RESUMEN
We investigated whether gestational diabetes mellitus (GDM) associated with maternal obesity modifies the placental profile of F4-Neuroprostanes and F2-Isoprostanes, metabolites of non-enzymatic oxidation of docosahexaenoic acid (DHA) and arachidonic acid (AA), respectively. Twenty-five placental samples were divided into lean (n=11), obesity (n=7) and overweight/obesity+GDM (n=7) groups. F4-Neuroprostanes and F2-Isoprostanes were higher in obesity compared to lean controls, but reduced to levels similar to lean women when obesity is further complicated with GDM. Lower content of F2-Isoprostanes suggests adaptive placental responses in GDM attenuating oxidative stress. However, low levels of placental F4-Neuroprostanes may indicate impaired DHA metabolism in GDM, affecting fetal development and offspring health. These results were not related to differences in placental content of DHA, AA and polyunsaturated fatty acids status nor to maternal diet or gestational weight gain. Placental DHA and AA metabolism differs in obesity and GDM, highlighting the importance of investigating the signalling roles of F4-Neuroprostanes and F2-Isoprostanes in the human term placenta.
Asunto(s)
Diabetes Gestacional , Neuroprostanos , Obesidad Materna , Humanos , Femenino , Embarazo , Neuroprostanos/metabolismo , Isoprostanos , Diabetes Gestacional/metabolismo , Placenta/metabolismo , F2-Isoprostanos/metabolismo , Obesidad Materna/metabolismo , Ácidos Docosahexaenoicos/metabolismo , Ácido Araquidónico/metabolismo , Obesidad/metabolismoRESUMEN
Cardiometabolic disease risk factors, including obesity, insulin resistance, high blood pressure, and dyslipidemia, are associated with elevated oxidative stress biomarkers like oxylipins. Increased adiposity by itself induces various isomers of this oxidized lipid family, while dietary polyphenols show benefits in its regulation. Previously, we showed that specific co-abundant microorganisms characterized the gut microbiota of Colombians and associated differentially with diet, lifestyle, obesity, and cardiometabolic health status, which led us to hypothesize that urinary oxylipins would reflect the intensity of oxidative metabolism linked to gut microbiota dysbiosis. Thus, we selected a convenience sample of 105 participants (age: 40.2 ± 11.9 years, 47.6% women), grouped according to microbiota, cardiometabolic health status, and body mass index (BMI); and evaluated 33 urinary oxylipins by HPLC-QqQ-MS/MS (e.g., isoprostanes, prostaglandins, and metabolites), paired with anthropometry and blood chemistry information and dietary antioxidants estimated from a 24-h food recall. In general, oxylipins did not show differences among individuals who differed in gut microbiota. While the unmetabolized oxylipin levels were not associated with BMI, the total content of oxylipin metabolites was highest in obese and cardiometabolically abnormal subjects (e.g., insulin resistant), mainly by prostaglandin-D (2,3-dinor-11ß-PGF2α) and 15-F2t-IsoPs (2,3-dinor-15-F2t-IsoP and 2,3-dinor-15-epi-15-F2t-IsoP) metabolites. The total polyphenol intake in this cohort was 1070 ± 627 mg/day. After adjusting for body weight, the polyphenol intake was significantly higher in lean than overweight and showed an inverse association with dinor-oxylipin levels in principal component analysis. These results suggest that the 2,3-dinor-oxylipins could be more specific biomarkers associated with BMI than their parent oxylipins and that are sensitive to be regulated by dietary antioxidants.
Asunto(s)
Antioxidantes , Enfermedades Cardiovasculares , Adulto , Biomarcadores , F2-Isoprostanos/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Obesidad/metabolismo , Sobrepeso , Oxilipinas , Polifenoles , Espectrometría de Masas en TándemRESUMEN
UNLABELLED: Inhibition of carotid body (CB) function is the main mechanism involved in the attenuation of respiratory drive observed during hyperoxia. However, only a few studies at 5.0 atmospheres absolutes (ATA) have analyzed carotid body structure or function in hyperbaric oxygenation (HBO2) situations. We hypothesized that rats will present CB structural alterations when exposed to different lower hyperbaric oxygen doses enough to alter their chemosensory response to hypoxia. METHODS: Twenty-one adult male Wistar rats, divided into three groups, were maintained in room air or exposed to O2 at 2.4 or 3.0 ATA for six hours. Histological, ultrastructural and immunohistochemical analyses for neuronal nitric oxide synthase (nNOS) and F2-isoprostane were performed in the excised CBs. RESULTS: Histological analyses revealed signs of intracellular edema in animals exposed to both conditions, but this was more marked in the 3.0 ATA group, which showed ultrastructural alterations at the mitochondrial level. There was a significant increase in the volume density of intraglomic-congested capillaries in the 3.0 ATA group associated with an arteriolar vasoconstriction. In the 2.4 ATA group, there was a relative increase of glomic light cells and a decrease of glomic progenitor cells. Additionally, there was a stronger immunoreactivity for F2-isoprostane in the 3.0 ATA O2-exposed carotid bodies. The glomic cells stained positive for nNOS, but no difference was observed between the groups. Our results show that high O2 exposures may induce structural alterations in glomic cells with signs of lipid peroxidation. We further suggest that deviation of blood flow toward intraglomic capillaries occurs in hyperbaric hyperoxia.