Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 11.286
1.
ACS Appl Mater Interfaces ; 16(19): 25317-25332, 2024 May 15.
Article En | MEDLINE | ID: mdl-38706308

This investigation aimed to construct a bilayer scaffold integrating alginate and gelatin with nanobioactive glass (BG), recognized for their efficacy in tissue regeneration and drug delivery. Scaffolds, namely, alginate/gelatin (AG), alginate-/actonel gelatin (AGD), alginate actenol/gelatin-45S5 BG (4AGD), and alginate-actonel/gelatin-59S BG (5AGD), were assembled using a cost-effective freeze-drying method, followed by detailed structural investigation via powder X-ray diffraction as well as morphological characterization using field emission scanning electron microscopy (FESEM). FESEM revealed a honeycomb-like morphology with distinct pore sizes for nutrient, oxygen, and drug transport. The scaffolds evidently exhibited hemocompatibility, high porosity, good swelling capacity, and biodegradability. In vitro studies demonstrated sustained drug release, particularly for scaffolds containing actonel. In vivo tests showed that the bilayer scaffold promoted new bone formation, surpassing the control group in bone area increase. The interaction of the scaffold with collagen and released ions improved the osteoblastic function and bone volume fraction. The findings suggest that this bilayer scaffold could be beneficial for treating critical-sized bone defects, especially in the mandibular and femoral regions.


Femur , Glass , Mandible , Tissue Scaffolds , Tissue Scaffolds/chemistry , Animals , Glass/chemistry , Mandible/diagnostic imaging , Mandible/surgery , Mandible/drug effects , Femur/drug effects , Femur/diagnostic imaging , Femur/pathology , Gelatin/chemistry , Bone Regeneration/drug effects , Alginates/chemistry , Porosity , Humans , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Tissue Engineering
2.
Stem Cell Res Ther ; 15(1): 144, 2024 May 20.
Article En | MEDLINE | ID: mdl-38764077

BACKGROUND: The aim of this study was to evaluate potential synergistic effects of a single, local application of human umbilical cord MSC-derived sEVs in combination with a low dose of recombinant human rhBMP-2 to promote the regeneration of a metaphyseal femoral defect in an osteoporotic rat model. METHODS: 6 weeks after induction of osteoporosis by bilateral ventral ovariectomy and administration of a special diet, a total of 64 rats underwent a distal femoral metaphyseal osteotomy using a manual Gigli wire saw. Defects were stabilized with an adapted Y-shaped mini-locking plate and were subsequently treated with alginate only, or alginate loaded with hUC-MSC-sEVs (2 × 109), rhBMP-2 (1.5 µg), or a combination of sEVs and rhBMP-2 (n = 16 for each group). 6 weeks post-surgery, femora were evaluated by µCT, descriptive histology, and biomechanical testing. RESULTS: Native radiographs and µCT analysis confirmed superior bony union with callus formation after treatment with hUC-MSC-sEVs in combination with a low dose of rhBMP-2. This finding was further substantiated by histology, showing robust defect consolidation 6 weeks after treatment. Torsion testing of the explanted femora revealed increased stiffness after application of both, rhBMP-2 alone, or in combination with sEVs, whereas torque was only significantly increased after treatment with rhBMP-2 together with sEVs. CONCLUSION: The present study demonstrates that the co-application of hUC-MSC-sEVs can improve the efficacy of rhBMP-2 to promote the regeneration of osteoporotic bone defects.


Bone Morphogenetic Protein 2 , Extracellular Vesicles , Femur , Osteoporosis , Recombinant Proteins , Umbilical Cord , Animals , Bone Morphogenetic Protein 2/pharmacology , Bone Morphogenetic Protein 2/genetics , Recombinant Proteins/pharmacology , Recombinant Proteins/genetics , Osteoporosis/pathology , Rats , Female , Humans , Femur/pathology , Femur/drug effects , Femur/diagnostic imaging , Umbilical Cord/cytology , Extracellular Vesicles/metabolism , Bone Regeneration/drug effects , Rats, Sprague-Dawley , Transforming Growth Factor beta/pharmacology , Disease Models, Animal , X-Ray Microtomography , Mesenchymal Stem Cells/metabolism
3.
BMC Musculoskelet Disord ; 25(1): 388, 2024 May 18.
Article En | MEDLINE | ID: mdl-38762738

BACKGROUND: A variety of measurement methods and imaging modalities are in use to quantify the morphology of lateral femoral condyle (LFC), but the most reliable method remains elusive in patients with lateral patellar dislocation (LPD). The purpose of this study was to determine the intra- and inter-observer reliability of different measurement methods for evaluating the morphology of LFC on different imaging modalities in patients with LPD. METHODS: Seventy-three patients with LPD were included. Four parameters for quantifying the morphology of LFC were retrospectively measured by three observers on MRI, sagittal CT image, conventional radiograph (CR), and three-dimensional CT (3D-CT). The intra-class correlation coefficient was calculated to determine the intra- and inter-observer reliability. Bland-Altman analysis was conducted to identify the bias between observers. RESULTS: The lateral femoral condyle index (LFCI) showed better intra- and inter-observer reliability on MRI and 3D-CT than on CR and sagittal CT images. The mean difference in the LFCI between observers was lowest on 3D-CT (0.047), higher on MRI (0.053), and highest on sagittal CT images (0.062). The LFCI was associated with the lateral femoral condyle ratio (ρ = 0.422, P = 0.022), lateral condyle index (r = 0.413, P = 0.037), and lateral femoral condyle distance (r = 0.459, P = 0.014). The LFCI could be reliably measured by MRI and 3D-CT. CONCLUSION: The LFCI could be reliably measured by MRI and 3D-CT. The LFCI was associated with both the height and length of LFC and could serve as a comprehensive parameter for quantifying the morphology of LFC in patients with LPD.


Femur , Imaging, Three-Dimensional , Magnetic Resonance Imaging , Observer Variation , Patellar Dislocation , Tomography, X-Ray Computed , Humans , Female , Male , Reproducibility of Results , Patellar Dislocation/diagnostic imaging , Magnetic Resonance Imaging/methods , Femur/diagnostic imaging , Retrospective Studies , Young Adult , Adult , Imaging, Three-Dimensional/methods , Adolescent
4.
BMC Musculoskelet Disord ; 25(1): 380, 2024 May 14.
Article En | MEDLINE | ID: mdl-38745214

BACKGROUND: Enlargement of the bone tunnel has become an unavoidable early complication after anterior cruciate ligament (ACL) reconstruction, whether it is a single or double-bundle ACL reconstruction. Preservation of the ACL stump in ACL reconstruction reduces enlargement of the bone tunnel. The purpose of this study was to investigate the question of whether single-bundle ACL reconstruction using the ACL femoral side retained stump technique reduces enlargement of the femoral tunnel. METHODS: Forty patients who underwent single-bundle reconstruction of the ACL were included in this study. The patients were categorized into a Remnant preservation group (Group R) and the Non-remnant preservation group (Group N). In the Remnant preservation group, a high-flexion femoral side retained stump technique was used intraoperatively for the establishment of the femoral side bone tunnel, and in the Non-remnant preservation group, the conventional femoral positioning method was used (we used a femoral positioning drill for localization and drilling of the femoral bone tunnel), and MRI of the operated knee joints was performed at 6 months postoperatively. We measured the internal diameter of the femoral bone tunnel at 5 mm from the intra-articular outlet of the femoral bone tunnel on an MRI scan image perpendicular to the femoral bone tunnel. The size of the tunnel was compared between the intraoperative drilling of the bone tunnel and the size of the bone tunnel at 6 months postoperatively. Postoperative clinical assessment was Lysholm score. RESULTS: After a 6-month follow-up of 40 patients, the diameter of the femoral tunnel at a distance of 5 mm from the inner opening of the femoral tunnel was 10.96 ± 0.67 mm and 10.11 ± 0.62 mm in patients of group N and group R, respectively, and the difference was statistically significant (P < 0.05).The diameter of the femoral tunnel at 6 months postoperatively in group N and group R compared to the intraoperative bone tunnel increased by 2.58 ± 0.24 mm and 1.94 ± 0.31 mm, and the difference was statistically significant (P < 0.05).The femoral tunnel enlargement rates of group N and group R were 30.94 ± 3.00% and 24.02 ± 5.10%, respectively, and the differences were significant (P < 0.05). CONCLUSION: ACL femoral side retained stump technique does not sacrifice the ideal location of the femoral tunnel and is able to preserve the possible benefits of the ACL stump: reduced femoral tunnel enlargement.


Anterior Cruciate Ligament Reconstruction , Femur , Humans , Anterior Cruciate Ligament Reconstruction/methods , Anterior Cruciate Ligament Reconstruction/adverse effects , Femur/surgery , Femur/diagnostic imaging , Adult , Female , Male , Young Adult , Anterior Cruciate Ligament/surgery , Anterior Cruciate Ligament/diagnostic imaging , Adolescent , Anterior Cruciate Ligament Injuries/surgery , Magnetic Resonance Imaging , Treatment Outcome , Postoperative Complications/prevention & control , Postoperative Complications/etiology , Knee Joint/surgery , Knee Joint/diagnostic imaging , Middle Aged
5.
BMC Musculoskelet Disord ; 25(1): 389, 2024 May 18.
Article En | MEDLINE | ID: mdl-38762453

BACKGROUND: Several methods have been used for the treatment of pediatric distal femoral fractures, such as elastic stable intramedullary nail (ESIN), external fixator (EF) and plate osteosynthesis, but there has been no consensus about the optimal method. The purpose of this study was to compare the clinical outcome between EF and ESIN techniques used in metaphyseal-diaphyseal junction (MDJ) fractures of the pediatric distal femur. METHODS: We retrospectively analyzed operatively treated MDJ fractures of pediatric distal femur between January 2015 and January 2022. Patient charts were reviewed for demographics, injury and data of radiography. All of the patients were divided into EF and ESIN groups according to the operation techniques. Malalignment was defined as more than 5 degrees of angular deformity in either plane. Clinical outcomes were measured by Flynn scoring system. RESULTS: Thirty-eight patients were included in this study, among which, 23 were treated with EF, and 15 with ESIN. The mean follow-up time was 18 months (12-24 months). At the final follow-up, all of the fractures were healed. Although there were no statistical differences between the two groups in demographic data, length of stay, estimated blood loss (EBL), rate of open reduction, time to fracture healing and Flynn score, the EF was superior to ESIN in operative time, fluoroscopic exposure and time to partial weight-bearing. The EF group had a significantly higher rate of skin irritation, while the ESIN had a significantly higher rate of malalignment. CONCLUSION: EF and ESIN are both effective methods in the treatment of MDJ fractures of the pediatric distal femur. ESIN is associated with lower rates of skin irritation. However, EF technique has the advantages of shorter operative time, reduced fluoroscopic exposure, and shorter time to partial weight-bearing, as well as lower incidence of malalignment. LEVEL OF EVIDENCE: Level III.


Bone Nails , External Fixators , Femoral Fractures , Fracture Fixation, Intramedullary , Humans , Female , Male , Retrospective Studies , Femoral Fractures/surgery , Femoral Fractures/diagnostic imaging , Child , Fracture Fixation, Intramedullary/instrumentation , Fracture Fixation, Intramedullary/methods , Treatment Outcome , Case-Control Studies , Fracture Healing , Diaphyses/injuries , Diaphyses/surgery , Diaphyses/diagnostic imaging , Child, Preschool , Follow-Up Studies , Adolescent , Femur/surgery , Femur/diagnostic imaging
6.
J Orthop Surg Res ; 19(1): 277, 2024 May 03.
Article En | MEDLINE | ID: mdl-38698472

PURPOSE: To determine whether posterior cruciate ligament (PCL) buckling (angular change) is associated with anterior cruciate ligament (ACL) status (intact or ruptured), meniscal bone angle (MBA), anterior tibial translation (ATT), body weight, femoral-tibial rotation (FTR), posterior tibial slope (PTS), PCL length and femoral-tibial distance (FTD) and to identify the factors that have the greatest influence. METHODS: All enrolled participants were scanned with a 3.0 T, 8-channel coil MRI system (Magnetom Verio; Siemens). Bone and soft tissue parameters were measured by MIMICS software for each subject and each measured parameter was correlated with PCL buckling phenomena. The correlated and statistically significant parameters were then analyzed by multiple linear regression to determine the magnitude of the effect of the different parameters on the PCL buckling phenomenon. RESULTS: A total of 116 subjects (50 ACL ruptured and 66 age, weight and height matched volunteers with uninjured knees) were enrolled. Among all measured parameters, there were 8 parameters that correlated with PCL angle (PCLA), of which ACL status had the strongest correlation with PCLA (r = - 0.67, p = < 0.001); and 7 parameters that correlated with PCL-posterior femoral cortex angle (PCL-PCA), of which ATT had the strongest correlation with PCL-PCA (r = 0.69, p = < 0.001). PCLIA was not significantly correlated with any of the measured parameters. Multiple linear regression analyses revealed four parameters can explain PCLA, of which ACL status had the strongest effect on PCLA (absolute value of standardized coefficient Beta was 0.508). Three parameters can explain PCL-PCA, of which ATT had the strongest effect on PCLIA (r = 0.69, p = < 0.001), ATT has the greatest effect on PCL-PCA (absolute value of normalized coefficient Beta is 0.523). CONCLUSIONS: PCLA may be a simple and easily reproducible and important supplement for the diagnosis of ACL injury; PCL-PCA is a simple and easily reproducible and important complementary tool for the detection of ATT. The use of PCLA is more recommended to aid in the diagnosis of ACL injury.


Knee Joint , Magnetic Resonance Imaging , Posterior Cruciate Ligament , Tibia , Humans , Posterior Cruciate Ligament/diagnostic imaging , Male , Female , Adult , Knee Joint/diagnostic imaging , Linear Models , Young Adult , Tibia/diagnostic imaging , Tibia/anatomy & histology , Magnetic Resonance Imaging/methods , Middle Aged , Femur/diagnostic imaging , Femur/anatomy & histology , Anterior Cruciate Ligament Injuries/diagnostic imaging , Adolescent
7.
J Coll Physicians Surg Pak ; 34(5): 533-538, 2024 May.
Article En | MEDLINE | ID: mdl-38720212

OBJECTIVE: To evaluate the relationship between bone mineral density (BMD) by measuring the prepatellar fat thickness with knee radiography and to gain a measurement method that has not been done before in the literature. STUDY DESIGN: Cross-sectional descriptive study. Place and Duration of the Study: Department of Physical Medicine and Rehabilitation, Training and Research Hospital, Sanliurfa, Turkiye, between January and June 2020. METHODOLOGY: Patients' age, body mass index (BMI) data, prepatellar fat thickness (mm), L1-L4 total, bone mineral density femoral neck, femur trochanter major, and femur total T scores were recorded. The relationships between these three groups (normal, osteopenia, osteoporosis) and between prepatellar fat tissue measurement were evaluated. One-way analysis of variance (ANOVA) and Post Hoc Tukey tests were used in the analysis. RESULTS:  A statistically significant difference was found in terms of trochanter major T score measurements (X2 = 20.435; p <0.001) and BMI (X2 = 66.535; p <0.001) measurements of prepatellar fat thickness measurement. A statistically significant difference was found between the three groups in terms of prepatellar fat thickness measurement, L1-4 T-score, femoral neck, and femur total values (p <0.001). CONCLUSION:  Prepatellar fat thickness in postmenopausal Turkish women was positively correlated with BMD; BMD increases as the prepatellar fat thickness increases. This explains that perapatellar fat thickness creates a mechanical load on the bones and causes an increase in BMD. KEY WORDS: Osteoporosis, Fat thickness, Bone mineral density.


Adipose Tissue , Bone Density , Patella , Humans , Bone Density/physiology , Cross-Sectional Studies , Female , Middle Aged , Adipose Tissue/diagnostic imaging , Adipose Tissue/anatomy & histology , Aged , Patella/diagnostic imaging , Patella/anatomy & histology , Body Mass Index , Osteoporosis/diagnostic imaging , Male , Absorptiometry, Photon , Femur Neck/diagnostic imaging , Femur Neck/anatomy & histology , Adult , Bone Diseases, Metabolic/diagnostic imaging , Femur/diagnostic imaging , Femur/anatomy & histology
8.
Sci Rep ; 14(1): 11390, 2024 05 18.
Article En | MEDLINE | ID: mdl-38762569

This study performed three-dimensional (3D) magnetic resonance imaging (MRI)-based statistical shape analysis (SSA) by comparing patellofemoral instability (PFI) and normal femur models, and developed a machine learning (ML)-based prediction model. Twenty (19 patients) and 31 MRI scans (30 patients) of femurs with PFI and normal femurs, respectively, were used. Bone and cartilage segmentation of the distal femurs was performed and subsequently converted into 3D reconstructed models. The pointwise distance map showed anterior elevation of the trochlea, particularly at the central floor of the proximal trochlea, in the PFI models compared with the normal models. Principal component analysis examined shape variations in the PFI group, and several principal components exhibited shape variations in the trochlear floor and intercondylar width. Multivariate analysis showed that these shape components were significantly correlated with the PFI/non-PFI distinction after adjusting for age and sex. Our ML-based prediction model for PFI achieved a strong predictive performance with an accuracy of 0.909 ± 0.015, and an area under the curve of 0.939 ± 0.009 when using a support vector machine with a linear kernel. This study demonstrated that 3D MRI-based SSA can realistically visualize statistical results on surface models and may facilitate the understanding of complex shape features.


Imaging, Three-Dimensional , Joint Instability , Machine Learning , Magnetic Resonance Imaging , Patellofemoral Joint , Humans , Magnetic Resonance Imaging/methods , Female , Male , Imaging, Three-Dimensional/methods , Joint Instability/diagnostic imaging , Patellofemoral Joint/diagnostic imaging , Patellofemoral Joint/pathology , Adult , Young Adult , Femur/diagnostic imaging , Femur/pathology , Adolescent
9.
Clin Orthop Surg ; 16(2): 201-209, 2024 Apr.
Article En | MEDLINE | ID: mdl-38562642

Background: Proximal-distal mismatch has emerged as a prominent concern in Dorr type A femoral morphology, prompting the exploration of short stems as promising alternatives to conventional stems. This study aimed to evaluate clinical and radiographic outcomes of total hip arthroplasty (THA) using short femoral stems in Dorr type A proximal femoral morphology with a minimum follow-up of 5 years. Methods: Patients with short femoral stems in Dorr type A between 2011 and 2017 were included. Patients with the Short Modular Femoral (SMF) stem and Metha stem were recruited and patients with a shortened tapered stem (Tri-Lock BPS) were matched by propensity score matching based on age, sex, body mass index, calcar to canal ratio, and diagnosis. Patient-reported outcomes and the presence of thigh pain were assessed at 5 years postoperatively. Revision rate, complication rate, and radiographic outcomes were also assessed and compared. Results: Twenty-two cases (81%) in the SMF stem and 43 cases (65%) in the Metha stem had more than 5 years of follow-up data available. The SMF stem showed a higher failure rate than the other 2 groups, with 18% requiring revision surgery in the SMF stem compared to 4.6% in the Metha stem, and 2.3% in the Tri-Lock BPS. The SMF stem showed considerable complications such as stem position change and lateral cortical hypertrophy with inferior clinical outcomes than the other 2 stem groups. When the Metha stem and the Tri-Lock BPS groups were compared, more intraoperative fractures were observed in the Metha stem, whereas stress shielding and anterior thigh pain were significantly more prevalent in the Tri-Lock BPS. Conclusions: The SMF stem might be less reliable than previously reported, showing a high failure rate and increased radiologic complications. Thus, its use for THA in Dorr Type A femurs needs caution. On the other hand, the Metha stem showed comparable outcomes to the shortened tapered Tri-Lock BPS.


Arthroplasty, Replacement, Hip , Hip Prosthesis , Humans , Survivorship , Prosthesis Design , Femur/diagnostic imaging , Femur/surgery , Reoperation , Pain/surgery , Retrospective Studies , Treatment Outcome , Follow-Up Studies
10.
PLoS One ; 19(4): e0299996, 2024.
Article En | MEDLINE | ID: mdl-38603691

Maintaining post-operative mechanical stability is crucial for successfully healing intertrochanteric fractures treated with the Proximal Femoral Nail Antirotation (PFNA) system. This stability is primarily dependent on the bone mineral density (BMD) and strain on the fracture. Current PFNA failure analyses often overlook the uncertainties related to BMD and body weight (BW). Therefore, this study aimed to develop a probabilistic model using finite element modeling and engineering reliability analysis to assess the post-operative performance of PFNA under various physiological loading conditions. The model predictions were validated through a series of experimental test. The results revealed a negative nonlinear relationship between the BMD and compressive strain. Conversely, the BW was positively and linearly correlated with the compressive strain. Importantly, the compressive strain was more sensitive to BW than to BMD when the BMD exceeded 0.6 g/cm3. Potential trabecular bone compression failure is also indicated if BMD is equal to or below 0.15 g/cm3 and BW increases to approximately 2.5 times the normal or higher. This study emphasizes that variations in the BMD significantly affect the probability of failure of a PFNA system. Thus, careful planning of post-operative physical therapy is essential. For patients aged > 50 years restrictions on high-intensity activities are advised, while limiting strenuous movements is recommended for those aged > 65 years.


Fracture Fixation, Intramedullary , Hip Fractures , Humans , Fracture Fixation, Intramedullary/methods , Reproducibility of Results , Bone Nails , Hip Fractures/surgery , Femur/diagnostic imaging , Femur/surgery , Treatment Outcome , Retrospective Studies
11.
Phys Med Biol ; 69(11)2024 May 20.
Article En | MEDLINE | ID: mdl-38631364

Cortical bone is characterized by a dense solid matrix permeated by fluid-filled pores. Ultrasound scattering has potential for the non-invasive evaluation of changes in bone porosity. However, there is an incomplete understanding of the impact of ultrasonic absorption in the solid matrix on ultrasound scattering. In this study, maps were derived from scanning acoustic microscopy images of human femur cross-sections. Finite-difference time domain ultrasound scatter simulations were conducted on these maps. Pore density, diameter distribution of the pores, and nominal absorption values in the solid and fluid matrices were controlled. Ultrasound pulses with a central frequency of 8.2 MHz were propagated, both in through-transmission and backscattering configurations. From these data, the scattering, bone matrix absorption, and attenuation extinction lengths were calculated. The results demonstrated that as absorption in the solid matrix was varied, the scattering, absorption, and attenuation extinction lengths were significantly impacted. It was shown that for lower values of absorption in the solid matrix (less than 2 dB mm-1), attenuation due to scattering dominates, whereas at higher values of absorption (more than 2 dB mm-1), attenuation due to absorption dominates. This will impact how ultrasound attenuation and scattering parameters can be used to extract quantitative information on bone microstructure.


Cortical Bone , Scattering, Radiation , Cortical Bone/diagnostic imaging , Humans , Ultrasonic Waves , Ultrasonography/methods , Bone Matrix/metabolism , Bone Matrix/diagnostic imaging , Femur/diagnostic imaging
12.
Eur J Orthop Surg Traumatol ; 34(4): 2155-2162, 2024 May.
Article En | MEDLINE | ID: mdl-38565783

INTRODUCTION: Increasing interest in the use of anatomical stems has developed as the prevalence of periprosthetic fractures (PPFs) continues to increase. The primary aim of this study was to determine the long-term survivorship and PPF rate of an anatomical femoral stem in a single UK centre. PATIENTS AND METHODS: Between 2000 and 2002, 94 consecutive THAs were performed using the 170 mm Lubinus SP II anatomical femoral stem in our institution. Patient demographics, operative details and clinical outcomes were collected prospectively in an arthroplasty database. Patient records and national radiographic archives were reviewed finally at a mean of 21.5 years (SD 0.7) following surgery to identify occurrence of subsequent revision surgery, dislocation or periprosthetic fracture. RESULTS: Mean patient age at surgery was 65.8 years (SD 12.5, 34-88 years). There were 48 women (51%). Osteoarthritis was the operative indication in 88 patients (94%). Analysis of all-cause THA failure demonstrated a survivorship of 98.5% (95% confidence interval [CI], 98.0-99.3%) at 10 years and 96.7% (94.5-98.9%) at 21 years. The 20-year stem survival for aseptic loosening was 100% with no cases of significant lysis found (lucent line > 2 mm) and no stems required revision. Patient demographics did not appear to influence risk of revision (p > 0.05). There were 2 revisions in total (2 for acetabular loosening with original stems retained). There were no PPFs identified at mean 21.5 year follow-up and 5 dislocations (5%). CONCLUSIONS: The Lubinus SP II 170 mm stem demonstrated excellent survivorship and negligible PPF rates over 20 years following primary THA.


Arthroplasty, Replacement, Hip , Hip Prosthesis , Periprosthetic Fractures , Prosthesis Failure , Reoperation , Humans , Aged , Female , Male , Middle Aged , Aged, 80 and over , Arthroplasty, Replacement, Hip/adverse effects , Arthroplasty, Replacement, Hip/methods , Hip Prosthesis/adverse effects , Periprosthetic Fractures/etiology , Periprosthetic Fractures/surgery , Reoperation/statistics & numerical data , Adult , Follow-Up Studies , United Kingdom , Prosthesis Design , Femur/surgery , Femur/diagnostic imaging , Osteoarthritis, Hip/surgery
13.
BMC Musculoskelet Disord ; 25(1): 312, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38649874

BACKGROUND: Hip offset, version, and length are interdependent femoral variables which determine stability and leg length. Balancing these competing variables remains a core challenge in hip arthroplasty. The potential benefits of modular femoral stems have been overshadowed by higher rates of failure. The objective of this study was to assess the survivorship of a unique dual-modular femoral stem at an average 15-year follow-up period. METHODS: The records of all patients with osteoarthritis who underwent primary total hip arthroplasty with this device between 2004-2009 were reviewed. There were no exclusions for BMI or other factors. We examined the data with Kaplan-Meier survival analysis. The primary endpoint for survival was mechanical failure of the modular neck-body junction. RESULTS: The survivorship of this device in 172 subjects was 100% with none experiencing mechanical failure of the modular junction at an average of 15 years. 60 patients died of causes unrelated to their THA and 9 patients were lost to follow-up. There were three early (≤ 12 months) dislocations (1.7%), and seven total dislocations (4.1%). 16 patients underwent reoperations during the follow-up period, none for any complication of the modular junction. Radiographic results showed well-fixed femoral stems in all cases. There were no leg length discrepancies of greater than 10 mm, and 85% were within 5 mm. CONCLUSION: There were no mechanical failures of the modular junction in any of the subjects over the average 15-year period, demonstrating that this dual-modular design is not associated with increased failure rates. We achieved a 1.7% early dislocation rate and a 4.1% total dislocation rate without any clinically significant leg length discrepancies.


Arthroplasty, Replacement, Hip , Hip Prosthesis , Prosthesis Design , Prosthesis Failure , Humans , Arthroplasty, Replacement, Hip/instrumentation , Arthroplasty, Replacement, Hip/adverse effects , Arthroplasty, Replacement, Hip/methods , Female , Male , Middle Aged , Aged , Adult , Follow-Up Studies , Osteoarthritis, Hip/surgery , Retrospective Studies , Aged, 80 and over , Kaplan-Meier Estimate , Reoperation/statistics & numerical data , Femur/surgery , Femur/diagnostic imaging , Time Factors
14.
Sci Rep ; 14(1): 9542, 2024 04 25.
Article En | MEDLINE | ID: mdl-38664550

The introduction of women into U.S. military ground close combat roles requires research into sex-specific effects of military training and operational activities. Knee osteoarthritis is prevalent among military service members; its progression has been linked to occupational tasks such as load carriage. Analyzing tibiofemoral arthrokinematics during load carriage is important to understand potentially injurious motion and osteoarthritis progression. The study purpose was to identify effects of load carriage on knee arthrokinematics during walking and running in recruit-aged women. Twelve healthy recruit-aged women walked and ran while unloaded (bodyweight [BW]) and carrying additional + 25%BW and + 45%BW. Using dynamic biplane radiography and subject-specific bone models, tibiofemoral arthrokinematics, subchondral joint space and center of closest contact location between subchondral bone surfaces were analyzed over 0-30% stance (separate one-way repeated measures analysis of variance, load by locomotion). While walking, medial compartment contact location was 5% (~ 1.6 mm) more medial for BW than + 45%BW at foot strike (p = 0.03). While running, medial compartment contact location was 4% (~ 1.3 mm) more lateral during BW than + 25%BW at 30% stance (p = 0.04). Internal rotation was greater at + 45%BW compared to + 25%BW (p < 0.01) at 30% stance. Carried load affects tibiofemoral arthrokinematics in recruit-aged women. Prolonged load carriage could increase the risk of degenerative joint injury in physically active women.


Knee Joint , Walking , Weight-Bearing , Humans , Female , Weight-Bearing/physiology , Walking/physiology , Knee Joint/physiology , Adult , Running/physiology , Military Personnel , Biomechanical Phenomena , Femur/physiology , Femur/diagnostic imaging , Osteoarthritis, Knee/physiopathology , Osteoarthritis, Knee/etiology , Tibia/physiology , Tibia/diagnostic imaging , Young Adult
15.
Med Eng Phys ; 126: 104153, 2024 04.
Article En | MEDLINE | ID: mdl-38621850

The Iterative Close Point (ICP) algorithm is used for bone registrations based on ultrasound measurements. However, the ICP has been shown to suffer from local minima. The Complex optimization, as a more robust routine compared to the commonly used gradient-based algorithms, could be an alternative for solving the ICP problem. In this study, we investigated the effect of the initial estimate and the number of registration points on bone registrations achieved using the ICP and a Complex optimization routine and we compared it against using Quadratic Sequential Programming (SQP). Ultrasound measurements were performed with an A-mode probe on a bovine humerus and an ovine femur embedded into ballistic gel. Simultaneously, the bones and the probe were tracked in 3D space using retroreflective markers. Kinematic, ultrasound and geometrical data obtained from scans of the specimens and the probe served as input to a bone registrations routine. Registrations were performed using two ICP solvers for different initial estimates and number of registration points. On average, 68 % of the Complex optimization registrations had less than 1 mm translation error and less than 1° rotational error for perturbations of the initial estimate from the reference measurements compared to the 35 % of the SQP ones. Similar medians of registration errors were observed between the two methods for variations of the number of the employed registration points. Although the Complex optimization provided accurate bone registrations for all cases, the objective function could not always determine the registrations with the smallest registration error. Future research should explore methodologies to overcome this challenge.


Algorithms , Bone and Bones , Animals , Cattle , Sheep , Ultrasonography , Bone and Bones/diagnostic imaging , Femur/diagnostic imaging , Lower Extremity , Imaging, Three-Dimensional/methods
16.
Sensors (Basel) ; 24(8)2024 Apr 11.
Article En | MEDLINE | ID: mdl-38676056

This paper introduces a method for measuring 3D tibiofemoral kinematics using a multi-channel A-mode ultrasound system under dynamic conditions. The proposed system consists of a multi-channel A-mode ultrasound system integrated with a conventional motion capture system (i.e., optical tracking system). This approach allows for the non-invasive and non-radiative quantification of the tibiofemoral joint's six degrees of freedom (DOF). We demonstrated the feasibility and accuracy of this method in the cadaveric experiment. The knee joint's motions were mimicked by manually manipulating the leg through multiple motion cycles from flexion to extension. To measure it, six custom ultrasound holders, equipped with a total of 30 A-mode ultrasound transducers and 18 optical markers, were mounted on various anatomical regions of the lower extremity of the specimen. During experiments, 3D-tracked intra-cortical bone pins were inserted into the femur and tibia to measure the ground truth of tibiofemoral kinematics. The results were compared with the tibiofemoral kinematics derived from the proposed ultrasound system. The results showed an average rotational error of 1.51 ± 1.13° and a translational error of 3.14 ± 1.72 mm for the ultrasound-derived kinematics, compared to the ground truth. In conclusion, this multi-channel A-mode ultrasound system demonstrated a great potential of effectively measuring tibiofemoral kinematics during dynamic motions. Its improved accuracy, nature of non-invasiveness, and lack of radiation exposure make this method a promising alternative to incorporate into gait analysis and prosthetic kinematic measurements later.


Imaging, Three-Dimensional , Knee Joint , Ultrasonography , Humans , Biomechanical Phenomena , Knee Joint/physiology , Knee Joint/diagnostic imaging , Ultrasonography/methods , Imaging, Three-Dimensional/methods , Tibia/diagnostic imaging , Tibia/physiology , Range of Motion, Articular/physiology , Femur/physiology , Femur/diagnostic imaging , Knee/physiology , Knee/diagnostic imaging
17.
Radiology ; 311(1): e231055, 2024 Apr.
Article En | MEDLINE | ID: mdl-38687217

Background Commonly used pediatric lower extremity growth standards are based on small, dated data sets. Artificial intelligence (AI) enables creation of updated growth standards. Purpose To train an AI model using standing slot-scanning radiographs in a racially diverse data set of pediatric patients to measure lower extremity length and to compare expected growth curves derived using AI measurements to those of the conventional Anderson-Green method. Materials and Methods This retrospective study included pediatric patients aged 0-21 years who underwent at least two slot-scanning radiographs in routine clinical care between August 2015 and February 2022. A Mask Region-based Convolutional Neural Network was trained to segment the femur and tibia on radiographs and measure total leg, femoral, and tibial length; accuracy was assessed with mean absolute error. AI measurements were used to create quantile polynomial regression femoral and tibial growth curves, which were compared with the growth curves of the Anderson-Green method for coverage based on the central 90% of the estimated growth distribution. Results In total, 1874 examinations in 523 patients (mean age, 12.7 years ± 2.8 [SD]; 349 female patients) were included; 40% of patients self-identified as White and not Hispanic or Latino, and the remaining 60% self-identified as belonging to a different racial or ethnic group. The AI measurement training, validation, and internal test sets included 114, 25, and 64 examinations, respectively. The mean absolute errors of AI measurements of the femur, tibia, and lower extremity in the test data set were 0.25, 0.27, and 0.33 cm, respectively. All 1874 examinations were used to generate growth curves. AI growth curves more accurately represented lower extremity growth in an external test set (n = 154 examinations) than the Anderson-Green method (90% coverage probability: 86.7% [95% CI: 82.9, 90.5] for AI model vs 73.4% [95% CI: 68.4, 78.3] for Anderson-Green method; χ2 test, P < .001). Conclusion Lower extremity growth curves derived from AI measurements on standing slot-scanning radiographs from a diverse pediatric data set enabled more accurate prediction of pediatric growth. © RSNA, 2024 Supplemental material is available for this article.


Artificial Intelligence , Femur , Tibia , Humans , Child , Female , Adolescent , Retrospective Studies , Tibia/diagnostic imaging , Male , Child, Preschool , Femur/diagnostic imaging , Infant , Young Adult , Infant, Newborn , Radiography/methods , Lower Extremity/diagnostic imaging
18.
Bone Joint J ; 106-B(5 Supple B): 3-10, 2024 May 01.
Article En | MEDLINE | ID: mdl-38688494

Aims: The aim of this study was to investigate whether anterior pelvic plane-pelvic tilt (APP-PT) is associated with distinct hip pathomorphologies. We asked: is there a difference in APP-PT between young symptomatic patients being evaluated for joint preservation surgery and an asymptomatic control group? Does APP-PT vary among distinct acetabular and femoral pathomorphologies? And does APP-PT differ in symptomatic hips based on demographic factors? Methods: This was an institutional review board-approved, single-centre, retrospective, case-control, comparative study, which included 388 symptomatic hips in 357 patients who presented to our tertiary centre for joint preservation between January 2011 and December 2015. Their mean age was 26 years (SD 2; 23 to 29) and 50% were female. They were allocated to 12 different morphological subgroups. The study group was compared with a control group of 20 asymptomatic hips in 20 patients. APP-PT was assessed in all patients based on supine anteroposterior pelvic radiographs using validated HipRecon software. Values in the two groups were compared using an independent-samples t-test. Multiple regression analysis was performed to examine the influences of diagnoses and demographic factors on APP-PT. The minimal clinically important difference (MCID) for APP-PT was defined as > 1 SD. Results: There were no significant differences in APP-PT between the control group and the overall group (1.1° (SD 3.0°; -4.9° to 5.9°) vs 1.8° (SD 3.4°; -6.9° to 13.2°); p = 0.323). Acetabular retroversion and overcoverage groups showed higher mean APP-PTs compared with the control group (p = 0.001 and p = 0.014) and were the only diagnoses with a significant influence on APP-PT in the stepwise multiple regression analysis. All differences were below the MCID. The age, sex, height, weight, and BMI showed no influence on APP-PT. Conclusion: APP-PT showed no radiologically significant variation across different pathomorphologies of the hip in patients being assessed for joint-preserving surgery.


Acetabulum , Humans , Female , Acetabulum/diagnostic imaging , Male , Adult , Retrospective Studies , Case-Control Studies , Young Adult , Femur/diagnostic imaging , Hip Joint/diagnostic imaging , Hip Joint/physiopathology , Radiography , Pelvic Bones/diagnostic imaging
19.
Sci Rep ; 14(1): 7403, 2024 03 28.
Article En | MEDLINE | ID: mdl-38548805

Quantitative computed tomography (QCT)-based in silico models have demonstrated improved accuracy in predicting hip fractures with respect to the current gold standard, the areal bone mineral density. These models require that the femur bone is segmented as a first step. This task can be challenging, and in fact, it is often almost fully manual, which is time-consuming, operator-dependent, and hard to reproduce. This work proposes a semi-automated procedure for femur bone segmentation from CT images. The proposed procedure is based on the bone and joint enhancement filter and graph-cut algorithms. The semi-automated procedure performances were assessed on 10 subjects through comparison with the standard manual segmentation. Metrics based on the femur geometries and the risk of fracture assessed in silico resulting from the two segmentation procedures were considered. The average Hausdorff distance (0.03 ± 0.01 mm) and the difference union ratio (0.06 ± 0.02) metrics computed between the manual and semi-automated segmentations were significantly higher than those computed within the manual segmentations (0.01 ± 0.01 mm and 0.03 ± 0.02). Besides, a blind qualitative evaluation revealed that the semi-automated procedure was significantly superior (p < 0.001) to the manual one in terms of fidelity to the CT. As for the hip fracture risk assessed in silico starting from both segmentations, no significant difference emerged between the two (R2 = 0.99). The proposed semi-automated segmentation procedure overcomes the manual one, shortening the segmentation time and providing a better segmentation. The method could be employed within CT-based in silico methodologies and to segment large volumes of images to train and test fully automated and supervised segmentation methods.


Femur , Hip Fractures , Humans , Femur/diagnostic imaging , Tomography, X-Ray Computed/methods , Algorithms , Lower Extremity , Hip Fractures/diagnostic imaging , Image Processing, Computer-Assisted/methods
20.
PLoS One ; 19(3): e0283823, 2024.
Article En | MEDLINE | ID: mdl-38551890

BACKGROUND: Severe and complex angular limb deformities in dogs require accurate morphological assessment using diagnostic imaging to achieve successful orthopedic surgery. Computed tomography (CT) is commonly used to overcome projection errors in two-dimensional angular measurements of dog hindlimb alignment. Three-dimensional volume rendering (VR) techniques permit virtual positioning and variable projection, but the final CT-image that defines the projection plane for angular measurements remains two-dimensional. OBJECTIVE: We wanted to develop a true three-dimensional open-source technique to measure the alignments of the hind limbs of dogs in CT scanners. METHODS: We developed an open-source 3D Slicer plug-in, to perform angular measurements using vector calculations in three-dimensional space. In 113 CT-scans of canine pelvic limbs, femoral torsion, femoral varus, femorotibial rotation, tibial torsion, tibial varus and tibiotalar rotation angles were calculated and compared to an already validated technique using VoXim®. RESULTS: Reference points were identified and measurements were possible in the 113 acquisitions. The greatest difference between the two techniques was 1.4° at only one tibial torsion angle. Mean values for all Bland-Altman plots did not show significant differences and were less than 0.07° for all comparisons. DISCUSSION: Based on these results we considered angular measurements of canine hind limb alignment in CT scans using the 3D Slicer extension program sufficiently accurate for clinical orthopedic and surgical purposes in veterinary medicine. CONCLUSION: With our open-source 3D Slicer extension software, we provide a free accessible tool for veterinary orthopedic surgeons and thus we hope to improve angular measurements in CT-scans of canine hind limb deformities through true three-dimensionality.


Lower Extremity , Tibia , Dogs , Animals , Lower Extremity/anatomy & histology , Hindlimb/diagnostic imaging , Tibia/diagnostic imaging , Tibia/anatomy & histology , Tomography, X-Ray Computed/methods , Femur/diagnostic imaging , Femur/anatomy & histology , Software , Imaging, Three-Dimensional/methods
...