Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 895
Filtrar
1.
Front Immunol ; 15: 1440309, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38994366

RESUMEN

Ferroptosis, a new type of programmed cell death proposed in recent years, is characterized mainly by reactive oxygen species and iron-mediated lipid peroxidation and differs from programmed cell death, such as apoptosis, necrosis, and autophagy. Ferroptosis is associated with a variety of physiological and pathophysiological processes. Recent studies have shown that ferroptosis can aggravate or reduce the occurrence and development of diseases by targeting metabolic pathways and signaling pathways in tumors, ischemic organ damage, and other degenerative diseases related to lipid peroxidation. Increasing evidence suggests that ferroptosis is closely linked to the onset and progression of various ophthalmic conditions, including corneal injury, glaucoma, age-related macular degeneration, diabetic retinopathy, retinal detachment, and retinoblastoma. Our review of the current research on ferroptosis in ophthalmic diseases reveals significant advancements in our understanding of the pathogenesis, aetiology, and treatment of these conditions.


Asunto(s)
Oftalmopatías , Ferroptosis , Humanos , Oftalmopatías/metabolismo , Oftalmopatías/patología , Animales , Especies Reactivas de Oxígeno/metabolismo , Peroxidación de Lípido , Transducción de Señal , Muerte Celular , Hierro/metabolismo
2.
Front Endocrinol (Lausanne) ; 15: 1415521, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38952394

RESUMEN

Insulin resistance (IR) is becoming a worldwide medical and public health challenge as an increasing prevalence of obesity and metabolic disorders. Accumulated evidence has demonstrated a strong relationship between IR and a higher incidence of several dramatically vision-threatening retinal diseases, including diabetic retinopathy, age-related macular degeneration, and glaucoma. In this review, we provide a schematic overview of the associations between IR and certain ocular diseases and further explore the possible mechanisms. Although the exact causes explaining these associations have not been fully elucidated, underlying mechanisms of oxidative stress, chronic low-grade inflammation, endothelial dysfunction and vasoconstriction, and neurodegenerative impairments may be involved. Given that IR is a modifiable risk factor, it may be important to identify patients at a high IR level with prompt treatment, which may decrease the risk of developing certain ocular diseases. Additionally, improving IR through the activation of insulin signaling pathways could become a potential therapeutic target.


Asunto(s)
Resistencia a la Insulina , Humanos , Resistencia a la Insulina/fisiología , Retina/metabolismo , Retina/patología , Retinopatía Diabética/metabolismo , Animales , Enfermedades de la Retina/metabolismo , Oftalmopatías/metabolismo , Oftalmopatías/etiología , Estrés Oxidativo/fisiología , Degeneración Macular/metabolismo , Glaucoma/metabolismo , Glaucoma/fisiopatología , Factores de Riesgo
3.
Int J Mol Sci ; 25(13)2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-39000006

RESUMEN

The goal of this Special Issue is to provide comprehensive molecular biological data that aims to elucidate the molecular and epigenetic mechanisms operable in diseases of the ocular adnexa [...].


Asunto(s)
Oftalmopatías , Humanos , Oftalmopatías/genética , Oftalmopatías/metabolismo , Enfermedades de los Anexos/genética , Enfermedades de los Anexos/metabolismo , Enfermedades de los Anexos/patología , Epigénesis Genética , Animales
4.
Pharmacol Res ; 205: 107253, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38862072

RESUMEN

Melatonin, a versatile hormone produced by the pineal gland, has garnered considerable scientific interest due to its diverse functions. In the eye, melatonin regulates a variety of key processes like inhibiting angiogenesis by reducing vascular endothelial growth factor levels and protecting the blood-retinal barrier (BRB) integrity by enhancing tight junction proteins and pericyte coverage. Melatonin also maintains cell health by modulating autophagy via the Sirt1/mTOR pathways, reduces inflammation, promotes antioxidant enzyme activity, and regulates intraocular pressure fluctuations. Additionally, melatonin protects retinal ganglion cells by modulating aging and inflammatory pathways. Understanding melatonin's multifaceted functions in ocular health could expand the knowledge of ocular pathogenesis, and shed new light on therapeutic approaches in ocular diseases. In this review, we summarize the current evidence of ocular functions and therapeutic potential of melatonin and describe its roles in angiogenesis, BRB integrity maintenance, and modulation of various eye diseases, which leads to a conclusion that melatonin holds promising treatment potential for a wide range of ocular health conditions.


Asunto(s)
Oftalmopatías , Melatonina , Melatonina/uso terapéutico , Melatonina/metabolismo , Melatonina/farmacología , Humanos , Animales , Oftalmopatías/tratamiento farmacológico , Oftalmopatías/metabolismo , Ojo/metabolismo , Ojo/irrigación sanguínea , Ojo/efectos de los fármacos , Barrera Hematorretinal/metabolismo , Barrera Hematorretinal/efectos de los fármacos
5.
Int J Mol Sci ; 25(12)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38928397

RESUMEN

Cystic fibrosis (CF), also known as mucoviscidosis, is the most common autosomal recessive genetic disease in the Caucasian population, with an estimated frequency of 1:2000-3000 live births. CF results from the mutation of the cystic fibrosis transmembrane conductance regulator (CFTR) gene localized in the long arm of chromosome 7. The product of CFTR gene expression is CFTR protein, an adenosine triphosphate (ATP)-binding cassette (ABC) transporter that regulates the transport of chloride ions (Cl-) across the apical cell membrane. Primary manifestations of CF include chronic lung and pancreas function impairment secondary to the production of thick, sticky mucus resulting from dehydrated secretions. It is well known that CF can cause both anterior and posterior ocular abnormalities. Conjunctival and corneal xerosis and dry eye disease symptoms are the most characteristic manifestations in the anterior segment. In contrast, the most typical anatomical and functional changes relating to the posterior segment of the eye include defects in the retinal nerve fiber layer (RNFL), vascular abnormalities, and visual disturbances, such as reduced contrast sensitivity and abnormal dark adaptation. However, the complete background of ophthalmic manifestations in the course of CF has yet to be discovered. This review summarizes the current knowledge regarding ocular changes in cystic fibrosis.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Humanos , Fibrosis Quística/metabolismo , Fibrosis Quística/genética , Fibrosis Quística/patología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Oftalmopatías/etiología , Oftalmopatías/metabolismo , Oftalmopatías/patología , Mutación , Animales
6.
J Transl Med ; 22(1): 562, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38867291

RESUMEN

BACKGROUND: Intravitreal injections of angiogenesis inhibitors have proved efficacious in the majority of patients with ocular angiogenesis. However, one-fourth of all treated patients fail to derive benefits from intravitreal injections. tRNA-derived small RNA (tsRNA) emerges as a crucial class of non-coding RNA molecules, orchestrating key roles in the progression of human diseases by modulating multiple targets. Through our prior sequencing analyses and bioinformatics predictions, tRNA-Cys-5-0007 has shown as a potential regulator of ocular angiogenesis. This study endeavors to elucidate the precise role of tRNA-Cys-5-0007 in the context of ocular angiogenesis. METHODS: Quantitative reverse transcription PCR (qRT-PCR) assays were employed to detect tRNA-Cys-5-0007expression. EdU assays, sprouting assays, transwell assays, and Matrigel assays were conducted to elucidate the involvement of tRNA-Cys-5-0007 in endothelial angiogenic effects. STZ-induced diabetic model, OIR model, and laser-induced CNV model were utilized to replicate the pivotal features of ocular vascular diseases and evaluate the influence of tRNA-Cys-5-0007 on ocular angiogenesis and inflammatory responses. Bioinformatics analysis, luciferase activity assays, RNA pull-down assays, and in vitro studies were employed to elucidate the anti-angiogenic mechanism of tRNA-Cys-5-0007. Exosomal formulation was employed to enhance the synergistic anti-angiogenic and anti-inflammatory efficacy of tRNA-Cys-5-0007. RESULTS: tRNA-Cys-5-0007 expression was down-regulated under angiogenic conditions. Conversely, tRNA-Cys-5-0007 overexpression exhibited anti-angiogenic effects in retinal endothelial cells, as evidenced by reduced proliferation, sprouting, migration, and tube formation abilities. In diabetic, laser-induced CNV, and OIR models, tRNA-Cys-5-0007 overexpression led to decreased ocular vessel leakage, inhibited angiogenesis, and reduced ocular inflammation. Mechanistically, these effects were attributed to the targeting of vascular endothelial growth factor A (VEGFA) and TGF-ß1 by tRNA-Cys-5-0007. The utilization of an exosomal formulation further potentiated the synergistic anti-angiogenic and anti-inflammatory efficacy of tRNA-Cys-5-0007. CONCLUSIONS: Concurrent targeting of tRNA-Cys-5-0007 for anti-angiogenic and anti-inflammatory therapy holds promise for enhancing the effectiveness of current anti-angiogenic therapy.


Asunto(s)
Inhibidores de la Angiogénesis , Antiinflamatorios , Inhibidores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/uso terapéutico , Animales , Antiinflamatorios/farmacología , Humanos , ARN de Transferencia/metabolismo , ARN de Transferencia/genética , Ratones Endogámicos C57BL , Proliferación Celular/efectos de los fármacos , Neovascularización Coroidal/patología , Neovascularización Coroidal/tratamiento farmacológico , Neovascularización Coroidal/metabolismo , Masculino , Oftalmopatías/tratamiento farmacológico , Oftalmopatías/patología , Oftalmopatías/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Neovascularización Patológica , Retinopatía Diabética/tratamiento farmacológico , Retinopatía Diabética/patología , Retinopatía Diabética/metabolismo , Ratones , Células Endoteliales de la Vena Umbilical Humana/metabolismo
7.
Life Sci ; 350: 122769, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38848943

RESUMEN

The forkhead box protein O3 (FOXO3a) belongs to the subgroup O of the forkhead transcription factor family and plays an important role in regulating the aging process by participating in the regulation of various life processes, including cell cycle arrest, apoptosis, autophagy, oxidative stress, and DNA repair. The eye is an organ that is affected by aging earlier. However, the functional role and potential clinical applications of FOXO3a in age-related eye diseases have not received widespread attention and lacked comprehensive and clear clarification. In this review, we demonstrated the relationship between FOXO3a and visual system health, summarized the functional roles of FOXO3a in various eye diseases, and potential ocular-related therapies and drugs targeting FOXO3a in visual system diseases through a review and summary of relevant literature. This review indicates that FOXO3a is an important factor in maintaining the normal function of various tissues in the eye, and is closely related to the occurrence and development of ophthalmic-related diseases. Based on its vital role in the normal function of the visual system, FOXO3a has potential clinical application value in related ophthalmic diseases. At present, multiple molecules and drugs targeting FOXO3a have been reported to have the potential for the treatment of related ophthalmic diseases, but further clinical trials are needed. In conclusion, this review can facilitate us to grasp the role of FOXO3a in the visual system and provide new views and bases for the treatment strategy research of age-related eye diseases.


Asunto(s)
Envejecimiento , Oftalmopatías , Proteína Forkhead Box O3 , Humanos , Proteína Forkhead Box O3/metabolismo , Oftalmopatías/metabolismo , Oftalmopatías/tratamiento farmacológico , Animales , Envejecimiento/metabolismo , Longevidad
8.
Biochem Biophys Res Commun ; 717: 150041, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38710142

RESUMEN

Ocular inflammation-associated diseases are leading causes of global visual impairment, with limited treatment options. Adiponectin, a hormone primarily secreted by adipose tissue, binds to its receptors, which are widely distributed throughout the body, exerting powerful physiological regulatory effects. The protective role of adiponectin in various inflammatory diseases has gained increasing attention in recent years. Previous studies have confirmed the presence of adiponectin and its receptors in the eyes. Furthermore, adiponectin and its analogs have shown potential as novel drugs for the treatment of inflammatory eye diseases. This article summarizes the evidence for the interplay between adiponectin and inflammatory eye diseases and provides new perspectives on the diagnostic and therapeutic possibilities of adiponectin.


Asunto(s)
Adiponectina , Inflamación , Receptores de Adiponectina , Transducción de Señal , Humanos , Adiponectina/metabolismo , Receptores de Adiponectina/metabolismo , Animales , Inflamación/metabolismo , Oftalmopatías/metabolismo , Oftalmopatías/tratamiento farmacológico
9.
J Histochem Cytochem ; 72(5): 329-352, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38733294

RESUMEN

Lactate and ATP formation by aerobic glycolysis, the Warburg effect, is considered a hallmark of cancer. During angiogenesis in non-cancerous tissue, proliferating stalk endothelial cells (ECs) also produce lactate and ATP by aerobic glycolysis. In fact, all proliferating cells, both non-cancer and cancer cells, need lactate for the biosynthesis of building blocks for cell growth and tissue expansion. Moreover, both non-proliferating cancer stem cells in tumors and leader tip ECs during angiogenesis rely on glycolysis for pyruvate production, which is used for ATP synthesis in mitochondria through oxidative phosphorylation (OXPHOS). Therefore, aerobic glycolysis is not a specific hallmark of cancer but rather a hallmark of proliferating cells and limits its utility in cancer therapy. However, local treatment of angiogenic eye conditions with inhibitors of glycolysis may be a safe therapeutic option that warrants experimental investigation. Most types of cells in the eye such as photoreceptors and pericytes use OXPHOS for ATP production, whereas proliferating angiogenic stalk ECs rely on glycolysis for lactate and ATP production. (J Histochem Cytochem XX.XXX-XXX, XXXX).


Asunto(s)
Adenosina Trifosfato , Neoplasias , Neovascularización Patológica , Humanos , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/biosíntesis , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/irrigación sanguínea , Neoplasias/tratamiento farmacológico , Animales , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Glucólisis , Oftalmopatías/metabolismo , Oftalmopatías/patología , Fosforilación Oxidativa
10.
Adv Clin Chem ; 120: 69-115, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38762243

RESUMEN

An extensive exploration of lacrimal fluid molecular biomarkers in understanding and diagnosing a spectrum of ocular and systemic diseases is presented. The chapter provides an overview of lacrimal fluid composition, elucidating the roles of proteins, lipids, metabolites, and nucleic acids within the tear film. Pooled versus single-tear analysis is discussed to underline the benefits and challenges associated with both approaches, offering insights into optimal strategies for tear sample analysis. Subsequently, an in-depth analysis of tear collection methods is presented, with a focus on Schirmer's test strips and microcapillary tubes methods. Alternative tear collection techniques are also explored, shedding light on their applicability and advantages. Variability factors, including age, sex, and diurnal fluctuations, are examined in the context of their impact on tear biomarker analysis. The main body of the chapter is dedicated to discussing specific biomarkers associated with ocular discomfort and a wide array of ocular diseases. From dry eye disease and thyroid-associated ophthalmopathy to keratoconus, age-related macular degeneration, diabetic retinopathy, and glaucoma, the intricate relationship between molecular biomarkers and these conditions is thoroughly dissected. Expanding beyond ocular pathologies, the chapter explores the applicability of tear biomarkers in diagnosing systemic diseases such as multiple sclerosis, amyotrophic lateral sclerosis, Alzheimer's disease, Parkinson's disease, and cancer. This broader perspective underscores the potential of lacrimal fluid analysis in offering non-invasive diagnostic tools for conditions with far-reaching implications.


Asunto(s)
Biomarcadores , Lágrimas , Humanos , Lágrimas/metabolismo , Lágrimas/química , Biomarcadores/análisis , Biomarcadores/metabolismo , Oftalmopatías/diagnóstico , Oftalmopatías/metabolismo
11.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38731911

RESUMEN

In drug discovery, selecting targeted molecules is crucial as the target could directly affect drug efficacy and the treatment outcomes. As a member of the CCN family, CTGF (also known as CCN2) is an essential regulator in the progression of various diseases, including fibrosis, cancer, neurological disorders, and eye diseases. Understanding the regulatory mechanisms of CTGF in different diseases may contribute to the discovery of novel drug candidates. Summarizing the CTGF-targeting and -inhibitory drugs is also beneficial for the analysis of the efficacy, applications, and limitations of these drugs in different disease models. Therefore, we reviewed the CTGF structure, the regulatory mechanisms in various diseases, and drug development in order to provide more references for future drug discovery.


Asunto(s)
Factor de Crecimiento del Tejido Conjuntivo , Descubrimiento de Drogas , Humanos , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Descubrimiento de Drogas/métodos , Animales , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Oftalmopatías/tratamiento farmacológico , Oftalmopatías/metabolismo , Fibrosis , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Enfermedades del Sistema Nervioso/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos
12.
Ageing Res Rev ; 97: 102308, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38615894

RESUMEN

Aging entails the deterioration of the body's organs, including overall damages at both the genetic and cellular levels. The prevalence of age-related ocular disease such as macular degeneration, dry eye diseases, glaucoma and cataracts is increasing as the world's population ages, imposing a considerable economic burden on individuals and society. The development of age-related ocular disease is predominantly triggered by oxidative stress and chronic inflammatory reaction. Heme oxygenase-1 (HO-1) is a crucial antioxidant that mediates the degradative process of endogenous iron protoporphyrin heme. It catalyzes the rate-limiting step of the heme degradation reaction, and releases the metabolites such as carbon monoxide (CO), ferrous, and biliverdin (BV). The potent scavenging activity of these metabolites can help to defend against peroxides, peroxynitrite, hydroxyl, and superoxide radicals. Other than directly decomposing endogenous oxidizing substances (hemoglobin), HO-1 is also a critical regulator of inflammatory cells and tissue damage, exerting its anti-inflammation activity through regulating complex inflammatory networks. Therefore, promoting HO-1 expression may act as a promising therapeutic strategy for the age-related ocular disease. However, emerging evidences suggest that the overexpression of HO-1 significantly contributes to ferroptosis due to its dual nature. Surplus HO-1 leads to excessive Fe2+ and reactive oxygen species, thereby causing lipid peroxidation and ferroptosis. In this review, we elucidate the role of HO-1 in countering age-related disease, and summarize recent pharmacological trials that targeting HO-1 for disease management. Further refinements of the knowledge would position HO-1 as a novel therapeutic target for age-related ocular disease.


Asunto(s)
Envejecimiento , Oftalmopatías , Hemo-Oxigenasa 1 , Humanos , Hemo-Oxigenasa 1/metabolismo , Hemo-Oxigenasa 1/genética , Envejecimiento/metabolismo , Envejecimiento/genética , Oftalmopatías/metabolismo , Animales , Estrés Oxidativo/fisiología
13.
Prog Retin Eye Res ; 100: 101249, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38430990

RESUMEN

Translocator protein (18 kDa) (Tspo), formerly known as peripheral benzodiazepine receptor is a highly conserved transmembrane protein primarily located in the outer mitochondrial membrane. In the central nervous system (CNS), especially in glia cells, Tspo is upregulated upon inflammation. Consequently, Tspo was used as a tool for diagnostic in vivo imaging of neuroinflammation in the brain and as a potential therapeutic target. Several synthetic Tspo ligands have been explored as immunomodulatory and neuroprotective therapy approaches. Although the function of Tspo and how its ligands exert these beneficial effects is not fully clear, it became a research topic of interest, especially in ocular diseases in the past few years. This review summarizes state-of-the-art knowledge of Tspo expression and its proposed functions in different cells of the retina including microglia, retinal pigment epithelium and Müller cells. Tspo is involved in cytokine signaling, oxidative stress and reactive oxygen species production, calcium signaling, neurosteroid synthesis, energy metabolism, and cholesterol efflux. We also highlight recent developments in preclinical models targeting Tspo and summarize the relevance of Tspo biology for ocular and retinal diseases. We conclude that glial upregulation of Tspo in different ocular pathologies and the use of Tspo ligands as promising therapeutic approaches in preclinical studies underline the importance of Tspo as a potential disease-modifying protein.


Asunto(s)
Receptores de GABA , Retina , Humanos , Receptores de GABA/metabolismo , Animales , Retina/metabolismo , Oftalmopatías/metabolismo , Enfermedades de la Retina/metabolismo , Microglía/metabolismo
14.
Nat Commun ; 15(1): 1600, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38383453

RESUMEN

Cross-species genome comparisons have revealed a substantial number of ultraconserved non-coding elements (UCNEs). Several of these elements have proved to be essential tissue- and cell type-specific cis-regulators of developmental gene expression. Here, we characterize a set of UCNEs as candidate CREs (cCREs) during retinal development and evaluate the contribution of their genomic variation to rare eye diseases, for which pathogenic non-coding variants are emerging. Integration of bulk and single-cell retinal multi-omics data reveals 594 genes under potential cis-regulatory control of UCNEs, of which 45 are implicated in rare eye disease. Mining of candidate cis-regulatory UCNEs in WGS data derived from the rare eye disease cohort of Genomics England reveals 178 ultrarare variants within 84 UCNEs associated with 29 disease genes. Overall, we provide a comprehensive annotation of ultraconserved non-coding regions acting as cCREs during retinal development which can be targets of non-coding variation underlying rare eye diseases.


Asunto(s)
Oftalmopatías , Multiómica , Humanos , Retina/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos/genética , Genoma , Oftalmopatías/genética , Oftalmopatías/metabolismo
15.
Vet Ophthalmol ; 27(2): 104-113, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37246963

RESUMEN

BACKGROUND: The ocular side effects of cancer chemotherapeutic drugs are relatively uncommon. Nonetheless, the ocular system has a potentially high sensitivity to toxic substances. This study proposed a framework to assess the effect of vincristine chemotherapy on intraocular pressure, tear protein, and oxidative stress in canines with transmissible venereal tumor (TVT). METHODS: The study group comprised 10 dogs with TVT, whose diagnosis was based on cytology, and all dogs were treated with vincristine for 4 weeks. Each animal was given a complete ophthalmic examination, followed by a standard Schirmer tear test. Before and 20 min after administering vincristine, intraocular pressure (IOP) was measured in the eyes with a noncontact tonometer. At any of the times mentioned, tear samples were collected using the Schirmer test procedure and were subjected to protein analysis-oxidative stress index (OSI), total antioxidant capacity (TAC), total oxidant status (TOS), nitric oxide (NO), and malondialdehyde (MDA) were determined, and standard statistical analysis was applied. RESULTS: No significant differences were found in protein in tears, but mean Pre and Postinjection IOP revealed a significant decrease in the eyes each week. Also, results indicated significant differences in oxidative stress markers: increased OSI, NO, and MDA, and reduced TAC. CONCLUSION: The importance of an increase in oxidative stress levels in the tears of vincristine-treated patients should be taken seriously, as it appears to play a role in the pathogenesis of eye disease. Therefore, during the treatment weeks prior to prescribing vincristine, eye diseases should be evaluated and considered.


Asunto(s)
Oftalmopatías , Tumores Venéreos Veterinarios , Humanos , Animales , Perros , Vincristina/efectos adversos , Presión Intraocular , Tumores Venéreos Veterinarios/tratamiento farmacológico , Tumores Venéreos Veterinarios/metabolismo , Tumores Venéreos Veterinarios/patología , Oftalmopatías/metabolismo , Oftalmopatías/veterinaria , Lágrimas/metabolismo , Estrés Oxidativo
16.
J Control Release ; 365: 448-468, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38013069

RESUMEN

Nanoscale extracellular vesicles (EVs), consisting of exomers, exosomes and microvesicles/ectosomes, have been extensively investigated in the last 20 years, although their biological role is still something of a mystery. EVs are involved in the transfer of lipids, nucleic acids and proteins from donor to recipient cells or distant organs as well as regulating cell-cell communication and signaling. Thus, EVs are important in intercellular communication and this is not limited to sister cells, but may also mediate the crosstalk between different cell types even over long distances. EVs play crucial functions in both cellular homeostasis and the pathogenesis of diseases, and since their contents reflect the status of the donor cell, they represent an additional valuable source of information for characterizing complex biological processes. Recent advances in isolation and analytical methods have led to substantial improvements in both characterizing and engineering EVs, leading to their use either as novel biomarkers for disease diagnosis/prognosis or even as novel therapies. Due to their capacity to carry biomolecules, various EV-based therapeutic applications have been devised for several pathological conditions, including eye diseases. In the eye, EVs have been detected in the retina, aqueous humor, vitreous body and also in tears. Experiences with other forms of intraocular drug applications have opened new ways to use EVs in the treatment of retinal diseases. We here provide a comprehensive summary of the main in vitro, in vivo, and ex vivo literature-based studies on EVs' role in ocular physiological and pathological conditions. We have focused on age-related macular degeneration, diabetic retinopathy, glaucoma, which are common eye diseases leading to permanent blindness, if not treated properly. In addition, the putative use of EVs in retinitis pigmentosa and other retinopathies is discussed. Finally, we have reviewed the potential of EVs as therapeutic tools and/or biomarkers in the above-mentioned retinal disorders. Evidence emerging from experimental disease models and human material strongly suggests future diagnostic and/or therapeutic exploitation of these biological agents in various ocular disorders with a good possibility to improve the patient's quality of life.


Asunto(s)
Vesículas Extracelulares , Oftalmopatías , Enfermedades de la Retina , Humanos , Calidad de Vida , Vesículas Extracelulares/metabolismo , Biomarcadores/metabolismo , Retina/metabolismo , Enfermedades de la Retina/tratamiento farmacológico , Enfermedades de la Retina/metabolismo , Oftalmopatías/tratamiento farmacológico , Oftalmopatías/metabolismo
17.
Sci Rep ; 13(1): 22839, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-38129447

RESUMEN

Goblet cells (GCs) in the conjunctiva are specialized epithelial cells secreting mucins for the mucus layer of protective tear film and playing immune tolerance functions for ocular surface health. Because GC loss is observed in various ocular surface diseases, GC examination is important for precision diagnosis. Moxifloxacin-based fluorescence microscopy (MBFM) was recently developed for non-invasive high-contrast GC visualization. MBFM showed promise for GC examination by high-speed large-area imaging and a robust analysis method is needed to provide GC information. In this study, we developed a deep learning framework for GC image analysis, named dual-channel attention U-Net (DCAU-Net). Dual-channel convolution was used both to extract the overall image texture and to acquire the GC morphological characteristics. A global channel attention module was adopted by combining attention algorithms and channel-wise pooling. DCAU-Net showed 93.1% GC segmentation accuracy and 94.3% GC density estimation accuracy. Further application to both normal and ocular surface damage rabbit models revealed the spatial variations of both GC density and size in normal rabbits and the decreases of both GC density and size in damage rabbit models during recovery after acute damage. The GC analysis results were consistent with histology. Together with the non-invasive high-contrast imaging method, DCAU-Net would provide GC information for the diagnosis of ocular surface diseases.


Asunto(s)
Aprendizaje Profundo , Oftalmopatías , Lagomorpha , Animales , Conejos , Células Caliciformes/metabolismo , Conjuntiva/patología , Lágrimas/metabolismo , Oftalmopatías/metabolismo , Recuento de Células
18.
Adv Sci (Weinh) ; 10(30): e2302909, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37653617

RESUMEN

Retinal ischemia is involved in the occurrence and development of various eye diseases, including glaucoma, diabetic retinopathy, and central retinal artery occlusion. To the best of our knowledge, few studies have reported self-assembling peptide natural products for the suppression of ocular inflammation and oxidative stress. Herein, a self-assembling peptide GFFYE is designed and synthesized, which can transform the non-hydrophilicity of rhein into an amphiphilic sustained-release therapeutic agent, and rhein-based therapeutic nanofibers (abbreviated as Rh-GFFYE) are constructed for the treatment of retinal ischemia-reperfusion (RIR) injury. Rh-GFFYE significantly ameliorates oxidative stress and inflammation in an in vitro oxygen-glucose deprivation (OGD) model of retinal ischemia and a rat model of RIR injury. Rh-GFFYE also significantly enhances retinal electrophysiological recovery and exhibits good biocompatibility. Importantly, Rh-GFFYE also promotes the transition of M1-type macrophages to the M2 type, ultimately altering the pro-inflammatory microenvironment. Further investigation of the treatment mechanism indicates that Rh-GFFYE activates the PI3K/AKT/mTOR signaling pathway to reduce oxidative stress and inhibits the NF-κB and STAT3 signaling pathways to affect inflammation and macrophage polarization. In conclusion, the rhein-loaded nanoplatform alleviates RIR injury by modulating the retinal microenvironment. The findings are expected to promote the clinical application of hydrophobic natural products in RIR injury-associated eye diseases.


Asunto(s)
Productos Biológicos , Oftalmopatías , Nanofibras , Daño por Reperfusión , Ratas , Animales , Microglía/metabolismo , Nanofibras/uso terapéutico , Fosfatidilinositol 3-Quinasas , Estrés Oxidativo , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Macrófagos/metabolismo , Inflamación/metabolismo , Oftalmopatías/metabolismo , Productos Biológicos/metabolismo , Péptidos/metabolismo , Isquemia
19.
Adv Drug Deliv Rev ; 200: 115005, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37419213

RESUMEN

Vision impairment and loss due to posterior segment ocular disorders, including age-related macular degeneration and diabetic retinopathy, are a rapidly growing cause of disability globally. Current treatments consist primarily of intravitreal injections aimed at preventing disease progression and characterized by high cost and repeated clinic visits. Nanotechnology provides a promising platform for drug delivery to the eye, with potential to overcome anatomical and physiological barriers to provide safe, effective, and sustained treatment modalities. However, there are few nanomedicines approved for posterior segment disorders, and fewer that target specific cells or that are compatible with systemic administration. Targeting cell types that mediate these disorders via systemic administration may unlock transformative opportunities for nanomedicine and significantly improve patient access, acceptability, and outcomes. We highlight the development of hydroxyl polyamidoamine dendrimer-based therapeutics that demonstrate ligand-free cell targeting via systemic administration and are under clinical investigation for treatment of wet age-related macular degeneration.


Asunto(s)
Dendrímeros , Oftalmopatías , Degeneración Macular , Humanos , Dendrímeros/metabolismo , Ojo/metabolismo , Sistemas de Liberación de Medicamentos , Oftalmopatías/metabolismo , Degeneración Macular/tratamiento farmacológico , Degeneración Macular/metabolismo
20.
Exp Eye Res ; 233: 109557, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37380095

RESUMEN

As a water channel protein, aquaporin 5 (AQP5) is essential for the maintenance of the normal physiological functions of ocular tissues. This review provides an overview of the expression and function of AQP5 in the eye and discusses their role in related eye diseases. Although AQP5 plays a vital role in ocular functions, such as maintaining corneal and lens transparency, regulating water movement, and maintaining homeostasis, some of its functions in ocular tissues are still unclear. Based on the key role of AQP5 in eye function, this review suggests that in the future, eye diseases may be treated by regulating the expression of aquaporin.


Asunto(s)
Oftalmopatías , Cristalino , Humanos , Acuaporina 5 , Córnea/metabolismo , Cristalino/metabolismo , Oftalmopatías/metabolismo , Fenómenos Fisiológicos Oculares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...