therefore, here we studied if caffeine consumption, systemically available caffeine measured in saliva, and daytime have effects on the excitability and plasticity of the motor cortex. Since both, time of the day and caffeine may mediate their effects via cortisol, we also quantified corticosteroids in saliva. Experiment 1 was performed in caffeine-naïve participants (n = 30) and compared the effects of PAS or tACS with different stimulation intensities on the motor cortex with or without caffeine 200 mg administered in a double-blind fashion. Experiment 2 was performed in regular caffeine consumers (n = 30) and compared the influence of time of day on the effects of tACS (true or sham) on the motor cortex also with or without caffeine administered in a double-blind fashion. Caffeine increased the saliva corticosteroid concentrations in both experimental groups, and corticosteroid concentrations were higher in the morning in caffeine consumers. Gender also affected corticosteroid concentrations. There was a positive correlation between caffeine concentrations and baseline cortical excitability in caffeine-adapted participants, and a negative correlation between poststimulation caffeine concentrations and motor evoked potential (MEP) amplitudes after sham stimulation in caffeine-naïve subjects. No correlations were found between poststimulation caffeine or corticosteroid concentrations, and plasticity aftereffects. PAS and tACS did not elicit changes in the corticosteroid concentrations. We conclude that moderate caffeine consumption alters cortical excitability but not plasticity aftereffects. This study was registered in the ClinicalTrials.gov with these registration IDs: 1) NCT03720665 https://clinicaltrials.gov/ct2/results?cond=NCT03720665&term=&cntry=&state=&city=&dist= 2) NCT04011670 https://clinicaltrials.gov/ct2/results?cond=&term=NCT04011670&cntry=&state=&city=&dist=.


Adrenal Cortex Hormones , Caffeine , Cortical Excitability , Adrenal Cortex Hormones/pharmacology , Caffeine/pharmacology , Cortical Excitability/drug effects , Cortical Excitability/physiology , Evoked Potentials, Motor/drug effects , Evoked Potentials, Motor/physiology , Humans , Transcranial Direct Current Stimulation , Transcranial Magnetic Stimulation
15.
Exp Neurol ; 340: 113679, 2021 06.
Article En | MEDLINE | ID: mdl-33662380

The receptor-type protein tyrosine phosphatase sigma (PTPRσ) regulates axonal regeneration/sprouting as a molecular switch in response to glycan ligands. Cell surface heparan sulfate oligomerizes PTPRσ and inactivates its enzymatic activity, which in turn promotes axonal growth. In contrast, matrix-associated chondroitin sulfate monomerizes PTPRσ and activates it. This leads to dephosphorylation of its specific substrates, such as cortactin, resulting in a failure of axonal regeneration after injury. However, this molecular switch model has never been challenged in a clinical situation. In this study, we demonstrated that enoxaparin, a globally approved anticoagulant consisting of heparin oligosaccharides with an average molecular weight of 45 kDa, induced clustering and inactivated PTPRσ in vitro. Enoxaparin induced PTPRσ clustering, and counteracted PTPRσ-mediated dephosphorylation of cortactin, which was shown to be important for inhibition of axonal regeneration. Systemic administration of enoxaparin promoted anatomical recovery after both optic nerve and spinal cord injuries in rats at clinically tolerated doses. Moreover, enoxaparin promoted recovery of motor function without obvious hemorrhage. Collectively, our data provide a new strategy for the treatment of traumatic axonal injury.


Anticoagulants/therapeutic use , Enoxaparin/therapeutic use , Receptor-Like Protein Tyrosine Phosphatases, Class 2/antagonists & inhibitors , Recovery of Function/drug effects , Spinal Cord Injuries/drug therapy , Animals , Anticoagulants/pharmacology , Enoxaparin/pharmacology , Evoked Potentials, Motor/drug effects , Evoked Potentials, Motor/physiology , Female , HEK293 Cells , Humans , Rats , Rats, Sprague-Dawley , Receptor-Like Protein Tyrosine Phosphatases, Class 2/metabolism , Recovery of Function/physiology , Spinal Cord Injuries/metabolism , Thoracic Vertebrae/injuries
16.
J Neurophysiol ; 125(4): 1269-1278, 2021 04 01.
Article En | MEDLINE | ID: mdl-33625939

Although synaptic transmission in motor pathways can be regulated by neuromodulators, such as acetylcholine, few studies have examined how cholinergic activity affects cortical and spinal motor circuits following muscle contractions of varying intensities. This was a human, double-blinded, placebo-controlled, crossover study. Participants attended two sessions where they were administered either a placebo or 25 mg of promethazine. Electromyography of the abductor digiti minimi (ADM) was measured for all conditions. Motor evoked potentials (MEPs) were obtained via motor cortical transcranial magnetic stimulation (TMS), and F waves were obtained via ulnar nerve electrical stimulation. MEPs and F waves were examined: 1) when the muscle was at rest; 2) after the muscle had been active; and 3) after the muscle had been fatigued. MEPs were unaffected by muscarinic receptor blockade when measurements were recorded from resting muscle or following a 50% isometric maximal voluntary contraction (MVC). However, muscarinic receptor blockade increased MEP area following a 10-s MVC (P = 0.019) and following a fatiguing 60-s MVC (P = 0.040). F wave area and persistence were not affected by promethazine for any muscle contraction condition. Corticospinal excitability was influenced by cholinergic effects when voluntary drive to the muscle was high. Given that spinal motoneurone excitability remained unaffected, it is likely that cholinergic effects are influential within the motor cortex during strong muscle contractions. Future research should evaluate how cholinergic effects alter the relationship between subcortical structures and the motor cortex, as well as brainstem neuromodulatory pathways and spinal motoneurons.NEW & NOTEWORTHY The relationship between motor function and cholinergic circuitry in the central nervous system is complex. Although many studies have approached this issue at the cellular level, few studies have examined cholinergic mechanisms in humans performing muscle contractions. This study demonstrates that blockade of muscarinic acetylcholine receptors enhances motor evoked potentials (elicited with transcranial magnetic stimulation) following strong muscle contractions, but not weak muscle contractions.


Action Potentials/drug effects , Evoked Potentials, Motor/drug effects , Motor Cortex/drug effects , Motor Neurons/drug effects , Muscarinic Antagonists/pharmacology , Muscle Contraction/drug effects , Muscle Fatigue/drug effects , Muscle, Skeletal/drug effects , Promethazine/pharmacology , Spinal Cord/drug effects , Adult , Cross-Over Studies , Double-Blind Method , Electric Stimulation , Electromyography , Female , Humans , Male , Muscarinic Antagonists/administration & dosage , Promethazine/administration & dosage , Pyramidal Tracts/drug effects , Transcranial Magnetic Stimulation , Young Adult
17.
J Neurophysiol ; 125(4): 1279-1288, 2021 04 01.
Article En | MEDLINE | ID: mdl-33596722

Animal models indicate that serotonin (5-HT) release onto motoneurons facilitates motor output, particularly during strong motor activities. However, evidence for 5-HT effects during human movement are limited. This study examined how antagonism of the 5-HT2 receptor, which is a 5-HT receptor that promotes motoneuron excitability, affects human movement. Ten healthy participants (24.2 ± 1.9 yr) ingested 8 mg of cyproheptadine (competitive 5-HT2 antagonist) in a double-blinded, placebo-controlled, repeated-measures design. Transcranial magnetic stimulation (TMS) of the motor cortex was used to elicit motor evoked potentials (MEPs) from biceps brachii. First, stimulus-response curves (90%-160% active motor threshold) were obtained during very weak elbow flexions (10% of maximal). Second, to determine if 5-HT effects are scaled to the intensity of muscle contraction, TMS at a fixed intensity was applied during elbow flexions of 20%, 40%, 60%, 80%, and 100% of maximal. Cyproheptadine reduced the size of MEPs across the stimulus-response curves (P = 0.045). Notably, MEP amplitude was 22.3% smaller for the cyproheptadine condition for the strongest TMS intensity. In addition, cyproheptadine reduced maximal torque (P = 0.045), lengthened the biceps silent period during maximal elbow flexions (P = 0.037), and reduced superimposed twitch amplitude during moderate-intensity elbow flexions (P = 0.035). This study presents novel evidence that 5-HT2 receptors influence corticospinal-motoneuronal output, which was particularly evident when a large number of descending inputs to motoneurons were active. Although it is likely that antagonism of 5-HT2 receptors reduces motoneuron gain to ionotropic inputs, supraspinal mechanisms may have also contributed to the study findings.NEW & NOTEWORTHY Voluntary contractions and responses to magnetic stimulation of the motor cortex are dependent on serotonin activity in the central nervous system. 5-HT2 antagonism decreased evoked potential size to high-intensity stimulation, and reduced torque and lengthened inhibitory silent periods during maximal contractions. We provide novel evidence that 5-HT2 receptors are involved in muscle activation, where 5-HT effects are strongest when a large number of descending inputs activate motoneurons.


Cyproheptadine/pharmacology , Evoked Potentials, Motor/drug effects , Motor Cortex/drug effects , Motor Neurons/drug effects , Muscle Contraction/drug effects , Muscle, Skeletal/drug effects , Pyramidal Tracts/drug effects , Raphe Nuclei/drug effects , Serotonin 5-HT2 Receptor Antagonists/pharmacology , Spinal Cord/drug effects , Adult , Cross-Over Studies , Cyproheptadine/administration & dosage , Double-Blind Method , Female , Humans , Male , Motor Cortex/metabolism , Motor Neurons/metabolism , Raphe Nuclei/metabolism , Serotonin/physiology , Serotonin 5-HT2 Receptor Antagonists/administration & dosage , Spinal Cord/metabolism , Transcranial Magnetic Stimulation , Young Adult
18.
Neurotherapeutics ; 18(2): 1226-1243, 2021 04.
Article En | MEDLINE | ID: mdl-33420588

Serotonergic agents can improve the recovery of motor ability after a spinal cord injury. Herein, we compare the effects of buspirone, a 5-HT1A receptor partial agonist, to fluoxetine, a selective serotonin reuptake inhibitor, on forelimb motor function recovery after a C4 bilateral dorsal funiculi crush in adult female rats. After injury, single pellet reaching performance and forelimb muscle activity decreased in all rats. From 1 to 6 weeks after injury, rats were tested on these tasks with and without buspirone (1-2 mg/kg) or fluoxetine (1-5 mg/kg). Reaching and grasping success rates of buspirone-treated rats improved rapidly within 2 weeks after injury and plateaued over the next 4 weeks of testing. Electromyography (EMG) from selected muscles in the dominant forelimb showed that buspirone-treated animals used new reaching strategies to achieve success after the injury. However, forelimb performance dramatically decreased within 2 weeks of buspirone withdrawal. In contrast, fluoxetine treatment resulted in a more progressive rate of improvement in forelimb performance over 8 weeks after injury. Neither buspirone nor fluoxetine significantly improved quadrupedal locomotion on the horizontal ladder test. The improved accuracy of reaching and grasping, patterns of muscle activity, and increased excitability of spinal motor-evoked potentials after buspirone administration reflect extensive reorganization of connectivity within and between supraspinal and spinal sensory-motor netxcopy works. Thus, both serotonergic drugs, buspirone and fluoxetine, neuromodulated these networks to physiological states that enabled markedly improved forelimb function after cervical spinal cord injury.


Cervical Cord/injuries , Forelimb/drug effects , Recovery of Function/drug effects , Selective Serotonin Reuptake Inhibitors/therapeutic use , Serotonin Receptor Agonists/therapeutic use , Spinal Cord Injuries/drug therapy , Animals , Buspirone/pharmacology , Buspirone/therapeutic use , Electromyography/drug effects , Electromyography/methods , Evoked Potentials, Motor/drug effects , Evoked Potentials, Motor/physiology , Female , Fluoxetine/pharmacology , Fluoxetine/therapeutic use , Forelimb/innervation , Forelimb/physiology , Hand Strength/physiology , Rats , Rats, Long-Evans , Recovery of Function/physiology , Serotonin Receptor Agonists/pharmacology , Selective Serotonin Reuptake Inhibitors/pharmacology , Spinal Cord Injuries/physiopathology
19.
Anesth Analg ; 132(4): 1092-1100, 2021 04 01.
Article En | MEDLINE | ID: mdl-33060493

BACKGROUND: An epidurally administered local anesthetic acts primarily on the epidural nerve roots and can act directly on the spinal cord through the dural sleeve. We hypothesized that epidurally administered ropivacaine would reduce the amplitude of transcranial electrical motor-evoked potentials by blocking nerve conduction in the spinal cord. Therefore, we conducted a double-blind, randomized, controlled trial. METHODS: Thirty adult patients who underwent lung surgery were randomly allocated to 1 of 3 groups, based on the ropivacaine concentration: the 0.2% group, the 0.375% group, and the 0.75% group. The attending anesthesiologists, neurophysiologists, and patients were blinded to the allocation. The epidural catheter was inserted at the T5-6 or T6-7 interspace by a paramedian approach, using the loss of resistance technique with normal saline. General anesthesia was induced and maintained using propofol and remifentanil. Transcranial electrical motor-evoked potentials were elicited by a train of 5 pulses with an interstimulus interval of 2 milliseconds by using a constant-voltage stimulator and were recorded from the tibialis anterior muscle. Somatosensory-evoked potentials (SSEPs) were evoked by electrical tibial nerve stimulation at the popliteal fossa. After measuring the baseline values of these evoked potentials, 10 mL of epidural ropivacaine was administered at the 0.2%, 0.375%, or 0.75% concentration. The baseline amplitudes and latencies recorded before administering ropivacaine were defined as 100%. Our primary end point was the relative amplitude of the motor-evoked potentials at 60 minutes after the epidural administration of ropivacaine. We analyzed the amplitudes and latencies of these evoked potentials by using the Kruskal-Wallis test and used the Dunn multiple comparison test as the post hoc test for statistical analysis. RESULTS: The data are expressed as the median (interquartile range). Sixty minutes after epidurally administering ropivacaine, the motor-evoked potential amplitude was lower in the 0.75% group (7% [3%-18%], between-group difference P < .001) and in the 0.375% group (52% [43%-59%]) compared to that in the 0.2% group (96% [89%-105%]). The latency of SSEP was longer in the 0.75% group compared to that in the 0.2% group, but the amplitude was unaffected. CONCLUSIONS: Epidurally administered high-dose ropivacaine lowered the amplitude of motor-evoked potentials and prolonged the onset latencies of motor-evoked potentials and SSEPs compared to those in the low-dose group. High-dose ropivacaine can act on the motor pathway through the dura mater.


Anesthesia, Epidural , Anesthetics, Local/administration & dosage , Evoked Potentials, Motor/drug effects , Intraoperative Neurophysiological Monitoring , Pulmonary Surgical Procedures , Pyramidal Tracts/drug effects , Ropivacaine/administration & dosage , Transcranial Direct Current Stimulation , Aged , Anesthesia, Epidural/adverse effects , Anesthesia, General , Anesthetics, Local/adverse effects , Double-Blind Method , Female , Humans , Japan , Male , Middle Aged , Pulmonary Surgical Procedures/adverse effects , Reaction Time , Ropivacaine/adverse effects , Time Factors , Treatment Outcome
20.
Cereb Cortex ; 31(1): 575-590, 2021 01 01.
Article En | MEDLINE | ID: mdl-32901273

Intermittent theta-burst stimulation (iTBS), a form of repetitive transcranial magnetic stimulation, is considered a potential therapy for treatment-resistant depression. The synaptic mechanism of iTBS has long been known to be an effective method to induce long-term potentiation (LTP)-like plasticity in humans. However, there is limited evidence as to whether the antidepressant effect of iTBS is associated with change in synaptic function in the prefrontal cortex (PFC) in preclinical study. Hence, we applied an antidepressant (i.e., fluoxetine)-resistant depression rat model induced by severe foot-shocks to investigate the antidepressant efficacy of iTBS in the synaptic pathology. The results showed that iTBS treatment improved not only the impaired LTP, but also the aberrant long-term depression in the PFC of antidepressant-resistant depression model rats. Moreover, the mechanism of LTP improvement by iTBS involved downstream molecules of brain-derived neurotrophic factor, while the mechanism of long-term depression improvement by iTBS involved downstream molecules of proBDNF. The aberrant spine morphology was also improved by iTBS treatment. This study demonstrated that the mechanism of the iTBS paradigm is complex and may regulate not only excitatory but also inhibitory synaptic effects in the PFC.


Antidepressive Agents/pharmacology , Depressive Disorder, Treatment-Resistant/physiopathology , Neuronal Plasticity/physiology , Prefrontal Cortex/physiopathology , Synapses/pathology , Animals , Evoked Potentials, Motor/drug effects , Evoked Potentials, Motor/physiology , Long-Term Potentiation/physiology , Male , Motor Cortex/drug effects , Motor Cortex/physiopathology , Neuronal Plasticity/drug effects , Prefrontal Cortex/drug effects , Rats, Sprague-Dawley , Theta Rhythm/drug effects , Theta Rhythm/physiology , Transcranial Magnetic Stimulation/methods
...