Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.605
Filtrar
1.
Nat Commun ; 15(1): 5345, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937474

RESUMEN

Drug-tolerance has emerged as one of the major non-genetic adaptive processes driving resistance to targeted therapy (TT) in non-small cell lung cancer (NSCLC). However, the kinetics and sequence of molecular events governing this adaptive response remain poorly understood. Here, we combine real-time monitoring of the cell-cycle dynamics and single-cell RNA sequencing in a broad panel of oncogenic addiction such as EGFR-, ALK-, BRAF- and KRAS-mutant NSCLC, treated with their corresponding TT. We identify a common path of drug adaptation, which invariably involves alveolar type 1 (AT1) differentiation and Rho-associated protein kinase (ROCK)-mediated cytoskeletal remodeling. We also isolate and characterize a rare population of early escapers, which represent the earliest resistance-initiating cells that emerge in the first hours of treatment from the AT1-like population. A phenotypic drug screen identify farnesyltransferase inhibitors (FTI) such as tipifarnib as the most effective drugs in preventing relapse to TT in vitro and in vivo in several models of oncogenic addiction, which is confirmed by genetic depletion of the farnesyltransferase. These findings pave the way for the development of treatments combining TT and FTI to effectively prevent tumor relapse in oncogene-addicted NSCLC patients.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Resistencia a Antineoplásicos , Farnesiltransferasa , Neoplasias Pulmonares , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Humanos , Farnesiltransferasa/antagonistas & inhibidores , Farnesiltransferasa/metabolismo , Farnesiltransferasa/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Resistencia a Antineoplásicos/genética , Línea Celular Tumoral , Animales , Ratones , Dependencia del Oncogén/genética , Terapia Molecular Dirigida , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Femenino , Ensayos Antitumor por Modelo de Xenoinjerto , Oncogenes/genética , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Quinolonas
2.
Signal Transduct Target Ther ; 9(1): 144, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38853183

RESUMEN

Respiratory syncytial virus (RSV) is the major cause of bronchiolitis and pneumonia in young children and the elderly. There are currently no approved RSV-specific therapeutic small molecules available. Using high-throughput antiviral screening, we identified an oral drug, the prenylation inhibitor lonafarnib, which showed potent inhibition of the RSV fusion process. Lonafarnib exhibited antiviral activity against both the RSV A and B genotypes and showed low cytotoxicity in HEp-2 and human primary bronchial epithelial cells (HBEC). Time-of-addition and pseudovirus assays demonstrated that lonafarnib inhibits RSV entry, but has farnesyltransferase-independent antiviral efficacy. Cryo-electron microscopy revealed that lonafarnib binds to a triple-symmetric pocket within the central cavity of the RSV F metastable pre-fusion conformation. Mutants at the RSV F sites interacting with lonafarnib showed resistance to lonafarnib but remained fully sensitive to the neutralizing monoclonal antibody palivizumab. Furthermore, lonafarnib dose-dependently reduced the replication of RSV in BALB/c mice. Collectively, lonafarnib could be a potential fusion inhibitor for RSV infection.


Asunto(s)
Piridinas , Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Proteínas Virales de Fusión , Humanos , Infecciones por Virus Sincitial Respiratorio/tratamiento farmacológico , Infecciones por Virus Sincitial Respiratorio/genética , Piridinas/farmacología , Ratones , Animales , Virus Sincitial Respiratorio Humano/efectos de los fármacos , Virus Sincitial Respiratorio Humano/genética , Proteínas Virales de Fusión/genética , Proteínas Virales de Fusión/antagonistas & inhibidores , Farnesiltransferasa/antagonistas & inhibidores , Farnesiltransferasa/genética , Antivirales/farmacología , Antivirales/química , Piperidinas/farmacología , Piperidinas/química , Ratones Endogámicos BALB C , Conformación Proteica , Dibenzocicloheptenos
3.
Appl Radiat Isot ; 210: 111372, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38810354

RESUMEN

As is the case for most solid tumours, chemotherapy remains the backbone in the management of metastatic disease. However, the occurrence of chemotherapy resistance is a cause to worry, especially in bladder cancer. Extensive evidence indicates molecular changes in bladder cancer cells to be the underlying cause of chemotherapy resistance, including the reduced expression of farnesyl-diphosphate farnesyltransferase 1 (FDFT1) - a gene involved in cholesterol biosynthesis. This can likely be a hallmark in examining the resistance and sensitivity of chemotherapy drugs. This work performs spectroscopic analysis and metabolite characterization on resistant, sensitive, stable-disease and healthy bladder tissues. Raman spectroscopy has detected peaks at around 1003 cm-1 (squalene), 1178 cm-1 (cholesterol), 1258 cm-1 (cholesteryl ester), 1343 cm-1 (collagen), 1525 cm-1 (carotenoid), 1575 cm-1 (DNA bases) and 1608 cm-1 (cytosine). The peak parameters were examined, and statistical analysis was performed on the peak features, attaining significant differences between the sample groups. Small-angle x-ray scattering (SAXS) measurements observed the triglyceride peak together with 6th, 7th and 8th - order collagen peaks; peak parameters were also determined. Neutron activation analysis (NAA) detected seven trace elements. Carbon (Ca), magnesium (Mg), chlorine (Cl) and sodium (Na) have been found to have the greatest concentration in the sample groups, suggestive of a role as a biomarker for cisplatin resistance studies. Results from the present research are suggested to provide an important insight into understanding the development of drug resistance in bladder cancer, opening up the possibility of novel avenues for treatment through personalised interventions.


Asunto(s)
Cisplatino , Resistencia a Antineoplásicos , Espectrometría Raman , Neoplasias de la Vejiga Urinaria , Humanos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Cisplatino/farmacología , Cisplatino/uso terapéutico , Farnesiltransferasa/metabolismo , Espectrometría Raman/métodos , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/patología , Difracción de Rayos X , Farnesil Difosfato Farnesil Transferasa/metabolismo
4.
Int J Mol Sci ; 25(10)2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38791363

RESUMEN

Protein farnesylation is a post-translational modification where a 15-carbon farnesyl isoprenoid is appended to the C-terminal end of a protein by farnesyltransferase (FTase). This process often causes proteins to associate with the membrane and participate in signal transduction pathways. The most common substrates of FTase are proteins that have C-terminal tetrapeptide CaaX box sequences where the cysteine is the site of modification. However, recent work has shown that five amino acid sequences can also be recognized, including the pentapeptides CMIIM and CSLMQ. In this work, peptide libraries were initially used to systematically vary the residues in those two parental sequences using an assay based on Matrix Assisted Laser Desorption Ionization-Mass Spectrometry (MALDI-MS). In addition, 192 pentapeptide sequences from the human proteome were screened using that assay to discover additional extended CaaaX-box motifs. Selected hits from that screening effort were rescreened using an in vivo yeast reporter protein assay. The X-ray crystal structure of CMIIM bound to FTase was also solved, showing that the C-terminal tripeptide of that sequence interacted with the enzyme in a similar manner as the C-terminal tripeptide of CVVM, suggesting that the tripeptide comprises a common structural element for substrate recognition in both tetrapeptide and pentapeptide sequences. Molecular dynamics simulation of CMIIM bound to FTase further shed light on the molecular interactions involved, showing that a putative catalytically competent Zn(II)-thiolate species was able to form. Bioinformatic predictions of tetrapeptide (CaaX-box) reactivity correlated well with the reactivity of pentapeptides obtained from in vivo analysis, reinforcing the importance of the C-terminal tripeptide motif. This analysis provides a structural framework for understanding the reactivity of extended CaaaX-box motifs and a method that may be useful for predicting the reactivity of additional FTase substrates bearing CaaaX-box sequences.


Asunto(s)
Biología Computacional , Biblioteca de Péptidos , Humanos , Biología Computacional/métodos , Especificidad por Sustrato , Farnesiltransferasa/metabolismo , Farnesiltransferasa/química , Oligopéptidos/química , Oligopéptidos/metabolismo , Secuencia de Aminoácidos , Cristalografía por Rayos X , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Unión Proteica
5.
Bioconjug Chem ; 35(7): 922-933, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38654427

RESUMEN

Bioorthogonal chemistry has gained widespread use in the study of many biological systems of interest, including protein prenylation. Prenylation is a post-translational modification, in which one or two 15- or 20-carbon isoprenoid chains are transferred onto cysteine residues near the C-terminus of a target protein. The three main enzymes─protein farnesyltransferase (FTase), geranylgeranyl transferase I (GGTase I), and geranylgeranyl transferase II (GGTase II)─that catalyze this process have been shown to tolerate numerous structural modifications in the isoprenoid substrate. This feature has previously been exploited to transfer an array of farnesyl diphosphate analogues with a range of functionalities, including an alkyne-containing analogue for copper-catalyzed bioconjugation reactions. Reported here is the synthesis of an analogue of the isoprenoid substrate embedded with norbornene functionality (C10NorOPP) that can be used for an array of applications, ranging from metabolic labeling to selective protein modification. The probe was synthesized in seven steps with an overall yield of 7% and underwent an inverse electron demand Diels-Alder (IEDDA) reaction with tetrazine-containing tags, allowing for copper-free labeling of proteins. The use of C10NorOPP for the study of prenylation was explored in the metabolic labeling of prenylated proteins in HeLa, COS-7, and astrocyte cells. Furthermore, in HeLa cells, these modified prenylated proteins were identified and quantified using label-free quantification (LFQ) proteomics with 25 enriched prenylated proteins. Additionally, the unique chemistry of C10NorOPP was utilized for the construction of a multiprotein-polymer conjugate for the targeted labeling of cancer cells. That construct was prepared using a combination of norbornene-tetrazine conjugation and azide-alkyne cycloaddition, highlighting the utility of the additional degree of orthogonality for the facile assembly of new protein conjugates with novel structures and functions.


Asunto(s)
Química Clic , Farnesiltransferasa , Norbornanos , Prenilación de Proteína , Norbornanos/química , Farnesiltransferasa/metabolismo , Humanos , Animales
6.
PLoS Pathog ; 20(4): e1012136, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38620034

RESUMEN

African swine fever (ASF) is an acute, hemorrhagic, and severe infectious disease caused by the ASF virus (ASFV). ASFV has evolved multiple strategies to escape host antiviral immune responses. Here, we reported that ASFV pB318L, a trans-geranylgeranyl-diphosphate synthase, reduced the expression of type I interferon (IFN-I) and IFN-stimulated genes (ISGs). Mechanically, pB318L not only interacted with STING to reduce the translocation of STING from the endoplasmic reticulum to the Golgi apparatus but also interacted with IFN receptors to reduce the interaction of IFNAR1/TYK2 and IFNAR2/JAK1. Of note, ASFV with interruption of B318L gene (ASFV-intB318L) infected PAMs produces more IFN-I and ISGs than that in PAMs infected with its parental ASFV HLJ/18 at the late stage of infection. Consistently, the pathogenicity of ASFV-intB318L is attenuated in piglets compared with its parental virus. Taken together, our data reveal that B318L gene may partially affect ASFV pathogenicity by reducing the production of IFN-I and ISGs. This study provides a clue to design antiviral agents or live attenuated vaccines to prevent and control ASF.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Interferón Tipo I , Animales , Porcinos , Farnesiltransferasa/metabolismo , Proteínas Virales/metabolismo , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Interferón Tipo I/genética , Interferón Tipo I/metabolismo , Transducción de Señal
7.
Nat Commun ; 15(1): 3422, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38653965

RESUMEN

Targeting Anaplastic lymphoma kinase (ALK) is a promising therapeutic strategy for aberrant ALK-expressing malignancies including neuroblastoma, but resistance to ALK tyrosine kinase inhibitors (ALK TKI) is a distinct possibility necessitating drug combination therapeutic approaches. Using high-throughput, genome-wide CRISPR-Cas9 knockout screens, we identify miR-1304-5p loss as a desensitizer to ALK TKIs in aberrant ALK-expressing neuroblastoma; inhibition of miR-1304-5p decreases, while mimics of this miRNA increase the sensitivity of neuroblastoma cells to ALK TKIs. We show that miR-1304-5p targets NRAS, decreasing cell viability via induction of apoptosis. It follows that the farnesyltransferase inhibitor (FTI) lonafarnib in addition to ALK TKIs act synergistically in neuroblastoma, inducing apoptosis in vitro. In particular, on combined treatment of neuroblastoma patient derived xenografts with an FTI and an ALK TKI complete regression of tumour growth is observed although tumours rapidly regrow on cessation of therapy. Overall, our data suggests that combined use of ALK TKIs and FTIs, constitutes a therapeutic approach to treat high risk neuroblastoma although prolonged therapy is likely required to prevent relapse.


Asunto(s)
Quinasa de Linfoma Anaplásico , Dibenzocicloheptenos , Farnesiltransferasa , GTP Fosfohidrolasas , MicroARNs , Neuroblastoma , Piperidinas , Inhibidores de Proteínas Quinasas , Piridinas , Animales , Femenino , Humanos , Ratones , Quinasa de Linfoma Anaplásico/genética , Quinasa de Linfoma Anaplásico/metabolismo , Quinasa de Linfoma Anaplásico/antagonistas & inhibidores , Apoptosis/efectos de los fármacos , Apoptosis/genética , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Sinergismo Farmacológico , Farnesiltransferasa/antagonistas & inhibidores , Farnesiltransferasa/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , MicroARNs/genética , MicroARNs/metabolismo , Mutación , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/genética , Neuroblastoma/patología , Neuroblastoma/metabolismo , Piperidinas/farmacología , Piperidinas/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Piridinas/farmacología , Piridinas/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Aging Cell ; 23(5): e14105, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38504487

RESUMEN

Hutchinson-Gilford Progeria syndrome (HGPS) is a severe premature ageing disorder caused by a 50 amino acid truncated (Δ50AA) and permanently farnesylated lamin A (LA) mutant called progerin. On a cellular level, progerin expression leads to heterochromatin loss, impaired nucleocytoplasmic transport, telomeric DNA damage and a permanent growth arrest called cellular senescence. Although the genetic basis for HGPS has been elucidated 20 years ago, the question whether the Δ50AA or the permanent farnesylation causes cellular defects has not been addressed. Moreover, we currently lack mechanistic insight into how the only FDA-approved progeria drug Lonafarnib, a farnesyltransferase inhibitor (FTI), ameliorates HGPS phenotypes. By expressing a variety of LA mutants using a doxycycline-inducible system, and in conjunction with FTI, we demonstrate that the permanent farnesylation, and not the Δ50AA, is solely responsible for progerin-induced cellular defects, as well as its rapid accumulation and slow clearance. Importantly, FTI does not affect clearance of progerin post-farnesylation and we demonstrate that early, but not late FTI treatment prevents HGPS phenotypes. Collectively, our study unravels the precise contributions of progerin's permanent farnesylation to its turnover and HGPS cellular phenotypes, and how FTI treatment ameliorates these. These findings are applicable to other diseases associated with permanently farnesylated proteins, such as adult-onset autosomal dominant leukodystrophy.


Asunto(s)
Lamina Tipo A , Progeria , Lamina Tipo A/metabolismo , Lamina Tipo A/genética , Humanos , Progeria/metabolismo , Progeria/genética , Progeria/patología , Progeria/tratamiento farmacológico , Farnesiltransferasa/metabolismo , Farnesiltransferasa/antagonistas & inhibidores , Farnesiltransferasa/genética , Prenilación de Proteína , Dibenzocicloheptenos , Piperidinas , Piridinas
9.
Bioorg Med Chem Lett ; 102: 129659, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38373465

RESUMEN

Depletion of cellular levels of geranylgeranyl diphosphate by inhibition of the enzyme geranylgeranyl diphosphate synthase (GGDPS) is a potential strategy for disruption of protein transport by limiting the geranylgeranylation of the Rab proteins that regulate intracellular trafficking. As such, there is interest in the development of GGDPS inhibitors for the treatment of malignancies characterized by abnormal protein production, including multiple myeloma. Our previous work has explored the structure-function relationship of a series of isoprenoid triazole bisphosphonate-based GGDPS inhibitors, with modifications having impact on enzymatic, cellular and in vivo activities. We have synthesized a new series of α-amino bisphosphonates to understand the impact of modifying the alpha position with a moiety that is potentially linkable to other agents. Bioassays evaluating the enzymatic and cellular activities of these compounds demonstrate that incorporation of the α-amino group affords compounds with GGDPS inhibitory activity which is modulated by isoprenoid tail chain length and olefin stereochemistry. These studies provide further insight into the complexity of the structure-function relationship and will enable future efforts focused on tumor-specific drug delivery.


Asunto(s)
Difosfonatos , Inhibidores Enzimáticos , Difosfonatos/farmacología , Difosfonatos/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Farnesiltransferasa , Triazoles/química , Terpenos/química
10.
Arch Insect Biochem Physiol ; 115(2): e22088, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38349673

RESUMEN

Geranylgeranyl diphosphate synthase (GGPPS) as the short-chain prenyltransferases for catalyzing the formation of the acyclic precursor (E)-GGPP has been extensively investigated in mammals, plants, and microbes, but its functional plasticity is poorly understood in insect species. Here, a single GGPPS in leaf beetle Monolepta hieroglyphica, MhieGGPPS, was functionally investigated. Phylogenetic analysis showed that MhieGGPPS was clustered in one clade with homologs and had six conserved motifs. Molecular docking results indicated that binding sites of dimethylallyl diphosphate (DMAPP), (E)-geranyl pyrophosphate (GPP), and (E)-farnesyl pyrophosphate (FPP) were in the chain-length determination region of MhieGGPPS, respectively. In vitro, recombiant MhieGGPPS could catalyze the formation of (E)-geranylgeraniol against different combinations of substrates including isopentenyl pyrophosphate (IPP)/DMAPP, IPP/(E)-GPP, and IPP/(E)-FPP, suggesting that MhieGGPPS could not only use (E)-FPP but also (E)-GPP and DMAPP as the allylic cosubstrates. In kinetic analysis, the (E)-FPP was most tightly bound to MhieGGPPS than that of others. It was proposed that MhieGGPPS as a multifunctional enzyme is differentiated from the other GGPPSs in the animals and plants, which only accepted (E)-FPP as the allylic cosubstrate. These findings provide valuable insights into understanding the functional plasticity of GGPPS in M. hieroglyphica and the novel biosynthesis mechanism in the isoprenoid pathway.


Asunto(s)
Escarabajos , Hemiterpenos , Compuestos Organofosforados , Fosfatos de Poliisoprenilo , Sesquiterpenos , Animales , Farnesiltransferasa , Cinética , Simulación del Acoplamiento Molecular , Filogenia , Mamíferos
11.
Plant Cell ; 36(5): 1868-1891, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38299382

RESUMEN

Carotenoids are essential for photosynthesis and photoprotection. Plants must evolve multifaceted regulatory mechanisms to control carotenoid biosynthesis. However, the regulatory mechanisms and the regulators conserved among plant species remain elusive. Phytoene synthase (PSY) catalyzes the highly regulated step of carotenogenesis and geranylgeranyl diphosphate synthase (GGPPS) acts as a hub to interact with GGPP-utilizing enzymes for the synthesis of specific downstream isoprenoids. Here, we report a function of Nudix hydrolase 23 (NUDX23), a Nudix domain-containing protein, in post-translational regulation of PSY and GGPPS for carotenoid biosynthesis. NUDX23 expresses highly in Arabidopsis (Arabidopsis thaliana) leaves. Overexpression of NUDX23 significantly increases PSY and GGPPS protein levels and carotenoid production, whereas knockout of NUDX23 dramatically reduces their abundances and carotenoid accumulation in Arabidopsis. NUDX23 regulates carotenoid biosynthesis via direct interactions with PSY and GGPPS in chloroplasts, which enhances PSY and GGPPS protein stability in a large PSY-GGPPS enzyme complex. NUDX23 was found to co-migrate with PSY and GGPPS proteins and to be required for the enzyme complex assembly. Our findings uncover a regulatory mechanism underlying carotenoid biosynthesis in plants and offer promising genetic tools for developing carotenoid-enriched food crops.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Carotenoides , Regulación de la Expresión Génica de las Plantas , Carotenoides/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Hidrolasas Nudix , Cloroplastos/metabolismo , Geranilgeranil-Difosfato Geranilgeraniltransferasa/metabolismo , Geranilgeranil-Difosfato Geranilgeraniltransferasa/genética , Farnesiltransferasa/metabolismo , Farnesiltransferasa/genética , Pirofosfatasas/metabolismo , Pirofosfatasas/genética , Procesamiento Proteico-Postraduccional , Plantas Modificadas Genéticamente , Hojas de la Planta/metabolismo , Hojas de la Planta/genética
12.
Insect Mol Biol ; 33(2): 147-156, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37962063

RESUMEN

Geranylgeranyl pyrophosphate (diphosphate) synthase (GGPPS) plays an important role in various physiological processes in insects, such as isoprenoid biosynthesis and protein prenylation. Here, we functionally characterised the GGPPS from the major agricultural lepidopteran pests Spodoptera frugiperda and Helicoverpa armigera. Partial disruption of GGPPS by CRISPR in S. frugiperda decreased embryo hatching rate and larval survival, suggesting that this gene is essential. Functional expression in vitro of Helicoverpa armigera GGPPS in Escherichia coli revealed a catalytically active enzyme. Next, we developed and optimised an enzyme assay to screen for potential inhibitors, such as the zoledronate and the minodronate, which showed a dose-dependent inhibition. Phylogenetic analysis of GGPPS across insects showed that GGPPS is highly conserved but also revealed several residues likely to be involved in substrate binding, which were substantially different in bee pollinator and human GGPPS. Considering the essentiality of GGPPS and its putative binding residue variability qualifies a GGPPS as a novel pesticide target. The developed assay may contribute to the identification of novel insecticide leads.


Asunto(s)
Plaguicidas , Humanos , Animales , Abejas/genética , Farnesiltransferasa/genética , Farnesiltransferasa/metabolismo , Filogenia , Ácido Zoledrónico
13.
Mol Cancer Ther ; 23(1): 14-23, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37756579

RESUMEN

Geranylgeranyl diphosphate synthase (GGDPS), the source of the isoprenoid donor in protein geranylgeranylation reactions, has become an attractive target for anticancer therapy due to the reliance of cancers on geranylgeranylated proteins. Current GGDPS inhibitor development focuses on optimizing the drug-target enzyme interactions of nitrogen-containing bisphosphonate-based drugs. To advance GGDPS inhibitor development, understanding the enzyme structure, active site, and ligand/product interactions is essential. Here we provide a comprehensive structure-focused review of GGDPS. We reviewed available yeast and human GGDPS structures and then used AlphaFold modeling to complete unsolved structural aspects of these models. We delineate the elements of higher-order structure formation, product-substrate binding, the electrostatic surface, and small-molecule inhibitor binding. With the rise of structure-based drug design, the information provided here will serve as a valuable tool for rationally optimizing inhibitor selectivity and effectiveness.


Asunto(s)
Inhibidores Enzimáticos , Neoplasias , Humanos , Farnesiltransferasa/química , Farnesiltransferasa/metabolismo , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Inhibidores Enzimáticos/química , Terpenos/química , Terpenos/farmacología , Prenilación de Proteína , Neoplasias/tratamiento farmacológico
14.
Am J Med Genet A ; 194(4): e63498, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38129970

RESUMEN

Congenital muscular dystrophies are a group of progressive disorders with wide range of symptoms associated with diverse cellular mechanisms. Recently, biallelic variants in GGPS1 were linked to a distinct autosomal recessive form of muscular dystrophy associated with hearing loss and ovarian insufficiency. In this report, we present a case of a young patient with a homozygous variant in GGPS1. The patient presented with only proximal muscle weakness, and elevated liver transaminases with spared hearing function. The hepatic involvement in this patient caused by a novel deleterious variant in the gene extends the phenotypic and genotypic spectrum of GGPS1 related muscular dystrophy.


Asunto(s)
Sordera , Dimetilaliltranstransferasa , Pérdida Auditiva , Distrofias Musculares , Insuficiencia Ovárica Primaria , Femenino , Humanos , Distrofias Musculares/diagnóstico , Distrofias Musculares/genética , Homocigoto , Dimetilaliltranstransferasa/genética , Geraniltranstransferasa/genética , Farnesiltransferasa/genética
15.
Cancer Med ; 12(24): 22420-22436, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38069522

RESUMEN

Acute myeloid leukemia (AML) is a heterogeneous disease and the most common form of acute leukemia with a poor prognosis. Due to its complexity, the disease requires the identification of biomarkers for reliable prognosis. To identify potential disease genes that regulate patient prognosis, we used differential co-expression network analysis and transcriptomics data from relapsed, refractory, and previously untreated AML patients based on their response to treatment in the present study. In addition, we combined functional genomics and transcriptomics data to identify novel and therapeutically potential systems biomarkers for patients who do or do not respond to treatment. As a result, we constructed co-expression networks for response and non-response cases and identified a highly interconnected group of genes consisting of SECISBP2L, MAN1A2, PRPF31, VASP, and SNAPC1 in the response network and a group consisting of PHTF2, SLC11A2, PDLIM5, OTUB1, and KLRD1 in the non-response network, both of which showed high prognostic performance with hazard ratios of 4.12 and 3.66, respectively. Remarkably, ETS1, GATA2, AR, YBX1, and FOXP3 were found to be important transcription factors in both networks. The prognostic indicators reported here could be considered as a resource for identifying tumorigenesis and chemoresistance to farnesyltransferase inhibitor. They could help identify important research directions for the development of new prognostic and therapeutic techniques for AML.


Asunto(s)
Leucemia Mieloide Aguda , Humanos , Farnesiltransferasa/genética , Farnesiltransferasa/uso terapéutico , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Pronóstico , Perfilación de la Expresión Génica/métodos , Inhibidores Enzimáticos/uso terapéutico , Factores de Transcripción/genética , Biomarcadores de Tumor/genética
16.
Target Oncol ; 18(5): 643-655, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37665491

RESUMEN

Head and neck squamous cell carcinomas (HNSCCs) are often associated with poor outcomes, due at least in part to the limited number of treatment options available for those patients who develop recurrent and/or metastatic disease (R/M HNSCC). Even with the recent validation and approval of immunotherapies in the first-line setting for these patients, the need for the development of new and alternative precision medicine strategies with survival benefit is clear. Oncogenic alterations in the HRAS (Harvey rat sarcoma virus) proto-oncogene are seen in approximately 4-8% of R/M HNSCC tumors. Recently, several preclinical and clinical advancements have been made in the implementation of small-molecule inhibitors that block post-translational farnesylation of HRas, thereby abrogating its downstream oncogenic activity. In this review, we focus on the biology of wild-type and mutant HRas signaling in HNSCC, and rationale for use and outcomes of farnesyltransferase inhibitors in patients with HRAS-mutant tumors.


Asunto(s)
Neoplasias de Cabeza y Cuello , Proteínas Proto-Oncogénicas p21(ras) , Humanos , Inhibidores Enzimáticos , Farnesiltransferasa , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Transducción de Señal , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico
17.
J Immunol ; 211(4): 527-538, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37449905

RESUMEN

IgE-mediated mast cell activation is a driving force in allergic disease in need of novel interventions. Statins, long used to lower serum cholesterol, have been shown in multiple large-cohort studies to reduce asthma severity. We previously found that statins inhibit IgE-induced mast cell function, but these effects varied widely among mouse strains and human donors, likely due to the upregulation of the statin target, 3-hydroxy-3-methylgutaryl-CoA reductase. Statin inhibition of mast cell function appeared to be mediated not by cholesterol reduction but by suppressing protein isoprenylation events that use cholesterol pathway intermediates. Therefore, we sought to circumvent statin resistance by targeting isoprenylation. Using genetic depletion of the isoprenylation enzymes farnesyltransferase and geranylgeranyl transferase 1 or their substrate K-Ras, we show a significant reduction in FcεRI-mediated degranulation and cytokine production. Furthermore, similar effects were observed with pharmacological inhibition with the dual farnesyltransferase and geranylgeranyl transferase 1 inhibitor FGTI-2734. Our data indicate that both transferases must be inhibited to reduce mast cell function and that K-Ras is a critical isoprenylation target. Importantly, FGTI-2734 was effective in vivo, suppressing mast cell-dependent anaphylaxis, allergic pulmonary inflammation, and airway hyperresponsiveness. Collectively, these findings suggest that K-Ras is among the isoprenylation substrates critical for FcεRI-induced mast cell function and reveal isoprenylation as a new means of targeting allergic disease.


Asunto(s)
Anafilaxia , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Ratones , Humanos , Animales , Receptores de IgE/metabolismo , Inhibidores de Hidroximetilglutaril-CoA Reductasas/metabolismo , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Farnesiltransferasa/metabolismo , Mastocitos/metabolismo , Anafilaxia/metabolismo , Transducción de Señal , Degranulación de la Célula , Inmunoglobulina E/metabolismo , Inflamación/metabolismo , Colesterol/metabolismo , Prenilación
18.
Int J Mol Sci ; 24(14)2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37511305

RESUMEN

Inflammatory processes play major roles in carcinogenesis and the progression of hepatocellular carcinoma (HCC) derived from non-alcoholic steatohepatitis (NASH). But, there are no therapies for NASH-related HCC, especially focusing on these critical steps. Previous studies have reported that farnesyltransferase inhibitors (FTIs) have anti-inflammatory and anti-tumor effects. However, the influence of FTIs on NASH-related HCC has not been elucidated. In hepatoblastoma and HCC cell lines, HepG2, Hep3B, and Huh-7, we confirmed the expression of hypoxia-inducible factor (HIF)-1α, an accelerator of tumor aggressiveness and the inflammatory response. We established NASH-related HCC models under inflammation and free fatty acid burden and confirmed that HIF-1α expression was increased under both conditions. Tipifarnib, which is an FTI, strongly suppressed increased HIF-1α, inhibited cell proliferation, and induced apoptosis. Simultaneously, intracellular interleukin-6 as an inflammation marker was increased under both conditions and significantly suppressed by tipifarnib. Additionally, tipifarnib suppressed the expression of phosphorylated nuclear factor-κB and transforming growth factor-ß. Finally, in a NASH-related HCC mouse model burdened with diethylnitrosamine and a high-fat diet, tipifarnib significantly reduced tumor nodule formation in association with decreased serum interleukin-6. In conclusion, tipifarnib has anti-tumor and anti-inflammatory effects in a NASH-related HCC model and may be a promising new agent to treat this disease.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Carcinoma Hepatocelular/metabolismo , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Farnesiltransferasa , Interleucina-6 , Subunidad alfa del Factor 1 Inducible por Hipoxia , Inhibidores Enzimáticos , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Inflamación/tratamiento farmacológico , Línea Celular Tumoral
19.
New Phytol ; 239(6): 2292-2306, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37381102

RESUMEN

Carotenoids are photoprotectant pigments and precursors of hormones such as strigolactones (SL). Carotenoids are produced in plastids from geranylgeranyl diphosphate (GGPP), which is diverted to the carotenoid pathway by phytoene synthase (PSY). In tomato (Solanum lycopersicum), three genes encode plastid-targeted GGPP synthases (SlG1 to SlG3) and three genes encode PSY isoforms (PSY1 to PSY3). Here, we investigated the function of SlG1 by generating loss-of-function lines and combining their metabolic and physiological phenotyping with gene co-expression and co-immunoprecipitation analyses. Leaves and fruits of slg1 lines showed a wild-type phenotype in terms of carotenoid accumulation, photosynthesis, and development under normal growth conditions. In response to bacterial infection, however, slg1 leaves produced lower levels of defensive GGPP-derived diterpenoids. In roots, SlG1 was co-expressed with PSY3 and other genes involved in SL production, and slg1 lines grown under phosphate starvation exuded less SLs. However, slg1 plants did not display the branched shoot phenotype observed in other SL-defective mutants. At the protein level, SlG1 physically interacted with the root-specific PSY3 isoform but not with PSY1 and PSY2. Our results confirm specific roles for SlG1 in producing GGPP for defensive diterpenoids in leaves and carotenoid-derived SLs (in combination with PSY3) in roots.


Asunto(s)
Diterpenos , Solanum lycopersicum , Solanum lycopersicum/genética , Geranilgeranil-Difosfato Geranilgeraniltransferasa/genética , Geranilgeranil-Difosfato Geranilgeraniltransferasa/metabolismo , Farnesiltransferasa , Carotenoides/metabolismo , Isoformas de Proteínas , Hojas de la Planta/metabolismo
20.
Sci Rep ; 13(1): 8422, 2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-37225771

RESUMEN

Acquisition of novel functions caused by gene duplication may be important for termite social evolution. To clarify this possibility, additional evidence is needed. An important example is takeout, encoding juvenile hormone binding protein. We identified 25 takeouts in the termite Reticulitermes speratus genome. RNA-seq revealed that many genes were highly expressed in specific castes. Two novel paralogs (RsTO1, RsTO2) were tandemly aligned in the same scaffold. Real-time qPCR indicated that RsTO1 and RsTO2 were highly expressed in queens and soldiers, respectively. Moreover, the highest RsTO1 expression was observed in alates during queen formation. These patterns were different from vitellogenins, encoding egg-yolk precursors, which were highly expressed in queens than alates. In situ hybridization showed that RsTO1 mRNA was localized in the alate-frontal gland, indicating that RsTO1 binds with secretions probably used for the defence during swarming flight. In contrast, increased RsTO2 expression was observed approximately 1 week after soldier differentiation. Expression patterns of geranylgeranyl diphosphate synthase, whose product functions in the terpenoid synthesis, were similar to RsTO2 expression. In situ hybridization indicated RsTO2-specific mRNA signals in the soldier-frontal gland. RsTO2 may interact with terpenoids, with a soldier-specific defensive function. It may provide additional evidence for functionalization after gene duplication in termites.


Asunto(s)
Isópteros , Animales , Isópteros/genética , Yema de Huevo , Farnesiltransferasa , Duplicación de Gen , ARN Mensajero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA