Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.131
1.
J Transl Med ; 22(1): 529, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38831460

BACKGROUND: Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a debilitating illness medically unexplained, affecting approximately 1% of the global population. Due to the subjective complaint, assessing the exact severity of fatigue is a clinical challenge, thus, this study aimed to produce comprehensive features of fatigue severity in ME/CFS patients. METHODS: We systematically extracted the data for fatigue levels of participants in randomized controlled trials (RCTs) targeting ME/CFS from PubMed, Cochrane Library, Web of Science, and CINAHL throughout January 31, 2024. We normalized each different measurement to a maximum 100-point scale and performed a meta-analysis to assess fatigue severity by subgroups of age, fatigue domain, intervention, case definition, and assessment tool, respectively. RESULTS: Among the total of 497 relevant studies, 60 RCTs finally met our eligibility criteria, which included a total of 7088 ME/CFS patients (males 1815, females 4532, and no information 741). The fatigue severity of the whole 7,088 patients was 77.9 (95% CI 74.7-81.0), showing 77.7 (95% CI 74.3-81.0) from 54 RCTs in 6,706 adults and 79.6 (95% CI 69.8-89.3) from 6 RCTs in 382 adolescents. Regarding the domain of fatigue, 'cognitive' (74.2, 95% CI 65.4-83.0) and 'physical' fatigue (74.3, 95% CI 68.3-80.3) were a little higher than 'mental' fatigue (70.1, 95% CI 64.4-75.8). The ME/CFS participants for non-pharmacological intervention (79.1, 95% CI 75.2-83.0) showed a higher fatigue level than those for pharmacological intervention (75.5, 95% CI 70.0-81.0). The fatigue levels of ME/CFS patients varied according to diagnostic criteria and assessment tools adapted in RCTs, likely from 54.2 by ICC (International Consensus Criteria) to 83.6 by Canadian criteria and 54.2 by MFS (Mental Fatigue Scale) to 88.6 by CIS (Checklist Individual Strength), respectively. CONCLUSIONS: This systematic review firstly produced comprehensive features of fatigue severity in patients with ME/CFS. Our data will provide insights for clinicians in diagnosis, therapeutic assessment, and patient management, as well as for researchers in fatigue-related investigations.


Fatigue Syndrome, Chronic , Fatigue , Randomized Controlled Trials as Topic , Severity of Illness Index , Humans , Fatigue Syndrome, Chronic/physiopathology , Fatigue Syndrome, Chronic/therapy , Fatigue/physiopathology , Male , Female , Adult , Middle Aged
2.
Trials ; 25(1): 321, 2024 May 15.
Article En | MEDLINE | ID: mdl-38750586

BACKGROUND: Physiotherapy interventions effectively improved fatigue and physical functioning in non-COVID patients with myalgic encephalomyelitis or chronic fatigue syndrome (ME/CFS). There is a research gap on the effectiveness of physiotherapy interventions versus drug management on ME/CFS in post-COVID-19 conditions (PCC). METHODS: We planned a three-arm prospective randomized control trial on 135 PCC cases with ME/CFS who are diagnosed between 20 November 2023 and 20 May 2024 from a population-based cohort. The study aims to determine the effectiveness of physiotherapy interventions as adapted physical activity and therapeutic exercise (APTE) provided in institution-based care versus telemedicine compared with drug management (DM). Participants will be assigned to three groups with the concealed location process and block randomization with an enrollment ratio of 1:1:1. The post-treatment evaluation will be employed after 2 months of interventions, and follow-up will be taken after 6 months post-intervention. The Chalder fatigue scale will measure the primary outcome of fatigue. SF-36 and the disability-adjusted life years (DALYs) will measure the secondary outcome of physical functioning and episodic disability. DISCUSSION: This study will address the research gap to determine the appropriate approach of physiotherapy or drug management for ME/CFS in PCC cases. The future direction of the study will contribute to developing evidence-based practice in post-COVID-19 condition rehabilitation. TRIAL REGISTRATION: The trial is registered prospectively from a primary Clinical Trial Registry side of WHO CTRI/2024/01/061987. Registered on 29 January 2024.


COVID-19 , Fatigue Syndrome, Chronic , Physical Therapy Modalities , Randomized Controlled Trials as Topic , SARS-CoV-2 , Humans , COVID-19/complications , COVID-19/therapy , Fatigue Syndrome, Chronic/therapy , Fatigue Syndrome, Chronic/physiopathology , Prospective Studies , Treatment Outcome , Fatigue/therapy , Disability Evaluation , Exercise Therapy/methods , Telemedicine/methods , Adult
3.
Viruses ; 16(4)2024 04 08.
Article En | MEDLINE | ID: mdl-38675914

Understanding the pathophysiology of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is critical for advancing treatment options. This review explores the novel hypothesis that a herpesvirus infection of endothelial cells (ECs) may underlie ME/CFS symptomatology. We review evidence linking herpesviruses to persistent EC infection and the implications for endothelial dysfunction, encompassing blood flow regulation, coagulation, and cognitive impairment-symptoms consistent with ME/CFS and Long COVID. This paper provides a synthesis of current research on herpesvirus latency and reactivation, detailing the impact on ECs and subsequent systemic complications, including latent modulation and long-term maladaptation. We suggest that the chronicity of ME/CFS symptoms and the multisystemic nature of the disease may be partly attributable to herpesvirus-induced endothelial maladaptation. Our conclusions underscore the necessity for further investigation into the prevalence and load of herpesvirus infection within the ECs of ME/CFS patients. This review offers conceptual advances by proposing an endothelial infection model as a systemic mechanism contributing to ME/CFS, steering future research toward potentially unexplored avenues in understanding and treating this complex syndrome.


Endothelial Cells , Fatigue Syndrome, Chronic , Herpesviridae Infections , Humans , Endothelial Cells/virology , Fatigue Syndrome, Chronic/virology , Fatigue Syndrome, Chronic/physiopathology , Herpesviridae/physiology , Herpesviridae Infections/virology , Virus Latency , Post-Acute COVID-19 Syndrome/pathology , Post-Acute COVID-19 Syndrome/physiopathology
4.
Brain Res Bull ; 212: 110951, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38642899

Central fatigue is a common pathological state characterized by psychological loss of drive, lack of appetite, drowsiness, and decreased psychic alertness. The mechanism underlying central fatigue is still unclear, and there is no widely accepted successful animal model that fully represents human characteristics. We aimed to construct a more clinically relevant and comprehensive animal model of central fatigue. In this study, we utilized the Modified Multiple Platform Method (MMPM) combined with alternate-day fasting (ADF) to create the animal model. The model group rats are placed on a stationary water environment platform for sleep deprivation at a fixed time each day, and they were subjected to ADF treatment. On non-fasting days, the rats were allowed unrestricted access to food. This process was sustained over a period of 21 days. We evaluated the model using behavioral assessments such as open field test, elevated plus maze test, tail suspension test, Morris water maze test, grip strength test, and forced swimming test, as well as serum biochemical laboratory indices. Additionally, we conducted pathological observations of the hippocampus and quadriceps muscle tissues, transmission electron microscope observation of mitochondrial ultrastructure, and assessment of mitochondrial energy metabolism and oxidative stress-related markers. The results revealed that the model rats displayed emotional anomalies resembling symptoms of depression and anxiety, decreased exploratory behavior, decline in learning and memory function, and signs of skeletal muscle fatigue, successfully replicating human features of negative emotions, cognitive decline, and physical fatigue. Pathological damage and mitochondrial ultrastructural alterations were observed in the hippocampus and quadriceps muscle tissues, accompanied by abnormal mitochondrial energy metabolism and oxidative stress in the form of decreased ATP and increased ROS levels. In conclusion, our ADF+MMPM model comprehensively replicated the features of human central fatigue and is a promising platform for preclinical research. Furthermore, the pivotal role of mitochondrial energy metabolism and oxidative stress damage in the occurrence of central fatigue in the hippocampus and skeletal muscle tissues was corroborated.


Disease Models, Animal , Animals , Rats , Male , Rats, Sprague-Dawley , Oxidative Stress/physiology , Hippocampus/metabolism , Humans , Fatigue/physiopathology , Sleep Deprivation , Mitochondria/metabolism , Fatigue Syndrome, Chronic/physiopathology , Fasting/physiology , Muscle, Skeletal , Maze Learning/physiology
5.
Am J Physiol Regul Integr Comp Physiol ; 326(6): R599-R608, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38682242

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) with orthostatic intolerance (OI) is characterized by neurocognitive deficits perhaps related to upright hypocapnia and loss of cerebral autoregulation (CA). We performed N-back neurocognition testing and calculated the phase synchronization index (PhSI) between arterial pressure (AP) and cerebral blood velocity (CBV) as a time-dependent measurement of cerebral autoregulation in 11 control (mean age = 24.1 yr) and 15 patients with ME/CFS (mean age = 21.8 yr). All patients with ME/CFS had postural tachycardia syndrome (POTS). A 10-min 60° head-up tilt (HUT) significantly increased heart rate (109.4 ± 3.9 vs. 77.2 ± 1.6 beats/min, P < 0.05) and respiratory rate (20.9 ± 1.7 vs. 14.2 ± 1.2 breaths/min, P < 0.05) and decreased end-tidal CO2 (ETCO2; 33.9 ± 1.1 vs. 42.8 ± 1.2 Torr, P < 0.05) in ME/CFS versus control. In ME/CFS, HUT significantly decreased CBV compared with control (-22.5% vs. -8.7%, P < 0.005). To mitigate the orthostatic CBV reduction, we administered supplemental CO2, phenylephrine, and acetazolamide and performed N-back testing supine and during HUT. Only phenylephrine corrected the orthostatic decrease in neurocognition by reverting % correct n = 4 N-back during HUT in ME/CFS similar to control (ME/CFS = 38.5 ± 5.5 vs. ME/CFS + PE= 65.6 ± 5.7 vs. Control 56.9 ± 7.5). HUT in ME/CFS resulted in increased PhSI values indicating decreased CA. Although CO2 and acetazolamide had no effect on PhSI in ME/CFS, phenylephrine caused a significant reduction in PhSI (ME/CFS = 0.80 ± 0.03 vs. ME/CFS + PE= 0.69 ± 0.04, P < 0.05) and improved cerebral autoregulation. Thus, PE improved neurocognitive function in patients with ME/CFS, perhaps related to improved neurovascular coupling, cerebral autoregulation, and maintenance of CBV.NEW & NOTEWORTHY We evaluated cognitive function before and after CO2, acetazolamide, and phenylephrine, which mitigate orthostatic reductions in cerebral blood velocity. Neither CO2 nor acetazolamide affected N-back testing (% correct answers) during an orthostatic challenge. Only phenylephrine improved upright N-back performance in ME/CFS, as it both blocked hyperventilation and increased CO2 significantly compared with those untreated. And only phenylephrine resulted in improved PSI values in both ME/CFS and control while upright, suggesting improved cerebral autoregulation.


Blood Pressure , Cerebrovascular Circulation , Orthostatic Intolerance , Phenylephrine , Humans , Cerebrovascular Circulation/drug effects , Phenylephrine/pharmacology , Female , Male , Orthostatic Intolerance/physiopathology , Adult , Young Adult , Blood Flow Velocity/drug effects , Blood Pressure/drug effects , Fatigue Syndrome, Chronic/physiopathology , Fatigue Syndrome, Chronic/drug therapy , Tilt-Table Test , Cognition/drug effects , Homeostasis , Case-Control Studies , Heart Rate/drug effects , Arterial Pressure/drug effects , Postural Orthostatic Tachycardia Syndrome/physiopathology , Postural Orthostatic Tachycardia Syndrome/drug therapy
6.
JAMA ; 331(14): 1169-1171, 2024 04 09.
Article En | MEDLINE | ID: mdl-38488784

This Medical News article discusses a new US National Institutes of Health study of patients with the chronic­and chronically misunderstood­disease.


Fatigue Syndrome, Chronic , Humans , Fatigue Syndrome, Chronic/diagnosis , Fatigue Syndrome, Chronic/physiopathology , Post-Infectious Disorders/diagnosis , Post-Infectious Disorders/physiopathology , Clinical Studies as Topic
7.
Psychol Med ; 54(8): 1735-1748, 2024 Jun.
Article En | MEDLINE | ID: mdl-38193344

BACKGROUND: Fatigue is a central feature of myalgic encephalomyelitis or chronic fatigue syndrome (ME/CFS), but many ME/CFS patients also report comorbid pain symptoms. It remains unclear whether these symptoms are related to similar or dissociable brain networks. This study used resting-state fMRI to disentangle networks associated with fatigue and pain symptoms in ME/CFS patients, and to link changes in those networks to clinical improvements following cognitive behavioral therapy (CBT). METHODS: Relationships between pain and fatigue symptoms and cortico-cortical connectivity were assessed within ME/CFS patients at baseline (N = 72) and after CBT (N = 33) and waiting list (WL, N = 18) and compared to healthy controls (HC, N = 29). The analyses focused on four networks previously associated with pain and/or fatigue, i.e. the fronto-parietal network (FPN), premotor network (PMN), somatomotor network (SMN), and default mode network (DMN). RESULTS: At baseline, variation in pain and fatigue symptoms related to partially dissociable brain networks. Fatigue was associated with higher SMN-PMN connectivity and lower SMN-DMN connectivity. Pain was associated with lower PMN-DMN connectivity. CBT improved SMN-DMN connectivity, compared to WL. Larger clinical improvements were associated with larger increases in frontal SMN-DMN connectivity. No CBT effects were observed for PMN-DMN or SMN-PMN connectivity. CONCLUSIONS: These results provide insight into the dissociable neural mechanisms underlying fatigue and pain symptoms in ME/CFS and how they are affected by CBT in successfully treated patients. Further investigation of how and in whom behavioral and biomedical treatments affect these networks is warranted to improve and individualize existing or new treatments for ME/CFS.


Cognitive Behavioral Therapy , Fatigue Syndrome, Chronic , Magnetic Resonance Imaging , Humans , Fatigue Syndrome, Chronic/therapy , Fatigue Syndrome, Chronic/physiopathology , Female , Cognitive Behavioral Therapy/methods , Male , Adult , Middle Aged , Fatigue/therapy , Fatigue/physiopathology , Pain/physiopathology , Nerve Net/physiopathology , Nerve Net/diagnostic imaging , Brain/physiopathology , Brain/diagnostic imaging
8.
Int J Mol Sci ; 24(5)2023 Mar 02.
Article En | MEDLINE | ID: mdl-36902264

There is accumulating evidence of autonomic dysfunction in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS); however, little is known about its association with circadian rhythms and endothelial dysfunction. This study aimed to explore the autonomic responses through an orthostatic test and analysis of the peripheral skin temperature variations and vascular endothelium state in ME/CFS patients. Sixty-seven adult female ME/CFS patients and 48 healthy controls were enrolled. Demographic and clinical characteristics were assessed using validated self-reported outcome measures. Postural changes in blood pressure, heart rate, and wrist temperature were recorded during the orthostatic test. Actigraphy during one week was used to determine the 24-h profile of peripheral temperature and activity. Circulating endothelial biomarkers were measured as indicators of endothelial functioning. Results showed that ME/CFS patients presented higher blood pressure and heart rate values than healthy controls in the supine and standing position (p < 0.05 for both), and also a higher amplitude of the activity rhythm (p < 0.01). Circulating levels of endothelin-1 (ET-1) and vascular cell adhesion molecule-1 (VCAM-1) were significantly higher in ME/CFS (p < 0.05). In ME/CFS, ET-1 levels were associated with the stability of the temperature rhythm (p < 0.01), and also with the self-reported questionnaires (p < 0.001). This suggests that ME/CFS patients exhibited modifications in circadian rhythm and hemodynamic measures, which are associated with endothelial biomarkers (ET-1 and VCAM-1). Future investigation in this area is needed to assess dysautonomia and vascular tone abnormalities, which may provide potential therapeutic targets for ME/CFS.


Circadian Rhythm , Endothelin-1 , Fatigue Syndrome, Chronic , Primary Dysautonomias , Skin Temperature , Adult , Female , Humans , Biomarkers , Endothelin-1/physiology , Fatigue Syndrome, Chronic/physiopathology , Primary Dysautonomias/physiopathology , Vascular Cell Adhesion Molecule-1
9.
Neurosci Biobehav Rev ; 142: 104902, 2022 11.
Article En | MEDLINE | ID: mdl-36202253

Coronavirus 2 is responsible for Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2), and the main sequela is persistent fatigue. Post-viral fatigue is common and affects patients with mild, asymptomatic coronavirus disease-2019 (COVID-19). However, the exact mechanisms involved in developing post-COVID-19 fatigue remain unclear. Furthermore, physical and cognitive impairments in these individuals have been widely described. Therefore, this review aims to summarize and propose tools from a multifaceted perspective to assess COVID-19 infection. Herein, we point out the instruments that can be used to assess fatigue in long-term COVID-19: fatigue in a subjective manner or fatigability in an objective manner. For physical and mental fatigue, structured questionnaires were used to assess perceived symptoms, and physical and cognitive performance assessment tests were used to measure fatigability using reduced performance.


COVID-19 , Fatigue , Humans , Cognition , COVID-19/complications , COVID-19/diagnosis , Fatigue Syndrome, Chronic/diagnosis , Fatigue Syndrome, Chronic/etiology , Fatigue Syndrome, Chronic/physiopathology , SARS-CoV-2 , Symptom Assessment , Fatigue/diagnosis , Fatigue/etiology , Fatigue/physiopathology , Mental Fatigue/diagnosis , Mental Fatigue/etiology , Mental Fatigue/physiopathology , Surveys and Questionnaires , Neuropsychological Tests , Post-Acute COVID-19 Syndrome
11.
J Am Coll Cardiol ; 78(10): 1056-1067, 2021 09 07.
Article En | MEDLINE | ID: mdl-34474739

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a medically unexplained illness characterized by severe fatigue limiting normal daily activities for at least 6 months accompanied by problems with unrefreshing sleep, exacerbation of symptoms following physical or mental efforts (postexertional malaise [PEM]), and either cognitive reports or physiological evidence of orthostatic intolerance in the form of either orthostatic tachycardia and/or hypocapnia. Although rarely considered to have cardiac dysfunction, ME/CFS patients frequently have reduced stroke volume with a significant inverse relation between cardiac output and PEM severity. Magnetic resonance imaging of ME/CFS patients compared with normal control subjects found significantly reduced stroke, end-systolic, and end-diastolic volumes together with reduced end-diastolic wall mass. Another cardiovascular abnormality is reduced nocturnal blood pressure assessed by 24-hour monitoring. Autonomic dysfunction is also frequently observed with postural orthostatic tachycardia and/or hypocapnia. Two consecutive cardiopulmonary stress tests may provide metabolic data substantiating PEM.


Cardiovascular Diseases/etiology , Fatigue Syndrome, Chronic/complications , Orthostatic Intolerance/etiology , Blood Pressure , Blood Volume , Fatigue Syndrome, Chronic/physiopathology , Humans , Stroke Volume
12.
J Clin Endocrinol Metab ; 106(12): e5147-e5155, 2021 11 19.
Article En | MEDLINE | ID: mdl-34254637

CONTEXT: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a severe chronic illness that reduces the quality of life. A potential role of neuroendocrine autoimmune dysfunction has been hypothesized. OBJECTIVE: This work aims to investigate the occurrence of antipituitary (APA) and antihypothalamic (AHA) antibodies and possible related hypothalamic/pituitary dysfunctions in ME/CSF patients. METHODS: This is a case-control study conducted in a university hospital setting (Stanford, California, USA; and Naples, Italy). Thirty women with ME/CSF (group 1) diagnosed according to Fukuda, Canadian, and Institute of Medicine criteria, at Stanford University, were enrolled and compared with 25 age-matched healthy controls. APA and AHA were detected by immunofluorescence; moreover, we investigated hormonal secretions of anterior pituitary and respective target glands. APA and AHA titers both were assessed and the prevalence of pituitary hormone deficiencies was also investigated. RESULTS: Patients in group 1 showed a high prevalence of AHA (33%) and APA (56%) and significantly lower levels of adrenocorticotropin (ACTH)/cortisol, and growth hormone (GH) peak/insulin-like growth factor-1 (IGF-1) vs controls (all AHA/APA negative). Patients in group 1A (13 patients positive at high titers, ≥ 1:32) showed ACTH/cortisol and GH peak/IGF-1 levels significantly lower and more severe forms of ME/CFS with respect to patients in group 1B (7 positive at middle/low titers, 1:16-1:8) and 1C (10 antibody-negative patients). CONCLUSION: Both AHA and/or APA at high titers were associated with hypothalamic/pituitary dysfunction, suggesting that hypothalamic/pituitary autoimmunity may play an important role in the manifestations of ME/CFS, especially in its more severe forms.


Autoantibodies/blood , Autoimmune Diseases/epidemiology , Biomarkers/blood , Fatigue Syndrome, Chronic/physiopathology , Hypothalamus/pathology , Pituitary Diseases/epidemiology , Adrenocorticotropic Hormone/blood , Adult , Autoantibodies/immunology , Autoimmune Diseases/blood , Autoimmune Diseases/immunology , Autoimmune Diseases/pathology , Case-Control Studies , Female , Follow-Up Studies , Human Growth Hormone/blood , Humans , Hypothalamus/immunology , Hypothalamus/metabolism , Insulin-Like Growth Factor I/analysis , Pituitary Diseases/blood , Pituitary Diseases/immunology , Pituitary Diseases/pathology , Prognosis , United States/epidemiology , Young Adult
13.
Biomolecules ; 11(7)2021 06 29.
Article En | MEDLINE | ID: mdl-34209852

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a heterogeneous, debilitating, and complex disease. Along with disabling fatigue, ME/CFS presents an array of other core symptoms, including autonomic nervous system (ANS) dysfunction, sustained inflammation, altered energy metabolism, and mitochondrial dysfunction. Here, we evaluated patients' symptomatology and the mitochondrial metabolic parameters in peripheral blood mononuclear cells (PBMCs) and plasma from a clinically well-characterised cohort of six ME/CFS patients compared to age- and gender-matched controls. We performed a comprehensive cellular assessment using bioenergetics (extracellular flux analysis) and protein profiles (quantitative mass spectrometry-based proteomics) together with self-reported symptom measures of fatigue, ANS dysfunction, and overall physical and mental well-being. This ME/CFS cohort presented with severe fatigue, which correlated with the severity of ANS dysfunction and overall physical well-being. PBMCs from ME/CFS patients showed significantly lower mitochondrial coupling efficiency. They exhibited proteome alterations, including altered mitochondrial metabolism, centred on pyruvate dehydrogenase and coenzyme A metabolism, leading to a decreased capacity to provide adequate intracellular ATP levels. Overall, these results indicate that PBMCs from ME/CFS patients have a decreased ability to fulfill their cellular energy demands.


Fatigue Syndrome, Chronic/blood , Fatigue Syndrome, Chronic/immunology , Fatigue Syndrome, Chronic/physiopathology , Adult , Blood Cells/cytology , Cohort Studies , Energy Metabolism/genetics , Energy Metabolism/physiology , Female , Gene Expression/genetics , Gene Expression Profiling/methods , Humans , Leukocytes, Mononuclear/cytology , Middle Aged , Mitochondria/metabolism , Pilot Projects , Proteome/metabolism , Proteomics/methods
14.
Front Immunol ; 12: 687806, 2021.
Article En | MEDLINE | ID: mdl-34326841

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a debilitating multi-systemic chronic condition of unknown aetiology classified as an immune dysfunction syndrome and neurological disorder. The discovery of the widely expressed Transient Receptor Potential Melastatin 3 (TRPM3) as a nociceptor channel substantially targeted by certain opioid receptors, and its implication in calcium (Ca2+)-dependent Natural Killer (NK) cell immune functions has raised the possibility that TRPM3 may be pharmacologically targeted to treat characteristic symptoms of ME/CFS. Naltrexone hydrochloride (NTX) acts as an antagonist to the mu (µ)-opioid receptor thus negating its inhibitory function on TRPM3. Based on the benefits reported by patients on their symptoms, low dose NTX (LDN, 3.0-5.0 mg/day) treatment seems to offer some potential benefit suggesting that its effect may be targeted towards the pathomechanism of ME/CFS. As there is no literature confirming the efficacy of LDN for ME/CFS patients in vitro, this study investigates the potential therapeutic effect of LDN in ME/CFS patients. TRPM3 ion channel activity was measured after modulation with Pregnenolone sulfate (PregS) and ononetin in NK cells on 9 ME/CFS patients taking LDN and 9 age- and sex-matched healthy controls using whole-cell patch-clamp technique. We report that ME/CFS patients taking LDN have restored TRPM3-like ionic currents in NK cells. Small ionic currents with a typical TRPM3-like outward rectification were measured after application of PregS, a TRPM3-agonist, in NK cells from patients taking LDN. Additionally, PregS-evoked ionic currents through TRPM3 were significantly modulated by ononetin, a TRPM3-antagonist, in NK cells from ME/CFS patients taking LDN. These data support the hypothesis that LDN may have potential as a treatment for ME/CFS by characterising the underlying regulatory mechanisms of LDN treatment involving TRPM3 and opioid receptors in NK cells. Finally, this study may serve for the repurpose of marketed drugs, as well as support the approval of prospective randomized clinical studies on the role and dose of NTX in treating ME/CFS patients.


Fatigue Syndrome, Chronic/drug therapy , Killer Cells, Natural/drug effects , Naltrexone/administration & dosage , Narcotic Antagonists/administration & dosage , Receptors, Opioid, mu/antagonists & inhibitors , TRPM Cation Channels/drug effects , Adult , Calcium Signaling/drug effects , Case-Control Studies , Drug Repositioning , Fatigue Syndrome, Chronic/immunology , Fatigue Syndrome, Chronic/metabolism , Fatigue Syndrome, Chronic/physiopathology , Female , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Lymphocyte Activation/drug effects , Male , Membrane Potentials/drug effects , Middle Aged , Naltrexone/adverse effects , Narcotic Antagonists/adverse effects , Receptors, Opioid, mu/metabolism , TRPM Cation Channels/metabolism , Treatment Outcome
15.
Trends Mol Med ; 27(9): 895-906, 2021 09.
Article En | MEDLINE | ID: mdl-34175230

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can cause chronic and acute disease. Postacute sequelae of SARS-CoV-2 infection (PASC) include injury to the lungs, heart, kidneys, and brain that may produce a variety of symptoms. PASC also includes a post-coronavirus disease 2019 (COVID-19) syndrome ('long COVID') with features that can follow other acute infectious diseases and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Here we summarize what is known about the pathogenesis of ME/CFS and of 'acute' COVID-19, and we speculate that the pathogenesis of post-COVID-19 syndrome in some people may be similar to that of ME/CFS. We propose molecular mechanisms that might explain the fatigue and related symptoms in both illnesses, and we suggest a research agenda for both ME/CFS and post-COVID-19 syndrome.


COVID-19/complications , Fatigue Syndrome, Chronic/etiology , COVID-19/etiology , COVID-19/physiopathology , Energy Metabolism , Fatigue Syndrome, Chronic/physiopathology , Gastrointestinal Microbiome , Humans , Nervous System/physiopathology , Post-Acute COVID-19 Syndrome
16.
Sci Rep ; 11(1): 10604, 2021 05 19.
Article En | MEDLINE | ID: mdl-34011981

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex disease characterized by unexplained debilitating fatigue. Although the etiology is unknown, evidence supports immunological abnormalities, such as persistent inflammation and immune-cell activation, in a subset of patients. Since the interplay between inflammation and vascular alterations is well-established in other diseases, endothelial dysfunction has emerged as another player in ME/CFS pathogenesis. Endothelial nitric oxide synthase (eNOS) generates nitric oxide (NO) that maintains endothelial homeostasis. eNOS is activated by silent information regulator 1 (Sirt1), an anti-inflammatory protein. Despite its relevance, no study has addressed the Sirt1/eNOS axis in ME/CFS. The interest in circulating microRNAs (miRs) as potential biomarkers in ME/CFS has increased in recent years. Accordingly, we analyze a set of miRs reported to modulate the Sirt1/eNOS axis using plasma from ME/CFS patients. Our results show that miR-21, miR-34a, miR-92a, miR-126, and miR-200c are jointly increased in ME/CFS patients compared to healthy controls. A similar finding was obtained when analyzing public miR data on peripheral blood mononuclear cells. Bioinformatics analysis shows that endothelial function-related signaling pathways are associated with these miRs, including oxidative stress and oxygen regulation. Interestingly, histone deacetylase 1, a protein responsible for epigenetic regulations, represented the most relevant node within the network. In conclusion, our study provides a basis to find endothelial dysfunction-related biomarkers and explore novel targets in ME/CFS.


Endothelium, Vascular/physiopathology , Fatigue Syndrome, Chronic/blood , Fatigue Syndrome, Chronic/genetics , MicroRNAs/blood , Adult , Discriminant Analysis , Fatigue Syndrome, Chronic/physiopathology , Female , Gene Expression Regulation , Gene Regulatory Networks , Humans , Leukocytes, Mononuclear/metabolism , Male , MicroRNAs/genetics , Middle Aged , Principal Component Analysis
17.
AACN Adv Crit Care ; 32(2): 188-194, 2021 Jun 15.
Article En | MEDLINE | ID: mdl-33942071

As COVID-19 continues to spread, with the United States surpassing 29 million cases, health care workers are beginning to see patients who have been infected with SARS-CoV-2 return seeking treatment for its longer-term physical and mental effects. The term long-haulers is used to identify patients who have not fully recovered from the illness after weeks or months. Although the acute symptoms of COVID-19 have been widely described, the longer-term effects are less well known because of the relatively short history of the pandemic. Symptoms may be due to persistent chronic inflammation (eg, fatigue), sequelae of organ damage (eg, pulmonary fibrosis, chronic kidney disease), and hospitalization and social isolation (eg, muscle wasting, malnutrition). Health care providers are instrumental in developing a comprehensive plan for identifying and managing post-COVID-19 complications. This article addresses the possible etiology of postviral syndromes and describes reported symptoms and suggested management of post-COVID syndrome.


COVID-19/complications , Fatigue Syndrome, Chronic/etiology , Fatigue Syndrome, Chronic/nursing , Fatigue Syndrome, Chronic/physiopathology , Practice Guidelines as Topic , Subacute Care/standards , Survivors/psychology , Adult , Aged , Aged, 80 and over , Curriculum , Education, Medical, Continuing , Female , Humans , Male , Middle Aged , Pandemics , SARS-CoV-2 , United States
18.
Sci Rep ; 11(1): 7520, 2021 04 06.
Article En | MEDLINE | ID: mdl-33824394

Chronic Fatigue Syndrome (CFS) has been defined as unexplained relapsing or persistent fatigue for at least 6 consecutive months. Immuno-inflammatory pathway, bacterial infection, and other causes play essential roles in CFS. Helicobacter pylori infection is one of the most common causes of foregut inflammation, leading to peptic ulcer disease (PUD). This study aimed to analyze the risk of CFS development between patients with and without PUD. Other related factors were also analyzed. We performed a retrospective, nationwide cohort study identifying patients with or without PUD respectively by analyzing the Longitudinal Health Insurance Database 2000 (LHID2000), Taiwan. The overall incidence of CFS was higher in the PUD cohort than in the non- PUD cohort (HR = 2.01, 95% CI = 1.75-2.30), with the same adjusted HR (aHR) when adjusting for age, sex, and comorbidities. The sex-specific PUD cohort to the non-PUD cohort relative risk of CFS was significant in both genders. The age-specific incidence of CFS showed incidence density increasing with age in both cohorts. There is an increased risk of developing CFS following PUD, especially in females and the aging population. Hopefully, these findings can prevent common infections from progressing to debilitating, chronic conditions such as CFS.


Fatigue Syndrome, Chronic/etiology , Peptic Ulcer/complications , Peptic Ulcer/epidemiology , Adult , Aged , Anti-Bacterial Agents/therapeutic use , Cohort Studies , Fatigue Syndrome, Chronic/physiopathology , Female , Helicobacter Infections/epidemiology , Helicobacter pylori , Humans , Incidence , Male , Middle Aged , Peptic Ulcer/physiopathology , Retrospective Studies , Risk Factors , Taiwan/epidemiology
19.
Chest ; 160(2): 642-651, 2021 08.
Article En | MEDLINE | ID: mdl-33577778

BACKGROUND: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) affects tens of millions worldwide; the causes of exertional intolerance are poorly understood. The ME/CFS label overlaps with postural orthostatic tachycardia (POTS) and fibromyalgia, and objective evidence of small fiber neuropathy (SFN) is reported in approximately 50% of POTS and fibromyalgia patients. RESEARCH QUESTION: Can invasive cardiopulmonary exercise testing (iCPET) and PGP9.5-immunolabeled lower-leg skin biopsies inform the pathophysiology of ME/CFS exertional intolerance and potential relationships with SFN? STUDY DESIGN AND METHODS: We analyzed 1,516 upright invasive iCPETs performed to investigate exertional intolerance. After excluding patients with intrinsic heart or lung disease and selecting those with right atrial pressures (RAP) <6.5 mm Hg, results from 160 patients meeting ME/CFS criteria who had skin biopsy test results were compared with 36 control subjects. Rest-to-peak changes in cardiac output (Qc) were compared with oxygen uptake (Qc/VO2 slope) to identify participants with low, normal, or high pulmonary blood flow by Qc/VO2 tertiles. RESULTS: During exercise, the 160 ME/CFS patients averaged lower RAP (1.9 ± 2 vs 8.3 ± 1.5; P < .0001) and peak VO2 (80% ± 21% vs 101.4% ± 17%; P < .0001) than control subjects. The low-flow tertile had lower peak Qc than the normal and high-flow tertiles (88.4% ± 19% vs 99.5% ± 23.8% vs 99.9% ± 19.5% predicted; P < .01). In contrast, systemic oxygen extraction was impaired in high-flow vs low- and normal-flow participants (0.74% ± 0.1% vs 0.88 ± 0.11 vs 0.86 ± 0.1; P < .0001) in association with peripheral left-to-right shunting. Among the 160 ME/CFS patient biopsies, 31% were consistent with SFN (epidermal innervation ≤5.0% of predicted; P < .0001). Denervation severity did not correlate with exertional measures. INTERPRETATION: These results identify two types of peripheral neurovascular dysregulation that are biologically plausible contributors to ME/CFS exertional intolerance-depressed Qc from impaired venous return, and impaired peripheral oxygen extraction. In patients with small-fiber pathology, neuropathic dysregulation causing microvascular dilation may limit exertion by shunting oxygenated blood from capillary beds and reducing cardiac return.


Exercise Test/methods , Fatigue Syndrome, Chronic/physiopathology , Small Fiber Neuropathy/physiopathology , Biopsy , Female , Humans , Male , Middle Aged , Phenotype
20.
Clin Neurophysiol ; 132(4): 967-974, 2021 04.
Article En | MEDLINE | ID: mdl-33639451

OBJECTIVE: Chronic fatigue syndrome (CFS) and fibromyalgia (FM) are disorders of unknown etiology and unclear pathophysiology, with overlapping symptoms of - especially muscular -fatigue and pain. Studies have shown increased muscle fiber conduction velocity (CV) in the non-painful muscles of FM patients. We investigated whether CFS patients also show CV abnormalities. METHODS: Females with CFS (n = 25), with FM (n = 22), and healthy controls (n = 21) underwent surface electromyography of the biceps brachii, loaded up to 20% of maximum strength, during short static contractions. The mean CV and motor unit potential (MUP) velocities with their statistical distribution were measured. RESULTS: The CV changes with force differed between CFS-group and both FM-group and controls (P = 0.01). The CV of the CFS-group increased excessively with force (P < 0.001), whereas that of the controls increased only slightly and non-significantly, and that of the FM-group did not increase at all. In the CFS-group, the number of MUPs conveying very high conduction velocities increased abundantly with force and the MUPs narrowed. CONCLUSION: Our results suggest disturbed muscle membrane function in CFS patients, in their motor units involved in low force generation. Central neural deregulation may contribute to this disturbance. SIGNIFICANCE: These findings help to detangle the underlying mechanisms of CFS.


Fatigue Syndrome, Chronic/physiopathology , Muscle Contraction/physiology , Muscle Fibers, Fast-Twitch/physiology , Muscle, Skeletal/physiopathology , Adult , Electromyography , Female , Humans , Middle Aged
...