Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 319
Filtrar
1.
Microbiome ; 12(1): 176, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39300577

RESUMEN

BACKGROUND: The Andean Altiplano hosts a repertoire of high-altitude lakes with harsh conditions for life. These lakes are undergoing a process of desiccation caused by the current climate, leaving terraces exposed to extreme atmospheric conditions and serving as analogs to Martian paleolake basins. Microbiomes in Altiplano lake terraces have been poorly studied, enclosing uncultured lineages and a great opportunity to understand environmental adaptation and the limits of life on Earth. Here we examine the microbial diversity and function in ancient sediments (10.3-11 kyr BP (before present)) from a terrace profile of Laguna Lejía, a sulfur- and metal/metalloid-rich saline lake in the Chilean Altiplano. We also evaluate the physical and chemical changes of the lake over time by studying the mineralogy and geochemistry of the terrace profile. RESULTS: The mineralogy and geochemistry of the terrace profile revealed large water level fluctuations in the lake, scarcity of organic carbon, and high concentration of SO42--S, Na, Cl and Mg. Lipid biomarker analysis indicated the presence of aquatic/terrestrial plant remnants preserved in the ancient sediments, and genome-resolved metagenomics unveiled a diverse prokaryotic community with still active microorganisms based on in silico growth predictions. We reconstructed 591 bacterial and archaeal metagenome-assembled genomes (MAGs), of which 98.8% belonged to previously unreported species. The most abundant and widespread metabolisms among MAGs were the reduction and oxidation of S, N, As, and halogenated compounds, as well as aerobic CO oxidation, possibly as a key metabolic trait in the organic carbon-depleted sediments. The broad redox and CO2 fixation pathways among phylogenetically distant bacteria and archaea extended the knowledge of metabolic capacities to previously unknown taxa. For instance, we identified genomic potential for dissimilatory sulfate reduction in Bacteroidota and α- and γ-Proteobacteria, predicted an enzyme for ammonia oxidation in a novel Actinobacteriota, and predicted enzymes of the Calvin-Benson-Bassham cycle in Planctomycetota, Gemmatimonadota, and Nanoarchaeota. CONCLUSIONS: The high number of novel bacterial and archaeal MAGs in the Laguna Lejía indicates the wide prokaryotic diversity discovered. In addition, the detection of genes in unexpected taxonomic groups has significant implications for the expansion of microorganisms involved in the biogeochemical cycles of carbon, nitrogen, and sulfur. Video Abstract.


Asunto(s)
Archaea , Bacterias , Variación Genética , Sedimentos Geológicos , Lagos , Lagos/microbiología , Archaea/genética , Archaea/metabolismo , Archaea/clasificación , Sedimentos Geológicos/microbiología , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Bacterias/aislamiento & purificación , Chile , Filogenia , Microbiota , Extremófilos/metabolismo , Extremófilos/genética , Extremófilos/clasificación , ARN Ribosómico 16S/genética
3.
Chem Commun (Camb) ; 60(75): 10280-10294, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39190300

RESUMEN

The existence of life beyond Earth has long captivated humanity, and the study of extremophiles-organisms surviving and thriving in extreme environments-provides crucial insights into this possibility. Extremophiles overcome severe challenges such as enzyme inactivity, protein denaturation, and damage of the cell membrane by adopting several strategies. This feature article focuses on the molecular strategies extremophiles use to maintain the cell membrane's structure and fluidity under external stress. Key strategies include homeoviscous adaptation (HVA), involving the regulation of lipid composition, and osmolyte-mediated adaptation (OMA), where small organic molecules protect the lipid membrane under stress. Proteins also have direct and indirect roles in protecting the lipid membrane. Examining the survival strategies of extremophiles provides scientists with crucial insights into how life can adapt and persist in harsh conditions, shedding light on the origins of life. This article examines HVA and OMA and their mechanisms in maintaining membrane stability, emphasizing our contributions to this field. It also provides a brief overview of the roles of proteins and concludes with recommendations for future research directions.


Asunto(s)
Membrana Celular , Extremófilos , Membrana Celular/metabolismo , Membrana Celular/química , Extremófilos/metabolismo , Extremófilos/fisiología , Adaptación Fisiológica , Proteínas de la Membrana/metabolismo
4.
Genome Biol Evol ; 16(8)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39101574

RESUMEN

From hydrothermal vents, to glaciers, to deserts, research in extreme environments has reshaped our understanding of how and where life can persist. Contained within the genomes of extremophilic organisms are the blueprints for a toolkit to tackle the multitude of challenges of survival in inhospitable environments. As new sequencing technologies have rapidly developed, so too has our understanding of the molecular and genomic mechanisms that have facilitated the success of extremophiles. Although eukaryotic extremophiles remain relatively understudied compared to bacteria and archaea, an increasing number of studies have begun to leverage 'omics tools to shed light on eukaryotic life in harsh conditions. In this perspective paper, we highlight a diverse breadth of research on extremophilic lineages across the eukaryotic tree of life, from microbes to macrobes, that are collectively reshaping our understanding of molecular innovations at life's extremes. These studies are not only advancing our understanding of evolution and biological processes but are also offering a valuable roadmap on how emerging technologies can be applied to identify cellular mechanisms of adaptation to cope with life in stressful conditions, including high and low temperatures, limited water availability, and heavy metal habitats. We shed light on patterns of molecular and organismal adaptation across the eukaryotic tree of life and discuss a few promising research directions, including investigations into the role of horizontal gene transfer in eukaryotic extremophiles and the importance of increasing phylogenetic diversity of model systems.


Asunto(s)
Eucariontes , Extremófilos , Eucariontes/genética , Extremófilos/genética , Adaptación Fisiológica/genética , Genómica , Genoma , Evolución Molecular , Filogenia
5.
Nat Commun ; 15(1): 6951, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138171

RESUMEN

As the Earth warms, alternatives to traditional farming are crucial. Exploring fungi, especially poly extremophilic and extremotolerant species, to be used as plant probiotics, represents a promising option. Extremophilic fungi offer avenues for developing and producing innovative biofertilizers, effective biocontrol agents against plant pathogens, and resilient enzymes active under extreme conditions, all of which are crucial to enhance agricultural efficiency and sustainability through improved soil fertility and decreased reliance on agrochemicals. Yet, extremophilic fungi's potential remains underexplored and, therefore, comprehensive research is needed to understand their roles as tools to foster sustainable agriculture practices amid climate change. Efforts should concentrate on unraveling the complex dynamics of plant-fungi interactions and harnessing extremophilic fungi's ecological functions to influence plant growth and development. Aspects such as plant's epigenome remodeling, fungal extracellular vesicle production, secondary metabolism regulation, and impact on native soil microbiota are among many deserving to be explored in depth. Caution is advised, however, as extremophilic and extremotolerant fungi can act as both mitigators of crop diseases and as opportunistic pathogens, underscoring the necessity for balanced research to optimize benefits while mitigating risks in agricultural settings.


Asunto(s)
Agricultura , Cambio Climático , Hongos , Micobioma , Microbiología del Suelo , Agricultura/métodos , Hongos/genética , Hongos/metabolismo , Extremófilos/metabolismo , Productos Agrícolas/microbiología , Suelo/química
6.
Int J Biol Macromol ; 277(Pt 4): 134311, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39094869

RESUMEN

Nature has developed extremozymes that catalyze complex reaction processes in extreme environmental conditions. Accordingly, a combined approach consisting of extremozyme screening, ancestral sequence resurrection (ASR), and molecular dynamic simulation was utilized to construct a developed endoglucanase. The primary experimental and in-silico data led to the prediction of a hypothetical sequence of endoglucanase (EG5-G131) using Bacillus sp. G131 confirmed by amplification and sequencing. EG5-G131 exhibited noticeable stability in a broad-pH range, several detergents, organic solvents, and temperatures up to 80 °C. The molecular weight, Vmax, and Km of the purified endoglucanase were estimated to be 36 kDa, 4.32 µmol/min, and 23.62 mg/ml, respectively. The calculated thermodynamic parameters for EG5-G131 confirmed its intrinsic thermostability. Computational analysis revealed Glu142 and Glu230 as active-site residues of the enzyme. Furthermore, the enzyme remained bound to cellotetraose at 298 K, 333 K, 343 K, and 353 K for 300 ns, consistent with our experimental data. ASR of EG5-G131 led to the introduction of ancestral ANC204 and ANC205, which show similar thermodynamic characteristics with the last Firmicute common ancestor. Finally, truncating loops from the N-terminal of two sequences created two variants with desirable thermal stability, suggesting the evolutionary deciphering of the functional domain of the GH5 family in Bacillus sp. G131.


Asunto(s)
Bacillus , Celulasa , Estabilidad de Enzimas , Evolución Molecular , Simulación de Dinámica Molecular , Bacillus/enzimología , Bacillus/genética , Celulasa/química , Celulasa/genética , Celulasa/metabolismo , Termodinámica , Concentración de Iones de Hidrógeno , Dominio Catalítico , Secuencia de Aminoácidos , Tetrosas/metabolismo , Tetrosas/química , Temperatura , Filogenia , Cinética , Extremófilos/enzimología , Extremófilos/genética , Celulosa/análogos & derivados
7.
Biophys J ; 123(18): 3143-3162, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39014897

RESUMEN

Prolyl oligopeptidases from psychrophilic, mesophilic, and thermophilic organisms found in a range of natural environments are studied using a combination of protein structure prediction, atomistic molecular dynamics, and trajectory analysis to determine how the S9 protease family adapts to extreme thermal conditions. We compare our results with hypotheses from the literature regarding structural adaptations that allow proteins to maintain structure and function at extreme temperatures, and we find that, in the case of prolyl oligopeptidases, only a subset of proposed adaptations are employed for maintaining stability. The catalytic and propeller domains are highly structured, limiting the range of mutations that can be made to enhance hydrophobicity or form disulfide bonds without disrupting the formation of necessary secondary structure. Rather, we observe a pattern in which overall prevalence of bound interactions (salt bridges and hydrogen bonds) is conserved by using increasing numbers of increasingly short-lived interactions as temperature increases. This suggests a role for an entropic rather than energetic strategy for thermal adaptation in this protein family.


Asunto(s)
Prolil Oligopeptidasas , Serina Endopeptidasas , Temperatura , Prolil Oligopeptidasas/metabolismo , Prolil Oligopeptidasas/química , Serina Endopeptidasas/metabolismo , Serina Endopeptidasas/química , Serina Endopeptidasas/genética , Estabilidad de Enzimas , Simulación de Dinámica Molecular , Adaptación Fisiológica , Extremófilos/enzimología
8.
J Therm Biol ; 123: 103917, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38991264

RESUMEN

Global warming poses a threat to lizard populations by raising ambient temperatures above historical norms and reducing thermoregulation opportunities. Whereas the reptile fauna of desert systems is relatively well studied, the lizard fauna of saline environments has not received much attention and-to our knowledge-thermal ecology and the effects of global warming on lizards from saline environments have not been yet addressed. This pioneer study investigates the thermal ecology, locomotor performance and potential effects of climate warming on Liolaemus ditadai, a lizard endemic to one of the largest salt flats on Earth. We sampled L. ditadai using traps and active searches along its known distribution, as well as in other areas within Salinas Grandes and Salinas de Ambargasta, where the species had not been previously recorded. Using ensemble models (GAM, MARS, RandomForest), we modeled climatically suitable habitats for L. ditadai in the present and under a pessimistic future scenario (SSP585, 2070). L. ditadai emerges as an efficient thermoregulator, tolerating temperatures near its upper thermal limits. Our ecophysiological model suggests that available activity hours predict its distribution, and the projected temperature increase due to global climate change should minimally impact its persistence or may even have a positive effect on suitable thermal habitat. However, this theoretical increase in habitat could be linked to the distribution of halophilous scrub in the future. Our surveys reveal widespread distribution along the borders of Salinas Grandes and Salinas de Ambargasta, suggesting a potential presence along the entire border of both salt plains wherever halophytic vegetation exists. Optimistic model results, extended distribution, and no evidence of flood-related adverse effects offer insights into assessing the conservation status of L. ditadai, making it and the Salinas Grandes system suitable models for studying lizard ecophysiology in largely unknown saline environments.


Asunto(s)
Lagartos , Animales , Lagartos/fisiología , Argentina , Regulación de la Temperatura Corporal , Extremófilos/fisiología , Ecosistema , Calentamiento Global , Cambio Climático , Modelos Biológicos , Calor
9.
Int J Mol Sci ; 25(14)2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39062928

RESUMEN

Extremophilic microorganisms play a key role in understanding how life on Earth originated and evolved over centuries. Their ability to thrive in harsh environments relies on a plethora of mechanisms developed to survive at extreme temperatures, pressures, salinity, and pH values. From a biotechnological point of view, thermophiles are considered a robust tool for synthetic biology as well as a reliable starting material for the development of sustainable bioprocesses. This review discusses the current progress in the biomanufacturing of high-added bioproducts from thermophilic microorganisms and their industrial applications.


Asunto(s)
Microbiología Industrial , Microbiología Industrial/métodos , Biotecnología/métodos , Extremófilos/metabolismo , Extremófilos/fisiología , Bacterias/metabolismo , Archaea/metabolismo
10.
J Vis Exp ; (208)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38949313

RESUMEN

The archaeon Sulfolobus acidocaldarius has emerged as a promising thermophilic model system. Investigating how thermophiles adapt to changing temperatures is a key requirement, not only for understanding fundamental evolutionary processes but also for developing S. acidocaldarius as a chassis for bioengineering. One major obstacle to conducting experimental evolution with thermophiles is the expense of equipment maintenance and energy usage of traditional incubators for high-temperature growth. To address this challenge, a comprehensive experimental protocol for conducting experimental evolution in S. acidocaldarius is presented, utilizing low-cost and energy-efficient bench-top thermomixers. The protocol involves a batch culture technique with relatively small volumes (1.5 mL), enabling tracking of adaptation in multiple independent lineages. This method is easily scalable through the use of additional thermomixers. Such an approach increases the accessibility of S. acidocaldarius as a model system by reducing both initial investment and ongoing costs associated with experimental investigations. Moreover, the technique is transferable to other microbial systems for exploring adaptation to diverse environmental conditions.


Asunto(s)
Sulfolobus acidocaldarius , Extremófilos/fisiología , Adaptación Fisiológica/fisiología , Técnicas de Cultivo Celular por Lotes/métodos , Técnicas de Cultivo Celular por Lotes/instrumentación
11.
Gene ; 926: 148627, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-38823656

RESUMEN

Random mutations increase genetic variety and natural selection enhances adaption over generations. Codon usage biases (CUB) provide clues about the genome adaptation mechanisms of native species and extremophile species. Significant numbers of gene (CDS) of nine classes of endangered, native species, including extremophiles and mesophiles were utilised to compute CUB. Codon usage patterns differ among the lineages of endangered and extremophiles with native species. Polymorphic usage of nucleotides with codon burial suggests parallelism of native species within relatively confined taxonomic groups. Utilizing the deviation pattern of CUB of endangered and native species, I present a calculation parameter to estimate the extinction risk of endangered species. Species diversity and extinction risk are both positively associated with the propensity of random mutation in CDS (Coding DNA sequence). Codon bias tenet profoundly selected and it governs to adaptive evolution of native species.


Asunto(s)
Uso de Codones , Evolución Molecular , Selección Genética , Especies en Peligro de Extinción , Mutación , Animales , Codón/genética , Adaptación Fisiológica/genética , Extremófilos/genética
12.
Proc Biol Sci ; 291(2025): 20240412, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38889788

RESUMEN

Regulating transcription allows organisms to respond to their environment, both within a single generation (plasticity) and across generations (adaptation). We examined transcriptional differences in gill tissues of fishes in the Poecilia mexicana species complex (family Poeciliidae), which have colonized toxic springs rich in hydrogen sulfide (H2S) in southern Mexico. There are gene expression differences between sulfidic and non-sulfidic populations, yet regulatory mechanisms mediating this gene expression variation remain poorly studied. We combined capped-small RNA sequencing (csRNA-seq), which captures actively transcribed (i.e. nascent) transcripts, and messenger RNA sequencing (mRNA-seq) to examine how variation in transcription, enhancer activity, and associated transcription factor binding sites may facilitate adaptation to extreme environments. csRNA-seq revealed thousands of differentially initiated transcripts between sulfidic and non-sulfidic populations, many of which are involved in H2S detoxification and response. Analyses of transcription factor binding sites in promoter and putative enhancer csRNA-seq peaks identified a suite of transcription factors likely involved in regulating H2S-specific shifts in gene expression, including several key transcription factors known to respond to hypoxia. Our findings uncover a complex interplay of regulatory processes that reflect the divergence of extremophile populations of P. mexicana from their non-sulfidic ancestors and suggest shared responses among evolutionarily independent lineages.


Asunto(s)
Sulfuro de Hidrógeno , Poecilia , Animales , Sulfuro de Hidrógeno/metabolismo , Poecilia/genética , Poecilia/fisiología , Poecilia/metabolismo , Extremófilos/metabolismo , Extremófilos/fisiología , Extremófilos/genética , Transcripción Genética , México , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Branquias/metabolismo
13.
Sci Rep ; 14(1): 12197, 2024 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-38806591

RESUMEN

Extremophile organisms are known that can metabolize at temperatures down to - 25 °C (psychrophiles) and up to 122 °C (hyperthermophiles). Understanding viability under extreme conditions is relevant for human health, biotechnological applications, and our search for life elsewhere in the universe. Information about the stability and dynamics of proteins under environmental extremes is an important factor in this regard. Here we compare the dynamics of small Fe-S proteins - rubredoxins - from psychrophilic and hyperthermophilic microorganisms, using three different nuclear techniques as well as molecular dynamics calculations to quantify motion at the Fe site. The theory of 'corresponding states' posits that homologous proteins from different extremophiles have comparable flexibilities at the optimum growth temperatures of their respective organisms. Although 'corresponding states' would predict greater flexibility for rubredoxins that operate at low temperatures, we find that from 4 to 300 K, the dynamics of the Fe sites in these homologous proteins are essentially equivalent.


Asunto(s)
Extremófilos , Hierro , Rubredoxinas , Hierro/metabolismo , Hierro/química , Extremófilos/metabolismo , Rubredoxinas/química , Rubredoxinas/metabolismo , Simulación de Dinámica Molecular , Temperatura
14.
New Phytol ; 243(1): 284-298, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38730535

RESUMEN

Autophagy is a central degradative pathway highly conserved among eukaryotes, including microalgae, which remains unexplored in extremophilic organisms. In this study, we described and characterized autophagy in the newly identified extremophilic green microalga Chlamydomonas urium, which was isolated from an acidic environment. The nuclear genome of C. urium was sequenced, assembled and annotated in order to identify autophagy-related genes. Transmission electron microscopy, immunoblotting, metabolomic and photosynthetic analyses were performed to investigate autophagy in this extremophilic microalga. The analysis of the C. urium genome revealed the conservation of core autophagy-related genes. We investigated the role of autophagy in C. urium by blocking autophagic flux with the vacuolar ATPase inhibitor concanamycin A. Our results indicated that inhibition of autophagic flux in this microalga resulted in a pronounced accumulation of triacylglycerols and lipid droplets (LDs). Metabolomic and photosynthetic analyses indicated that C. urium cells with impaired vacuolar function maintained an active metabolism. Such effects were not observed in the neutrophilic microalga Chlamydomonas reinhardtii. Inhibition of autophagic flux in C. urium uncovered an active recycling of LDs through lipophagy, a selective autophagy pathway for lipid turnover. This study provided the metabolic basis by which extremophilic algae are able to catabolize lipids in the vacuole.


Asunto(s)
Autofagia , Chlamydomonas , Metabolismo de los Lípidos , Fotosíntesis , Chlamydomonas/metabolismo , Fotosíntesis/efectos de los fármacos , Extremófilos/metabolismo , Gotas Lipídicas/metabolismo , Vacuolas/metabolismo , Filogenia , Triglicéridos/metabolismo , Macrólidos
15.
Arch Microbiol ; 206(6): 247, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38713374

RESUMEN

Microbial life is not restricted to any particular setting. Over the past several decades, it has been evident that microbial populations can exist in a wide range of environments, including those with extremes in temperature, pressure, salinity, and pH. Bacteria and Archaea are the two most reported types of microbes that can sustain in extreme environments, such as hot springs, ice caves, acid drainage, and salt marshes. Some can even grow in toxic waste, organic solvents, and heavy metals. These microbes are called extremophiles. There exist certain microorganisms that are found capable of thriving in two or more extreme physiological conditions simultaneously, and are regarded as polyextremophiles. Extremophiles possess several physiological and molecular adaptations including production of extremolytes, ice nucleating proteins, pigments, extremozymes and exopolysaccharides. These metabolites are used in many biotechnological industries for making biofuels, developing new medicines, food additives, cryoprotective agents etc. Further, the study of extremophiles holds great significance in astrobiology. The current review summarizes the diversity of microorganisms inhabiting challenging environments and the biotechnological and therapeutic applications of the active metabolites obtained as a response to stress conditions. Bioprospection of extremophiles provides a progressive direction with significant enhancement in economy. Moreover, the introduction to omics approach including whole genome sequencing, single cell genomics, proteomics, metagenomics etc., has made it possible to find many unique microbial communities that could be otherwise difficult to cultivate using traditional methods. These findings might be capable enough to state that discovery of extremophiles can bring evolution to biotechnology.


Asunto(s)
Archaea , Bacterias , Biotecnología , Ambientes Extremos , Extremófilos , Extremófilos/metabolismo , Archaea/metabolismo , Archaea/genética , Bacterias/metabolismo , Bacterias/genética , Bacterias/clasificación
16.
Biol Futur ; 75(2): 183-192, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38753295

RESUMEN

The taxonomic and metabolic diversity of prokaryotes and their adaptability to extreme environmental parameters have allowed extremophiles to find their optimal living conditions under extreme conditions for one or more environmental parameters. Natural habitats abundant in extremophilic microorganisms are relatively rare in Hungary. Nevertheless, alkaliphiles and halophiles can flourish in shallow alkaline lakes (soda pans) and saline (solonetz) soils, where extreme weather conditions favor the development of unique bacterial communities. In addition, the hot springs and thermal wells that supply spas and thermal baths and provide water for energy use are suitable colonization sites for thermophiles and hyperthermophiles. Polyextremophiles, adapted to multiple extreme circumstances, can be found in the aphotic, nutrient-poor and radioactive hypogenic caves of the Buda Thermal Karst, among others. The present article reviews the organization, taxonomic composition, and potential role of different extremophilic bacterial communities in local biogeochemical cycles, based on the most recent studies on extremophiles in Hungary.


Asunto(s)
Extremófilos , Hungría , Extremófilos/fisiología , Bacterias/clasificación , Adaptación Fisiológica , Ambientes Extremos , Biodiversidad
17.
Biochimie ; 225: 99-105, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38759834

RESUMEN

During transcription initiation, the holoenzyme of bacterial RNA polymerase (RNAP) specifically recognizes promoters using a dedicated σ factor. During transcription elongation, the core enzyme of RNAP interacts with nucleic acids mainly nonspecifically, by stably locking the DNA template and RNA transcript inside the main cleft. Here, we present a synthetic DNA aptamer that is specifically recognized by both core and holoenzyme RNAPs from extremophilic bacteria of the Deinococcus-Thermus phylum. The aptamer binds RNAP with subnanomolar affinities, forming extremely stable complexes even at high ionic strength conditions, blocks RNAP interactions with the DNA template and inhibits RNAP activity during transcription elongation. We propose that the aptamer binds at a conserved site within the downstream DNA-binding cleft of RNAP and traps it in an inactive conformation. The aptamer can potentially be used for structural studies to reveal RNAP conformational states, affinity binding of RNAP and associated factors, and screening of transcriptional inhibitors.


Asunto(s)
Aptámeros de Nucleótidos , ARN Polimerasas Dirigidas por ADN , Deinococcus , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/química , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/metabolismo , Deinococcus/enzimología , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Thermus/enzimología , Unión Proteica , Extremófilos/enzimología , Extremófilos/metabolismo
18.
Environ Microbiol ; 26(5): e16629, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38695111

RESUMEN

Horizontal genetic transfer (HGT) is a common phenomenon in eukaryotic genomes. However, the mechanisms by which HGT-derived genes persist and integrate into other pathways remain unclear. This topic is of significant interest because, over time, the stressors that initially favoured the fixation of HGT may diminish or disappear. Despite this, the foreign genes may continue to exist if they become part of a broader stress response or other pathways. The conventional model suggests that the acquisition of HGT equates to adaptation. However, this model may evolve into more complex interactions between gene products, a concept we refer to as the 'Integrated HGT Model' (IHM). To explore this concept further, we studied specialized HGT-derived genes that encode heavy metal detoxification functions. The recruitment of these genes into other pathways could provide clear examples of IHM. In our study, we exposed two anciently diverged species of polyextremophilic red algae from the Galdieria genus to arsenic and mercury stress in laboratory cultures. We then analysed the transcriptome data using differential and coexpression analysis. Our findings revealed that mercury detoxification follows a 'one gene-one function' model, resulting in an indivisible response. In contrast, the arsH gene in the arsenite response pathway demonstrated a complex pattern of duplication, divergence and potential neofunctionalization, consistent with the IHM. Our research sheds light on the fate and integration of ancient HGTs, providing a novel perspective on the ecology of extremophiles.


Asunto(s)
Arsénico , Extremófilos , Transferencia de Gen Horizontal , Rhodophyta , Rhodophyta/genética , Extremófilos/genética , Arsénico/metabolismo , Mercurio/metabolismo , Estrés Fisiológico/genética , Inactivación Metabólica/genética , Evolución Molecular
19.
IUBMB Life ; 76(9): 617-631, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38647201

RESUMEN

Experimental evolution was carried out to investigate the adaptive responses of extremotolerant fungi to a stressful environment. For 12 cultivation cycles, the halotolerant black yeasts Aureobasidium pullulans and Aureobasidium subglaciale were grown at high NaCl or glycerol concentrations, and the halophilic basidiomycete Wallemia ichthyophaga was grown close to its lower NaCl growth limit. All evolved Aureobasidium spp. accelerated their growth at low water activity. Whole genomes of the evolved strains were sequenced. No aneuploidies were detected in any of the genomes, contrary to previous studies on experimental evolution at high salinity with other species. However, several hundred single-nucleotide polymorphisms were identified compared with the genomes of the progenitor strains. Two functional groups of genes were overrepresented among the genes presumably affected by single-nucleotide polymorphisms: voltage-gated potassium channels in A. pullulans at high NaCl concentration, and hydrophobins in W. ichthyophaga at low NaCl concentration. Both groups of genes were previously associated with adaptation to high salinity. Finally, most evolved Aureobasidium spp. strains were found to have increased intracellular and decreased extracellular glycerol concentrations at high salinity, suggesting that the strains have optimised their management of glycerol, their most important compatible solute. Experimental evolution therefore not only confirmed the role of potassium transport, glycerol management, and cell wall in survival at low water activity, but also demonstrated that fungi from extreme environments can further improve their growth rates under constant extreme conditions in a relatively short time and without large scale genomic rearrangements.


Asunto(s)
Extremófilos , Presión Osmótica , Extremófilos/genética , Extremófilos/crecimiento & desarrollo , Extremófilos/metabolismo , Genoma Fúngico , Glicerol/metabolismo , Polimorfismo de Nucleótido Simple , Aureobasidium/genética , Aureobasidium/metabolismo , Cloruro de Sodio/metabolismo , Cloruro de Sodio/farmacología , Adaptación Fisiológica/genética , Salinidad , Basidiomycota/genética , Basidiomycota/crecimiento & desarrollo , Ascomicetos/genética , Ascomicetos/crecimiento & desarrollo
20.
Microb Biotechnol ; 17(4): e14404, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38588312

RESUMEN

Acid phosphatases are enzymes that play a crucial role in the hydrolysis of various organophosphorous molecules. A putative acid phosphatase called FS6 was identified using genetic profiles and sequences from different environments. FS6 showed high sequence similarity to type C acid phosphatases and retained more than 30% of consensus residues in its protein sequence. A histidine-tagged recombinant FS6 produced in Escherichia coli exhibited extremophile properties, functioning effectively in a broad pH range between 3.5 and 8.5. The enzyme demonstrated optimal activity at temperatures between 25 and 50°C, with a melting temperature of 51.6°C. Kinetic parameters were determined using various substrates, and the reaction catalysed by FS6 with physiological substrates was at least 100-fold more efficient than with p-nitrophenyl phosphate. Furthermore, FS6 was found to be a decamer in solution, unlike the dimeric forms of crystallized proteins in its family.


Asunto(s)
Fosfatasa Ácida , Extremófilos , Fosfatasa Ácida/metabolismo , Extremófilos/genética , Extremófilos/metabolismo , Hidrólisis , Secuencia de Aminoácidos , Especificidad por Sustrato , Concentración de Iones de Hidrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA