Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 671
Filtrar
1.
Med Microbiol Immunol ; 213(1): 19, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39297970

RESUMEN

The Panton-Valentine leukocidin (PVL) of Staphylococcus aureus is associated with necrotizing infections. After binding to complement 5a receptor (C5aR/CD88) and CD45 it causes cytolysis in polymorphonuclear neutrophils (PMNs) as well as inflammasome activation in monocytes. The objective of this study was to test if (ant)agonists of C5aR and CD45 can attenuate the effect of PVL on PMNs and monocytes. We tested the effect of various concentrations of six C5aR (ant)agonists (avacopan, BM213, DF2593A, JPE-1375, PMX205 and W-54011) and one CD45 antagonist (NQ301) to attenuate the cytotoxic effect of PVL on human PMNs and monocytes in vitro. Shifts in the half-maximal effective concentration (EC50) of PVL to achieve a cytotoxic effect on PMNs and modulation of inflammatory cytokine response from monocytes were determined by flow cytometry and IL-1ß detection. Pre-treatment of PMNs with avacopan, PMX205 and W-54,011 resulted in 3.6- to 4.3-fold shifts in the EC50 for PVL and were able to suppress IL-1ß secretion by human monocytes in the presence of PVL. BM213, DF2593A and NQ301 were unable to change the susceptibility of PMNs towards PVL or reduce inflammasome activation in monocytes. Avacopan, PMX205 and W-54,011 showed protection against PVL-induced cytotoxicity and suppressed IL-1ß secretion by monocytes. Clinical studies are needed to prove whether these substances can be used therapeutically as repurposed drugs.


Asunto(s)
Toxinas Bacterianas , Exotoxinas , Leucocidinas , Monocitos , Neutrófilos , Receptor de Anafilatoxina C5a , Staphylococcus aureus , Leucocidinas/metabolismo , Leucocidinas/antagonistas & inhibidores , Exotoxinas/metabolismo , Exotoxinas/farmacología , Exotoxinas/antagonistas & inhibidores , Humanos , Toxinas Bacterianas/metabolismo , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Monocitos/inmunología , Staphylococcus aureus/efectos de los fármacos , Neutrófilos/efectos de los fármacos , Neutrófilos/inmunología , Neutrófilos/metabolismo , Receptor de Anafilatoxina C5a/antagonistas & inhibidores , Receptor de Anafilatoxina C5a/metabolismo , Antígenos Comunes de Leucocito/metabolismo , Antibacterianos/farmacología , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Inflamasomas/metabolismo , Interleucina-1beta/metabolismo
2.
Int J Biol Macromol ; 278(Pt 1): 134668, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39137851

RESUMEN

Immunotoxins (ITs) are recombinant chimeric proteins that combine a protein toxin with a targeting moiety to facilitate the selective delivery of the toxin to cancer cells. Here, we present a novel strategy to enhance the cytosolic access of ITs by promoting their dissociation from target receptors under the reducing conditions of the endocytic pathway. We engineered monobodySS, a human fibronectin type III domain-based monobody with disulfide bond (SS)-containing paratopes, targeting receptors such as EGFR, EpCAM, Her2, and FAP. MonobodySS exhibited SS-dependent target receptor binding with a significant reduction in binding under reducing conditions. We then created monobodySS-based ITs carrying a 25 kDa fragment of Pseudomonas exotoxin A (PE25), termed monobodySS-PE25. These ITs showed dose-dependent cytotoxicity against target receptor-expressing cancer cells and a wider therapeutic window due to higher efficacy at lower doses compared to controls with SS reduction inhibited. ERSS/28-PE25, with a KD of 28 nM for EGFR, demonstrated superior tumor-killing potency compared to ER/21-PE25, which lacks an SS bond, at equivalent and lower doses. In vivo, ERSS/28-PE25 outperformed ER/21-PE25 in suppressing tumor growth in EGFR-overexpressing xenograft mouse models. This study presents a strategy for developing solid tumor-targeting ITs using SS-containing paratopes to enhance cytosolic delivery and antitumor efficacy.


Asunto(s)
Endocitosis , Exotoxinas , Inmunotoxinas , Humanos , Inmunotoxinas/farmacología , Inmunotoxinas/química , Animales , Endocitosis/efectos de los fármacos , Ratones , Línea Celular Tumoral , Exotoxinas/farmacología , Exotoxinas/química , Exotoxina A de Pseudomonas aeruginosa , ADP Ribosa Transferasas/farmacología , ADP Ribosa Transferasas/química , Ensayos Antitumor por Modelo de Xenoinjerto , Toxinas Bacterianas/química , Toxinas Bacterianas/farmacología , Oxidación-Reducción/efectos de los fármacos , Femenino
3.
FASEB J ; 38(13): e23759, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38949635

RESUMEN

The epidermal growth factor receptor (EGFR) is an important target for cancer therapies. Many head and neck cancer (HNC) cells have been reported to overexpress EGFR; therefore, anti-EGFR therapies have been attempted in patients with HNC. However, its clinical efficacy is limited owing to the development of drug resistance. In this study, we developed an EGFR-targeting immunotoxin consisting of a clinically proven anti-EGFR IgG (cetuximab; CTX) and a toxin fragment (LR-LO10) derived from Pseudomonas exotoxin A (PE) using a novel site-specific conjugation technology (peptide-directed photo-crosslinking reaction), as an alternative option. The immunotoxin (CTX-LR-LO10) showed specific binding to EGFR and properties of a typical IgG, such as stability, interactions with receptors of immune cells, and pharmacokinetics, and inhibited protein synthesis via modification of elongation factor-2. Treatment of EGFR-positive HNC cells with the immunotoxin resulted in apoptotic cell death and the inhibition of cell migration and invasion. The efficacy of CTX-LR-LO10 was evaluated in xenograft mouse models, and the immunotoxin exhibited much stronger tumor suppression than CTX or LR-LO10. Transcriptome analyses revealed that the immunotoxins elicited immune responses and altered the expression of genes related to its mechanisms of action. These results support the notion that CTX-LR-LO10 may serve as a new therapeutic agent targeting EGFR-positive cancers.


Asunto(s)
ADP Ribosa Transferasas , Receptores ErbB , Exotoxinas , Neoplasias de Cabeza y Cuello , Inmunoglobulina G , Inmunotoxinas , Exotoxina A de Pseudomonas aeruginosa , Factores de Virulencia , Humanos , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Receptores ErbB/inmunología , Animales , Inmunotoxinas/farmacología , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/inmunología , Neoplasias de Cabeza y Cuello/metabolismo , Ratones , Inmunoglobulina G/farmacología , Línea Celular Tumoral , Exotoxinas/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto , Cetuximab/farmacología , Ratones Desnudos , Toxinas Bacterianas , Apoptosis/efectos de los fármacos , Ratones Endogámicos BALB C , Femenino , Movimiento Celular/efectos de los fármacos , Antineoplásicos/farmacología
4.
Mol Cells ; 46(12): 764-777, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38052492

RESUMEN

Recombinant immunotoxins (RITs) are fusion proteins consisting of a targeting domain linked to a toxin, offering a highly specific therapeutic strategy for cancer treatment. In this study, we engineered and characterized RITs aimed at mesothelin, a cell surface glycoprotein overexpressed in various malignancies. Through an extensive screening of a large nanobody library, four mesothelin-specific nanobodies were selected and genetically fused to a truncated Pseudomonas exotoxin (PE24B). Various optimizations, including the incorporation of furin cleavage sites, maltose-binding protein tags, and tobacco etch virus protease cleavage sites, were implemented to improve protein expression, solubility, and purification. The RITs were successfully overexpressed in Escherichia coli, achieving high solubility and purity post-purification. In vitro cytotoxicity assays on gastric carcinoma cell lines NCI-N87 and AGS revealed that Meso(Nb2)-PE24B demonstrated the highest cytotoxic efficacy, warranting further characterization. This RIT also displayed selective binding to human and monkey mesothelins but not to mouse mesothelin. The competitive binding assays between different RIT constructs revealed significant alterations in IC50 values, emphasizing the importance of nanobody specificity. Finally, a modification in the endoplasmic reticulum retention signal at the C-terminus further augmented its cytotoxic activity. Our findings offer valuable insights into the design and optimization of RITs, showcasing the potential of Meso(Nb2)-PE24B as a promising therapeutic candidate for targeted cancer treatment.


Asunto(s)
Antineoplásicos , Toxinas Bacterianas , Inmunotoxinas , Neoplasias , Anticuerpos de Dominio Único , Animales , Ratones , Humanos , Exotoxinas/genética , Exotoxinas/farmacología , Exotoxinas/química , Inmunotoxinas/genética , Inmunotoxinas/farmacología , Inmunotoxinas/química , Mesotelina , Anticuerpos de Dominio Único/genética , Anticuerpos de Dominio Único/farmacología , Toxinas Bacterianas/genética , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Dominio Catalítico , Línea Celular Tumoral , ADP Ribosa Transferasas/genética , ADP Ribosa Transferasas/química , ADP Ribosa Transferasas/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/farmacología , Proteínas Recombinantes de Fusión/metabolismo , Neoplasias/tratamiento farmacológico
5.
Vet Res ; 54(1): 62, 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37475032

RESUMEN

Actinobacillus pleuropneumoniae (APP) is a gram-negative pathogenic bacterium responsible for porcine contagious pleuropneumonia (PCP), which can cause porcine necrotizing and hemorrhagic pleuropneumonia. Actinobacillus pleuropneumoniae-RTX-toxin (Apx) is an APP virulence factor. APP secretes a total of four Apx toxins, among which, ApxI demonstrates strong hemolytic activity and cytotoxicity, causing lysis of porcine erythrocytes and apoptosis of porcine alveolar macrophages. However, the protein interaction network between this toxin and host cells is still poorly understood. TurboID mediates the biotinylation of endogenous proteins, thereby targeting specific proteins and local proteomes through gene fusion. We applied the TurboID enzyme-catalyzed proximity tagging method to identify and study host proteins in immortalized porcine alveolar macrophage (iPAM) cells that interact with the exotoxin ApxI of APP. His-tagged TurboID-ApxIA and TurboID recombinant proteins were expressed and purified. By mass spectrometry, 318 unique interacting proteins were identified in the TurboID ApxIA-treated group. Among them, only one membrane protein, caveolin-1 (CAV1), was identified. A co-immunoprecipitation assay confirmed that CAV1 can interact with ApxIA. In addition, overexpression and RNA interference experiments revealed that CAV1 was involved in ApxI toxin-induced apoptosis of iPAM cells. This study provided first-hand information about the proteome of iPAM cells interacting with the ApxI toxin of APP through the TurboID proximity labeling system, and identified a new host membrane protein involved in this interaction. These results lay a theoretical foundation for the clinical treatment of PCP.


Asunto(s)
Infecciones por Actinobacillus , Actinobacillus pleuropneumoniae , Enfermedades de los Porcinos , Porcinos , Animales , Actinobacillus pleuropneumoniae/genética , Macrófagos Alveolares/metabolismo , Exotoxinas/farmacología , Apoptosis , Proteínas de la Membrana/metabolismo , Proteínas Bacterianas/genética , Infecciones por Actinobacillus/veterinaria , Infecciones por Actinobacillus/microbiología , Proteínas Hemolisinas/toxicidad , Enfermedades de los Porcinos/microbiología
6.
Biochem Biophys Res Commun ; 632: 107-112, 2022 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-36206594

RESUMEN

Basophils are known to produce a large amount of IL-4 in response to stimuli and play a role in the initiation and propagation of type 2 inflammations. S. aureus secretes a series of pore-forming toxins: α-hemolysin, γ-hemolysins, and leukocidins. In this study, we examined the effects of α-hemolysin, γ-hemolysins (HlgAB and HlgCB), and leukocidins (LukAB, LukED, and Panton-Valentine leukocidin) on the function of basophils. All pore-forming toxins except for Panton-Valentine leukocidin bound to murine bone marrow-derived basophils (BMBs). HlgAB and LukED but not other toxins evoked the leakage of lactate dehydrogenase from BMBs at the concentration of 30 µg/ml γ-hemolysins, HlgAB and HlgCB, induced the secretion of IL-4 in BMBs at concentrations above 3.3 µg/ml. LukAB did not induce, and Hla and LukED induced only a small amount of IL-4. HlgBΔstem, the 5 amino acids deletion mutant of HlgB in the stem region, diminished IL-4 secretion by HlgAB and HlgCB in BMBs. These results suggest that the cell damage and the induction of IL-4 in basophils by HlgAB require pore formation. The induction of IL-4 by γ-hemolysins was also observed in fleshly isolated murine basophils. These results demonstrate a novel function of γ-hemolysins, the induction of IL-4 in basophils, in an IgE-independent manner.


Asunto(s)
Proteínas Hemolisinas , Interleucina-4 , Animales , Ratones , Aminoácidos/farmacología , Proteínas Bacterianas/química , Proteínas Bacterianas/farmacología , Basófilos/metabolismo , Exotoxinas/farmacología , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/farmacología , Inmunoglobulina E , Interleucina-4/metabolismo , Lactato Deshidrogenasas , Leucocidinas/farmacología , Staphylococcus aureus/metabolismo
7.
Sci Rep ; 12(1): 16848, 2022 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-36207384

RESUMEN

Recently, cellulose nanocrystals (CNs) have attracted wide attention owing to their superior properties compared to their bulk materials. For example, they represent an outstanding model for fabricating green metallic/metal oxide nanoparticles (NPs). In this study, two CNs (carboxylated CNs and sulfated CNs) extracted from agro-wastes of palm sheath fibers were used as templates for the facile and green synthesis of ZnO NPs by employing the sono-co-precipitation method. The obtained nanomaterials were characterized using TEM, EDX, UV-visible, DLS, FT-IR, and XRD analysis. As a result, the size and concentration of synthesized ZnO NPs were inversely proportional to one another and were affected by the CNs utilized and the reaction temperature used. Contagious diseases incited by multifarious toxigenic bacteria present severe threats to human health. The fabricated bio-nanocomposites were evaluated in terms of their antimicrobial efficacy by agar well diffusion method and broth microdilution assay, showing that CN-ZnO bio-nanocomposites were effective against the tested Gram-negative (Escherichia coli and Salmonella) and Gram-positive (Listeria monocytogenes and Staphylococcus aureus) bacteria. The influence of the subinhibitory concentrations of these suspensions on the expression of the most critical virulence toxin genes of the tested strains was effective. Significant downregulation levels were observed through toxigenic operons to both fabricated CN-ZnO bio-nanocomposites with a fold change ranging from 0.004 to 0.510, revealing a decline in the capacity and virulence of microorganisms to pose infections. Therefore, these newly fabricated CNS-ZnO bio-nanocomposites could be employed rationally in food systems as a novel preservative to inhibit microbial growth and repress the synthesis of exotoxins.


Asunto(s)
Nanopartículas del Metal , Nanocompuestos , Óxido de Zinc , Agar/farmacología , Antibacterianos/química , Bacterias/genética , Bacterias/metabolismo , Celulosa/farmacología , Escherichia coli/metabolismo , Exotoxinas/farmacología , Humanos , Nanopartículas del Metal/química , Pruebas de Sensibilidad Microbiana , Nanocompuestos/química , Espectroscopía Infrarroja por Transformada de Fourier , Virulencia/genética , Óxido de Zinc/química
8.
Int J Mol Sci ; 23(19)2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36232424

RESUMEN

A. hydrophila is an important pathogen that mainly harms aquatic animals and has exhibited resistance to a variety of antibiotics. Here, to seek an effective alternative for antibiotics, the effects of umbelliferone (UM) at sub-MICs on A. hydrophila virulence factors and the quorum-sensing system were studied. Subsequently, RNA sequencing was employed to explore the potential mechanisms for the antivirulence activity of umbelliferone. Meanwhile, the protective effect of umbelliferone on grass carp infected with A. hydrophila was studied in vivo. Our results indicated that umbelliferone could significantly inhibit A. hydrophila virulence such as hemolysis, biofilm formation, swimming and swarming motility, and their quorum-sensing signals AHL and AI-2. Transcriptomic analysis showed that umbelliferone downregulated expression levels of genes related to exotoxin, the secretory system (T2SS and T6SS), iron uptake, etc. Animal studies demonstrated that umbelliferone could significantly improve the survival of grass carps infected with A. hydrophila, reduce the bacterial load in the various tissues, and ameliorate cardiac, splenic, and hepatopancreas injury. Collectively, umbelliferone can reduce the pathogenicity of A. hydrophila and is a potential drug for treating A. hydrophila infection.


Asunto(s)
Carpas , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Aeromonas hydrophila , Animales , Antibacterianos/farmacología , Exotoxinas/farmacología , Enfermedades de los Peces/tratamiento farmacológico , Enfermedades de los Peces/genética , Enfermedades de los Peces/prevención & control , Infecciones por Bacterias Gramnegativas/microbiología , Hierro/farmacología , Umbeliferonas/farmacología , Factores de Virulencia/genética , Factores de Virulencia/farmacología
9.
Int J Mol Sci ; 23(18)2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36142597

RESUMEN

Staphylococcus aureus is one of the major pathogens responsible for antimicrobial resistance-associated death. S. aureus can secrete various exotoxins, and staphylococcal biofilms play critical roles in antibiotic tolerance and the persistence of chronic infections. Here, we investigated the inhibitory effects of 18 hydroquinones on biofilm formation and virulence factor production by S. aureus. It was found that 2,5-bis(1,1,3,3-tetramethylbutyl) hydroquinone (TBHQ) at 1 µg/mL efficiently inhibits biofilm formation by two methicillin-sensitive and two methicillin-resistant S. aureus strains with MICs of 5 µg/mL, whereas the backbone compound hydroquinone did not (MIC > 400 µg/mL). In addition, 2,3-dimethylhydroquinone and tert-butylhydroquinone at 50 µg/mL also exhibited antibiofilm activity. TBHQ at 1 µg/mL significantly decreased the hemolytic effect and lipase production by S. aureus, and at 5−50 µg/mL was non-toxic to the nematode Caenorhabditis elegans and did not adversely affect Brassica rapa seed germination or growth. Transcriptional analyses showed that TBHQ suppressed the expression of RNAIII (effector of quorum sensing). These results suggest that hydroquinones, particularly TBHQ, are potentially useful for inhibiting S. aureus biofilm formation and virulence.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Antibacterianos/farmacología , Biopelículas , Exotoxinas/farmacología , Humanos , Hidroquinonas/farmacología , Lipasa , Meticilina/farmacología , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus , Factores de Virulencia/farmacología
10.
Anal Biochem ; 653: 114776, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35679954

RESUMEN

Targeted tumor therapy is an attractive approach for cancer treatment. Delta-like ligand 4 (DLL4) is overexpressed in tumor vasculature and plays a pivotal role in tumor neovascular development and angiogenesis during tumor progression. Immunotoxins due to their superior cell-killing ability and the relative simplicity of their preparation, have great potential in the clinical treatment of cancer. The aim of this study was to develop a novel immunotoxin against DLL4 as a cell cytotoxic agent and angiogenesis maturation inhibitor. In present study, an immunotoxin, named DLL4Nb-PE, in which a Nanobody as targeting moiety fused to the Pseudomonas exotoxin A (PE) was constructed, expressed and assessed by SDS-PAGE, western blotting, ELISA and flowcytometry. The functional assessment was carried out via MTT, apoptosis and chicken chorioallantoic membrane (CAM) assays. It was demonstrated DLL4Nb-PE specifically binds to DLL4 and recognizes DLL4-expressing MKN cells. The cytotoxicity assays showed that this molecule could induce apoptosis and kill DLL4 positive MKN cells. In addition, it inhibited neovascularization in the chicken chorioallantoic membrane. Our findings indicate designed anti-DLL4 immunotoxin has valuable potential for application to the treatment of tumors with high DLL4 expression.


Asunto(s)
Inmunotoxinas , Neoplasias , Proliferación Celular , Exotoxinas/metabolismo , Exotoxinas/farmacología , Exotoxinas/uso terapéutico , Humanos , Inmunotoxinas/farmacología , Inmunotoxinas/uso terapéutico , Neoplasias/tratamiento farmacológico , Neovascularización Patológica/tratamiento farmacológico , Pseudomonas/metabolismo
11.
Comput Methods Programs Biomed ; 222: 106952, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35724475

RESUMEN

The leukotoxin (LtxA) of Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans) is a protein exotoxin belonging to the repeat-in-toxin family (RTX). Numerous studies have demonstrated that LtxA may play a critical role in the pathogenicity of A. actinomycetemcomitans since hyper-leukotoxic strains have been associated with severe disease. Accordingly, considerable effort has been made to elucidate the mechanisms by which LtxA interacts with host cells and induce their death. However, these attempts have been hampered by the unavailability of a tertiary structure of the toxin, which limits the understanding of its molecular properties and mechanisms. In this paper, we used homology and template free modeling algorithms to build the complete tertiary model of LtxA at atomic level in its calcium-bound Holo-state. The resulting model was refined by energy minimization, validated by Molprobity and ProSA tools, and subsequently subjected to a cumulative 600ns of all-atom classical molecular dynamics simulation to evaluate its structural aspects. The druggability of the proposed model was assessed using Fpocket and FTMap tools, resulting in the identification of four putative cavities and fifteen binding hotspots that could be targeted by rational drug design tools to find new ligands to inhibit LtxA activity.


Asunto(s)
Aggregatibacter actinomycetemcomitans , Exotoxinas , Aggregatibacter actinomycetemcomitans/química , Aggregatibacter actinomycetemcomitans/metabolismo , Simulación por Computador , Exotoxinas/química , Exotoxinas/metabolismo , Exotoxinas/farmacología
12.
Toxins (Basel) ; 13(12)2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34941738

RESUMEN

The cytotoxic necrotizing factors (CNFs) are a family of Rho GTPase-activating single-chain exotoxins that are produced by several Gram-negative pathogenic bacteria. Due to the pleiotropic activities of the targeted Rho GTPases, the CNFs trigger multiple signaling pathways and host cell processes with diverse functional consequences. They influence cytokinesis, tissue integrity, cell barriers, and cell death, as well as the induction of inflammatory and immune cell responses. This has an enormous influence on host-pathogen interactions and the severity of the infection. The present review provides a comprehensive insight into our current knowledge of the modular structure, cell entry mechanisms, and the mode of action of this class of toxins, and describes their influence on the cell, tissue/organ, and systems levels. In addition to their toxic functions, possibilities for their use as drug delivery tool and for therapeutic applications against important illnesses, including nervous system diseases and cancer, have also been identified and are discussed.


Asunto(s)
Toxinas Bacterianas/farmacología , Exotoxinas/farmacología , Proteínas de Unión al GTP rho/metabolismo , Escherichia coli/metabolismo , Exotoxinas/metabolismo , Yersinia/metabolismo
13.
Sci Rep ; 11(1): 18086, 2021 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-34508147

RESUMEN

Leukotoxin (LtxA) (Trade name, Leukothera) is a protein that is secreted from the oral bacterium Aggregatibacter actinomycetemcomitans, which targets and kills activated white blood cells (WBCs) by binding to lymphocyte function associated antigen-1 (LFA-1). Interaction between LtxA and Jurkat T-cells results in cell death and is characterized by increased intracellular Ca2+, activation of caspases, clustering of LtxA and LFA-1 within lipid rafts, and involvement of the Fas death receptor. Here, we show that LtxA can kill malignant lymphocytes via apoptotic and necrotic forms of cell death. We show that LtxA causes activation of caspases and PARP, cleavage of pannexin-1 (Panx1) channels, and expulsion of ATP, ultimately leading to cell death via apoptosis and necrosis. CRISPR-Cas9 mediated knockout (K/O) of Panx1 in Jurkat cells prevented ATP expulsion and resulted in resistance to LtxA for both apoptotic and necrotic forms of death. Resistance to necrosis could only be overcome when supplementing LtxA with endogenous ATP (bzATP). The combination of LtxA and bzATP promoted only necrosis, as no Panx1 K/O cells stained positive for phosphatidylserine (PS) exposure following the combined treatment. Inhibition of LtxA/bzATP-induced necrosis was possible when pretreating Jurkat cells with oATP, a P2X7R antagonist. Similarly, blockage of P2X7Rs with oATP prevented the intracellular mobilization of Ca2+, an important early step in LtxA induced cell death. We show that LtxA is able to kill malignant lymphocytes through an apoptotic death pathway which is potentially linked to a Panx1/P2X7R mediated necrotic form of death. Thus, inhibition of ATP release appears to significantly delay the onset of LtxA induced apoptosis while completely disabling the necrotic death pathway in T-lymphocytes, demonstrating the crucial role of ATP release in LtxA-mediated cell death.


Asunto(s)
Conexinas/metabolismo , Exotoxinas/metabolismo , Linfocitos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Adenosina Trifosfato/metabolismo , Apoptosis/efectos de los fármacos , Calcio/metabolismo , Muerte Celular , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Conexinas/deficiencia , Exotoxinas/farmacología , Técnicas de Silenciamiento del Gen , Humanos , Células Jurkat , Leucemia Linfoide/etiología , Leucemia Linfoide/metabolismo , Leucemia Linfoide/patología , Linfocitos/patología , Linfoma/etiología , Linfoma/metabolismo , Linfoma/patología , Proteínas del Tejido Nervioso/deficiencia , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismo , Transducción de Señal/efectos de los fármacos
14.
Anticancer Res ; 41(7): 3471-3480, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34230142

RESUMEN

BACKGROUND/AIM: Pseudomonas exotoxin (PE) is one of the most widely used toxins in the construction of therapeutic fusion proteins in pre-clinical studies followed by phase trials. In principle, PE acts by blocking protein synthesis through catalyzing the inactivation of elongation factor-2 (EF-2). The interleukin-13 fused PE (IL13-PE) cytotoxin was previously designed to target GBM cells. In this study, the cytotoxic effects of IL13-PE were evaluated in 5 different types of cancers and the therapeutic effects were further analyzed in a lung cancer cell line, NCI-H460. Conceptually, in another lung cancer cell line (A549), IL13Rα2 was overexpressed by lentiviruses (A549-IL13Rα2) and evaluated for cytotoxic efficacy of IL13-PE. MATERIALS AND METHODS: The expression profile of IL13Rα2 in different cancer cell lines was determined by RT-PCR. Secretable toxin fusion was expressed in the toxin resistant HEK-293T cell line (293T-TxR) by using a plasmid coding for IL13-PE and IRES-GFP (LV-IL13-PE-IRES/GFP). Next, the cells were shown to produce and secrete functional IL13-PE by dot blot analysis, followed by cell viability assays and cell death analysis. RESULTS: Upon treatment with IL13-PE, a significant decrease in cell viability was selectively demonstrated in cancer cells with cognate receptor expression. IL13-PE treatment increased the apoptotic/necrotic cell populations in the NCI-H460 cell line. CONCLUSION: Our results demonstrate that IL13-PE can be a therapeutic target for tumors bearing mostly IL13Rα2 positive cell populations. Our findings also suggest a cell-based delivery option for the recombinant toxins in the treatment of different cancers which can provide a solution for the clinical use of toxin therapy.


Asunto(s)
Exotoxinas/farmacología , Inmunotoxinas/farmacología , Neoplasias/tratamiento farmacológico , Pseudomonas/metabolismo , Células A549 , Antineoplásicos/farmacología , Línea Celular , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Células HEK293 , Humanos , Interleucina-13/metabolismo , Neoplasias/metabolismo , Proteínas Recombinantes de Fusión/farmacología
15.
Int J Mol Med ; 48(1)2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34080646

RESUMEN

Glioblastomas (GBMs) are refractory to current treatments and novel therapeutic approaches need to be explored. Pro­apoptotic tumor necrosis factor­related apoptosis­inducing ligand (TRAIL) is tumor­specific and has been shown to induce apoptosis and subsequently kill GBM cells. However, approximately 50% of GBM cells are resistant to TRAIL and a combination of TRAIL with other therapeutics is necessary to induce mechanism­based cell death in TRAIL­resistant GBMs. The present study examined the ability of the tumor cell surface receptor, interleukin (IL)­13 receptor α2 (IL13Rα2)­ and epidermal growth factor receptor (EGFR)­targeted pseudomonas exotoxin (PE) to sensitize TRAIL­resistant GBM cells and assessed the dual effects of interleukin 13­PE (IL13­PE) or EGFR nanobody­PE (ENb­PE) and TRAIL for the treatment of a broad range of brain tumors with a distinct TRAIL therapeutic response. Receptor targeted toxins upregulated TRAIL death receptors (DR4 and DR5) and suppressed the expression of anti­apoptotic FLICE­inhibitory protein (FLIP) and X­linked inhibitor of apoptosis protein (XIAP). This also led to the induction of the cleavage of caspase­8 and caspase­9 and resulted in the sensitization of highly resistant established GBM and patient­derived GBM stem cell (GSC) lines to TRAIL­mediated apoptosis. These findings provide a mechanism­based strategy that may provide options for the cell­mediated delivery of bi­functional therapeutics to target a wide spectrum of TRAIL­resistant GBMs.


Asunto(s)
Toxinas Bacterianas/farmacología , Exotoxinas/farmacología , Glioblastoma , Subunidad alfa2 del Receptor de Interleucina-13 , Interleucina-13/farmacología , Proteínas de Neoplasias , Pseudomonas/química , Anticuerpos de Dominio Único/farmacología , Ligando Inductor de Apoptosis Relacionado con TNF , Toxinas Bacterianas/química , Muerte Celular/efectos de los fármacos , Muerte Celular/genética , Línea Celular Tumoral , Receptores ErbB/genética , Receptores ErbB/metabolismo , Exotoxinas/química , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Inmunotoxinas/química , Inmunotoxinas/farmacología , Interleucina-13/química , Subunidad alfa2 del Receptor de Interleucina-13/genética , Subunidad alfa2 del Receptor de Interleucina-13/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Anticuerpos de Dominio Único/química , Ligando Inductor de Apoptosis Relacionado con TNF/genética , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo
16.
Int Immunopharmacol ; 96: 107759, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34162138

RESUMEN

Recombinant immunotoxins are fusion proteins composed of a peptide toxin and a specific targeting domain through genetic recombination. They are engineered to recognize disease-specific target receptors and kill the cell upon internalization. Full-sized monoclonal antibodies, smaller antibody fragments and ligands, such as a cytokine or a growth factor, have been commonly used as the targeting domain, while bacterial Pseudomonas aeruginosa exotoxin (PE) is the usual toxin fusion partner, due to its natural cytotoxicity and other unique advantages. PE-based recombinant immunotoxins have shown remarkable efficacy in the treatment of tumors and autoimmune diseases. At the same time, efforts are underway to address major challenges, including immunogenicity, nonspecific cytotoxicity and poor penetration, which limit their clinical applications. Recent strategies for structural optimization of PE-based immunotoxins, combined with mutagenesis approaches, have reduced the immunogenicity and non-specific cytotoxicity, thus increasing both their safety and efficacy. This review highlights novel insights and design concepts that were used to advance immunotoxins for the treatment of hematological and solid tumors and also presents future development prospect of PE-based recombinant immunotoxins that are expected to play an important role in cancer therapy.


Asunto(s)
Exotoxinas/uso terapéutico , Inmunotoxinas/uso terapéutico , Neoplasias/tratamiento farmacológico , Pseudomonas aeruginosa/química , Animales , Ensayos Clínicos como Asunto , Exotoxinas/química , Exotoxinas/farmacología , Humanos , Inmunotoxinas/química , Inmunotoxinas/inmunología , Inmunotoxinas/farmacología , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/inmunología , Proteínas Recombinantes de Fusión/farmacología , Proteínas Recombinantes de Fusión/uso terapéutico
17.
Mol Pharm ; 18(6): 2285-2297, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-33998814

RESUMEN

Cholecystokinin-2 receptor (CCK2R) has been proven to be a specific biomarker for colorectal malignancies. Immunotoxins are a valuable class of immunotherapy agents consisting of a targeting element and a bacterial or plant toxin. Previous work demonstrated that targeting CCK2R is a good therapeutic strategy for the treatment of colorectal cancer (CRC). In the present study, we developed a new version of CCK2R-targeting immunotoxin GD9P using a targeted peptide, GD9, as the binding motif and a truncated Pseudomonas exotoxin A (PE38) as the cytokiller. BALB/c nude mice were treated with different doses of GD9P, and pharmacodynamics, pharmacokinetic, and toxicological data were obtained throughout this study. Compared to the parental immunotoxin rCCK8PE38, GD9P exhibited about 1.5-fold yield, higher fluorescence intensity, and increased antitumor activity against human CRC in vitro and in vivo. The IC50 values of GD9P in vitro ranged from 1.61 to 4.55 nM. Pharmacokinetic studies were conducted in mice with a T1/2 of 69.315 min. When tumor-bearing nude mice were treated with GD9P at doses ≥2 mg/kg for five doses, a rapid shrinkage in tumor volume and, in some cases, complete remission was observed. A preliminary safety evaluation demonstrated a good safety profile of GD9P as a Pseudomonas exotoxin A-based immunotherapy. The therapy in combination with oxaliplatin can increase the antitumor efficacy and reduce the toxic side effects caused by chemotherapy. In conclusion, the data support the use of GD9P as a promising immunotherapy targeting CCK2R-expressing colorectal malignancies.


Asunto(s)
ADP Ribosa Transferasas/farmacología , Antineoplásicos/farmacología , Toxinas Bacterianas/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Exotoxinas/farmacología , Receptor de Colecistoquinina B/antagonistas & inhibidores , Proteínas Recombinantes de Fusión/farmacología , Factores de Virulencia/farmacología , ADP Ribosa Transferasas/genética , ADP Ribosa Transferasas/uso terapéutico , Animales , Antineoplásicos/uso terapéutico , Toxinas Bacterianas/genética , Toxinas Bacterianas/uso terapéutico , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/patología , Exotoxinas/genética , Exotoxinas/uso terapéutico , Humanos , Ratones , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/uso terapéutico , Distribución Tisular , Pruebas de Toxicidad Aguda , Factores de Virulencia/genética , Factores de Virulencia/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto , Exotoxina A de Pseudomonas aeruginosa
18.
Invest Ophthalmol Vis Sci ; 62(1): 4, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33393970

RESUMEN

Purpose: Endophthalmitis models have reported the virulent role of Panton-Valentine leucocidin (PVL) secreted by Staphylococcus aureus on the retina. PVL targets retinal ganglion cells (RGCs), expressing PVL membrane receptor C5aR. Interactions between PVL and retinal cells lead to glial activation, retinal inflammation, and apoptosis. In this study, we explored oxidative stress and retinal neurotransmitters in a rabbit retinal explant model incubated with PVL. Methods: Reactive oxygen species (ROS) production in RGCs has been assessed with fluorescent probes and immunohistochemistry. Nuclear magnetic resonance (NMR) spectroscopy quantified retinal concentrations of antioxidant molecules and neurotransmitters, and concentrations of neurotransmitters released in the culture medium. Quantifying the expression of some pro-inflammatory and anti-inflammatory factors was performed using RT-qPCR. Results: PVL induced a mitochondrial ROS production in RGCs after four hours' incubation with the toxin. Enzymatic sources of ROS, involving nicotinamide adenine dinucleotide phosphate-oxidase and xanthine oxidase, were also activated after four hours in PVL-treated retinal explants. Retinal antioxidants defenses, that is, glutathione, ascorbate and taurine, decreased after two hours' incubation with PVL. Glutamate retinal concentrations and glutamate release in the culture medium remained unaltered in PVL-treated retinas. GABA, glycine, and acetylcholine (Ach) retinal concentrations decreased after PVL treatment. Glycine release in the culture medium decreased, whereas Ach release increased after PVL treatment. Expression of proinflammatory and anti-inflammatory cytokines remained unchanged in PVL-treated explants. Conclusions: PVL activates oxidative pathways and alters neurotransmitter retinal concentrations and release, supporting the hypothesis that PVL could induce a neurogenic inflammation in the retina.


Asunto(s)
Toxinas Bacterianas/farmacología , Exotoxinas/farmacología , Leucocidinas/farmacología , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Receptor de Anafilatoxina C5a/metabolismo , Células Ganglionares de la Retina/efectos de los fármacos , Staphylococcus aureus/química , Acetilcolina/metabolismo , Animales , Células Cultivadas , Medios de Cultivo , Citocinas/metabolismo , Colorantes Fluorescentes , Glicina/metabolismo , Espectroscopía de Resonancia Magnética , Microscopía Fluorescente , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , NADP/metabolismo , Conejos , Reacción en Cadena en Tiempo Real de la Polimerasa , Células Ganglionares de la Retina/metabolismo , Xantina Oxidasa/metabolismo , Ácido gamma-Aminobutírico/metabolismo
19.
Toxins (Basel) ; 12(10)2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-33076544

RESUMEN

Toxins, while harmful and potentially lethal, have been engineered to develop potent therapeutics including cytotoxins and immunotoxins (ITs), which are modalities with highly selective targeting capabilities. Currently, three cytotoxins and IT are FDA-approved for treatment of multiple forms of hematological cancer, and additional ITs are tested in the clinical trials or at the preclinical level. For next generation of ITs, as well as antibody-mediated drug delivery systems, specific targeting by monoclonal antibodies is critical to enhance efficacies and reduce side effects, and this methodological field remains open to discover potent therapeutic monoclonal antibodies. Here, we describe our application of engineered toxin termed a cell-based IT screening system. This unique screening strategy offers the following advantages: (1) identification of monoclonal antibodies that recognize cell-surface molecules, (2) selection of the antibodies that are internalized into the cells, (3) selection of the antibodies that induce cytotoxicity since they are linked with toxins, and (4) determination of state-specific activities of the antibodies by differential screening under multiple experimental conditions. Since the functional monoclonal antibodies with internalization capacities have been identified successfully, we have pursued their subsequent modifications beyond antibody drug conjugates, resulting in development of immunoliposomes. Collectively, this screening system by using engineered toxin is a versatile platform, which enables straight-forward and rapid selection for discovery of novel functional antibodies.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Membrana Celular/metabolismo , Ensayos Analíticos de Alto Rendimiento , Inmunoconjugados/farmacología , Inmunotoxinas/farmacología , Animales , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/inmunología , Especificidad de Anticuerpos , Toxinas Bacterianas/inmunología , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/farmacología , Transporte Biológico , Membrana Celular/inmunología , Citotoxicidad Inmunológica , Toxina Diftérica/inmunología , Toxina Diftérica/metabolismo , Toxina Diftérica/farmacología , Exotoxinas/inmunología , Exotoxinas/metabolismo , Exotoxinas/farmacología , Humanos , Inmunoconjugados/genética , Inmunoconjugados/inmunología , Inmunoconjugados/metabolismo , Inmunotoxinas/genética , Inmunotoxinas/inmunología , Inmunotoxinas/metabolismo , Interleucina-2/inmunología , Interleucina-2/metabolismo , Interleucina-2/farmacología , Liposomas , Proteínas Recombinantes de Fusión/inmunología , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/farmacología
20.
Bioconjug Chem ; 31(10): 2421-2430, 2020 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-32996763

RESUMEN

Immunotoxins are emerging candidates for cancer therapeutics. These biomolecules consist of a cell-targeting protein combined to a polypeptide toxin. Associations of both entities can be achieved either chemically by covalent bonds or genetically creating fusion proteins. However, chemical agents can affect the activity and/or stability of the conjugate proteins, and additional purification steps are often required to isolate the final conjugate from unwanted byproducts. As for fusion proteins, they often suffer from low solubility and yield. In this report, we describe a straightforward conjugation process to generate an immunotoxin using coassociating peptides (named K3 and E3), originating from the tetramerization domain of p53. To that end, a nanobody targeting the human epidermal growth factor receptor 2 (nano-HER2) and a protein toxin fragment from Pseudomonas aeruginosa exotoxin A (TOX) were genetically fused to the E3 and K3 peptides. Entities were produced separately in Escherichia coli in soluble forms and at high yields. The nano-HER2 fused to the E3 or K3 helixes (nano-HER2-E3 and nano-HER2-K3) and the coassembled immunotoxins (nano-HER2-K3E3-TOX and nano-HER2-E3K3-TOX) presented binding specificity on HER2-overexpressing cells with relative binding constants in the low nanomolar to picomolar range. Both toxin modules (E3-TOX and K3-TOX) and the combined immunotoxins exhibited similar cytotoxicity levels compared to the toxin alone (TOX). Finally, nano-HER2-K3E3-TOX and nano-HER2-E3K3-TOX evaluated on various breast cancer cells were highly potent and specific to killing HER2-overexpressing breast cancer cells with IC50 values in the picomolar range. Altogether, we demonstrate that this noncovalent conjugation method using two coassembling peptides can be easily implemented for the modular engineering of immunotoxins targeting different types of cancers.


Asunto(s)
ADP Ribosa Transferasas/farmacología , Antineoplásicos/farmacología , Toxinas Bacterianas/farmacología , Exotoxinas/farmacología , Inmunotoxinas/farmacología , Receptor ErbB-2/antagonistas & inhibidores , Anticuerpos de Dominio Único/farmacología , Factores de Virulencia/farmacología , ADP Ribosa Transferasas/química , ADP Ribosa Transferasas/genética , Antineoplásicos/química , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Exotoxinas/química , Exotoxinas/genética , Femenino , Humanos , Inmunotoxinas/química , Inmunotoxinas/genética , Modelos Moleculares , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/farmacología , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/genética , Factores de Virulencia/química , Factores de Virulencia/genética , Exotoxina A de Pseudomonas aeruginosa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA