Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 11.483
1.
Med Sci Monit ; 30: e943353, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38825814

BACKGROUND Dentin contamination with hemostatic agents before bonding indirect restorations negatively affects the bond strength. However, the consensus on which materials could be used to clean contamination of hemostatic agents has not been explored. The aim of this study was to assess the effect of Katana Cleaner applied on the surface of dentin contaminated with hemostatic agents on the shear bond strength (SBS) of self-adhesive resin cement by comparing it with three other surface cleaners. MATERIAL AND METHODS Ninety dentin specimens were divided into a no contamination group (control) (n=10), 4 groups contaminated with 25% aluminum chloride (Viscostat Clear) (n=40), and 4 groups contaminated with 20% ferric sulfate (Viscostat) (n=40). Subsequently, 4 different cleaners were used for each contamination group (water rinse, phosphoric acid, chlorhexidine, and Katana Cleaner). Then, self-adhesive resin cement was directly bonded to the treated surfaces. All specimens were subjected to 5000 thermal cycles of artificial aging. The shear bond strength was measured using a universal testing machine. RESULTS Two-way analysis of variance showed that the contaminant type as the main factor was statistically non-significant (p=0.655), cleaner type as the main factor was highly significant (p<0.001), and interaction between the contaminant and cleaner was non-significant (p=0.51). The cleaner type was the main factor influencing the bond strength. Phosphoric acid and chlorhexidine showed better performance than Katana Cleaner. CONCLUSIONS Cleaning dentin surface contamination with phosphoric acid and chlorhexidine had better performance than with Katana Cleaner.


Dental Bonding , Dentin , Hemostatics , Resin Cements , Shear Strength , Humans , Dentin/drug effects , Hemostatics/pharmacology , Dental Bonding/methods , Chlorhexidine/analogs & derivatives , Chlorhexidine/pharmacology , Materials Testing/methods , Surface Properties/drug effects , Dentin-Bonding Agents , Ferric Compounds/chemistry
2.
Chem Pharm Bull (Tokyo) ; 72(6): 566-569, 2024.
Article En | MEDLINE | ID: mdl-38897954

Dihydrobenzofuran is an important skeleton for bioactive compounds and natural products. Hydroquinones can be easily modified into substituted hydroquinones, which effectively undergo oxidation to produce the corresponding benzoquinone derivatives. Benzoquinones are reactive electrophiles that are frequently utilized in coupling with olefins to dihydrobenzofurans. Herein, we report the one-pot oxidative coupling of hydroquinones bearing an electron-withdrawing group at the C2 position with olefins to dihydrobenzofurans in the presence of the Lewis acidic FeCl3 and 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) oxidant. Furthermore, this method was applied to the oxidative coupling of N-electron-withdrawing group-substituted 4-aminophenol.


Alkenes , Benzofurans , Hydroquinones , Hydroquinones/chemistry , Hydroquinones/chemical synthesis , Benzofurans/chemistry , Benzofurans/chemical synthesis , Alkenes/chemistry , Molecular Structure , Oxidative Coupling , Ferric Compounds/chemistry , Oxidation-Reduction , Chlorides/chemistry , Benzoquinones/chemistry , Benzoquinones/chemical synthesis
3.
PLoS One ; 19(6): e0304333, 2024.
Article En | MEDLINE | ID: mdl-38875253

Magnetic MnFe2O4 nanoparticles were successfully prepared by the rapid combustion method at 500 °C for 2 h with 30 mL absolute ethanol, and were characterized by SEM, TEM, XRD, VSM, and XPS techniques, their average particle size and the saturation magnetization were about 25.3 nm and 79.53 A·m2/kg, respectively. The magnetic MnFe2O4 nanoparticles were employed in a fixed bed experimental system to investigate the adsorption capacity of Hg0 from air. The MnFe2O4 nanoparticles exhibited the large adsorption performance on Hg0 with the adsorption capacity of 16.27 µg/g at the adsorption temperature of 50 °C with the space velocity of 4.8×104 h-1. The VSM and EDS results illustrated that the prepared MnFe2O4 nanoparticles were stable before and after adsorption and successfully adsorbed Hg0. The TG curves demonstrated that the mercury compound formed after adsorption was HgO, and both physical and chemical adsorption processes were observed. Magnetic MnFe2O4 nanoparticles revealed excellent adsorbance of Hg0 in air, which suggested that MnFe2O4 nanoparticles be promising for the removal of Hg0.


Ferric Compounds , Gases , Manganese Compounds , Mercury , Adsorption , Mercury/chemistry , Manganese Compounds/chemistry , Ferric Compounds/chemistry , Gases/chemistry , Particle Size , Temperature
4.
Nat Commun ; 15(1): 5070, 2024 Jun 13.
Article En | MEDLINE | ID: mdl-38871729

In acute ischemic stroke, even when successful recanalization is obtained, downstream microcirculation may still be obstructed by microvascular thrombosis, which is associated with compromised brain reperfusion and cognitive decline. Identifying these microthrombi through non-invasive methods remains challenging. We developed the PHySIOMIC (Polydopamine Hybridized Self-assembled Iron Oxide Mussel Inspired Clusters), a MRI-based contrast agent that unmasks these microthrombi. In a mouse model of thromboembolic ischemic stroke, our findings demonstrate that the PHySIOMIC generate a distinct hypointense signal on T2*-weighted MRI in the presence of microthrombi, that correlates with the lesion areas observed 24 hours post-stroke. Our microfluidic studies reveal the role of fibrinogen in the protein corona for the thrombosis targeting properties. Finally, we observe the biodegradation and biocompatibility of these particles. This work demonstrates that the PHySIOMIC particles offer an innovative and valuable tool for non-invasive in vivo diagnosis and monitoring of microthrombi, using MRI during ischemic stroke.


Contrast Media , Disease Models, Animal , Ferric Compounds , Indoles , Magnetic Resonance Imaging , Polymers , Thrombosis , Animals , Polymers/chemistry , Magnetic Resonance Imaging/methods , Indoles/chemistry , Mice , Contrast Media/chemistry , Ferric Compounds/chemistry , Thrombosis/diagnostic imaging , Male , Stroke/diagnostic imaging , Humans , Fibrinogen/metabolism , Ischemic Stroke/diagnostic imaging , Mice, Inbred C57BL , Protein Corona/chemistry , Protein Corona/metabolism , Brain/diagnostic imaging , Brain/metabolism , Brain/pathology
5.
Int J Nanomedicine ; 19: 5059-5070, 2024.
Article En | MEDLINE | ID: mdl-38836007

Purpose: The purpose of this study is to address the need for efficient drug delivery with high drug encapsulation efficiency and sustained drug release. We aim to create nanoparticle-loaded microgels for potential applications in treatment development. Methods: We adopted the process of ionic gelation to generate microgels from sodium alginate and carboxymethyl cellulose. These microgels were loaded with doxorubicin-conjugated amine-functionalized zinc ferrite nanoparticles (AZnFe-NPs). The systems were characterized using various techniques. Toxicity was evaluated in MCF-7 cells. In vitro release studies were conducted at different pH levels at 37 oC, with the drug release kinetics being analyzed using various models. Results: The drug encapsulation efficiency of the created carriers was as high as 70%. The nanoparticle-loaded microgels exhibited pH-responsive behavior and sustained drug release. Drug release from them was mediated via a non-Fickian type of diffusion. Conclusion: Given their high drug encapsulation efficiency, sustained drug release and pH-responsiveness, our nanoparticle-loaded microgels show promise as smart carriers for future treatment applications. Further development and research can significantly benefit the field of drug delivery and treatment development.


Delayed-Action Preparations , Doxorubicin , Drug Carriers , Drug Liberation , Ferric Compounds , Microgels , Doxorubicin/chemistry , Doxorubicin/pharmacokinetics , Doxorubicin/pharmacology , Doxorubicin/administration & dosage , Humans , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacokinetics , Delayed-Action Preparations/pharmacology , MCF-7 Cells , Ferric Compounds/chemistry , Hydrogen-Ion Concentration , Microgels/chemistry , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Alginates/chemistry , Amines/chemistry , Carboxymethylcellulose Sodium/chemistry , Nanoparticles/chemistry , Zinc/chemistry , Zinc Compounds/chemistry , Cell Survival/drug effects
6.
J Environ Sci (China) ; 145: 180-192, 2024 Nov.
Article En | MEDLINE | ID: mdl-38844318

A pilot-scale filtration system was adopted to prepare filter media with catalytic activity to remove manganese (Mn2+) and ammonium (NH4+-N). Three different combinations of oxidants (KMnO4 and K2FeO4) and reductants (MnSO4 and FeCl2) were used during the start-up period. Filter R3 started up by KMnO4 and FeCl2 (Mn7+→MnOx) exhibited excellent catalytic property, and the NH4+-N and Mn2+ removal efficiency reached over 80% on the 10th and 35th days, respectively. Filter R1 started up by K2FeO4 and MnSO4 (MnOx←Mn2+) exhibited the worst catalytic property. Filter R2 started up by KMnO4 and MnSO4 (Mn7+→MnOx←Mn2+) were in between. According to Zeta potential results, the Mn-based oxides (MnOx) formed by Mn7+→MnOx performed the highest pHIEP and pHPZC. The higher the pHIEP and pHPZC, the more unfavorable the cation adsorption. However, it was inconsistent with its excellent Mn2+ and NH4+-N removal abilities, implying that catalytic oxidation played a key role. Combined with XRD and XPS analysis, the results showed that the MnOx produced by the reduction of KMnO4 showed early formation of buserite crystals, high degree of amorphous, high content of Mn3+ and lattice oxygen with the higher activity to form defects. The above results showed that MnOx produced by the reduction of KMnO4 was more conducive to the formation of active species for catalytic oxidation of NH4+-N and Mn2+ removal. This study provides new insights on the formation mechanisms of the active MnOx that could catalytic oxidation of NH4+-N and Mn2+.


Ammonium Compounds , Filtration , Manganese , Oxides , Manganese/chemistry , Oxides/chemistry , Ammonium Compounds/chemistry , Filtration/methods , Water Pollutants, Chemical/chemistry , Potassium Permanganate/chemistry , Manganese Compounds/chemistry , Oxidation-Reduction , Waste Disposal, Fluid/methods , Potassium Compounds/chemistry , Adsorption , Ferric Compounds/chemistry , Iron Compounds
7.
Environ Geochem Health ; 46(7): 221, 2024 Jun 07.
Article En | MEDLINE | ID: mdl-38849635

This study reported the synthesis and assessment of zinc oxide/iron oxide (ZnO/Fe2O3) nanocomposite as photocatalysts for the degradation of a mixture of methylene red and methylene blue dyes. X-ray diffraction analysis confirms that the crystallite of zinc oxide (ZnO) has a hexagonal wurtzite phase and iron oxide (Fe2O3) has a rhombohedral phase. Fourier Transform Infra-Red spectrum confirms the presence of Zn-O vibration stretching at 428, 480 and 543 cm-1 stretching confirming Fe-O bond formation. Scanning Electron Microscope images exhibited a diverse size and shape of the nanocomposites. The ZnO-90%/Fe2O3-10% and ZnO-10%/Fe2O3-90% nanocomposites reveal good photocatalytic activity with reaction rate constants of 1.5 × 10-2 and 0.66 × 10-2; and 1.3 × 10-2 and 0.60 × 10-2 for methylene blue and methyl red dye respectively. The results revealed that the synthesized ZnO/Fe2O3 nanocomposite is the best catalyst for dye degradation and can be used for industrial applications in future.


Coloring Agents , Ferric Compounds , Methylene Blue , Nanocomposites , Zinc Oxide , Zinc Oxide/chemistry , Nanocomposites/chemistry , Methylene Blue/chemistry , Ferric Compounds/chemistry , Catalysis , Coloring Agents/chemistry , X-Ray Diffraction , Microscopy, Electron, Scanning , Azo Compounds/chemistry , Water Pollutants, Chemical/chemistry , Photolysis , Spectroscopy, Fourier Transform Infrared
8.
Water Sci Technol ; 89(11): 3093-3103, 2024 Jun.
Article En | MEDLINE | ID: mdl-38877632

Hydraulic oil leaks during mechanical maintenance, resulting in flushing wastewater contaminated with dispersed nano-oil droplets. In this study, 75 mg L-1 of polysilicate aluminum ferric (PSAF) was stirred at 350 rpm and the optimal chemical oxygen demand (COD) removal was 71%. The increase of PSAF led to more hydrolysis of Fe, and 1,175 cm-1 hydroxyl bridged with negative oil droplets. At the same molar concentration, PSAF hydrolyzes cationic metals more rapidly than polymeric aluminum chloride (PAC). PSAF forms flocs of smaller complex structures with greater bridging. The Al-O and Si-O peaks occurred at 611 and 1,138 cm-1, indicating the formation of Si-O-Fe and Si-O-Al bonds on the flocs surface. Higher stirring speeds did not change the free energy of the flocs surface γTot, mainly because the decrease in the van der Waals force (γLW) offset the increase of Lewis acid-base force (γAB). Preserving the non-polar surface, in summary, owing to its bridging abilities and affinity for non-polar surfaces, PSAF demonstrates superior efficiency over PAC in capturing and removing oil droplets.


Ferric Compounds , Ferric Compounds/chemistry , Aluminum/chemistry , Oils/chemistry , Surface Properties , Water Purification/methods , Waste Disposal, Fluid/methods
9.
Sci Total Environ ; 940: 173667, 2024 Aug 25.
Article En | MEDLINE | ID: mdl-38823699

The retention and mobilization of phosphate in soils are closely associated with the adsorption of iron (hydr)oxides and root exudation of low-molecular-weight organic acids (LMWOAs). This study investigated the role of LMWOAs in phosphate mobilization under incubation and field conditions. LMWOAs-mediated iron (hydr)oxide transformation and phosphate adsorption experiments revealed that the presence of LMWOAs decreased the phosphate adsorption capacity of iron (hydr)oxides by up to ~74 % due to the competition effect, while LMWOAs-induced iron mineral transformation resulted in an approximately six-fold increase in phosphate retention by decreasing the crystallinity and increasing the surface reactivity. Root simulation in rhizobox experiments demonstrated that LMWOAs can alter the contents of different extractable phosphate species and iron components, leading to 10 % ~ 30 % decreases in available phosphate in the near root region of two tested soils. Field experiments showed that crop covering between mango tree rows promoted the exudation of LMWOAs from mango roots. In addition, crop covering increased the contents of total phosphate and available phosphate by 9.08 % ~ 61.20 % and 34.33 % ~ 147.33 % in the rhizosphere soils of mango trees, respectively. These findings bridge the microscale and field scale to understand the delicate LMWOAs-mediated balance between the retention and mobilization of phosphate on iron (hydr)oxide surface, thereby providing important implications for mitigating the low utilization efficiency of phosphate in iron-rich soils.


Ferric Compounds , Phosphates , Soil , Ferric Compounds/chemistry , Soil/chemistry , Soil Pollutants/analysis , Adsorption , Molecular Weight
10.
Sci Rep ; 14(1): 12877, 2024 06 05.
Article En | MEDLINE | ID: mdl-38834648

This study reports the antibacterial and antibiofilm activities of Magnesium ferrite nanoparticles (MgFe2O4) against gram-positive and gram-negative bacteria. The photocatalytic degradation of Carbol Fuchsin (CF) dye (a class of dyestuffs that are resistant to biodegradation) under the influence of UV-light irradiation is also studied. The crystalline magnesium ferrite (MgFe2O4) nanoparticles were synthesized using the co-precipitation method. The morphology of the resulting nanocomposite was examined using scanning electron microscopy (SEM), while transmission electron microscopy (TEM) was employed for further characterization of particle morphology and size. Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) were utilized to analyze the crystalline structure, chemical composition, and surface area, respectively. Optical properties were evaluated using UV-Vis spectroscopy. The UV-assisted photocatalytic performance of MgFe2O4 nanoparticles was assessed by studying the decolorization of Carbol fuchsin (CF) azo dye. The crystallite size of the MgFe2O4 nanoparticles at the (311) plane, the most prominent peak, was determined to be 28.5 nm. The photocatalytic degradation of 10 ppm CF using 15 mg of MgFe2O4 nanoparticles resulted in a significant 96% reduction after 135 min at ambient temperature (25 °C) and a pH value of 9. Additionally, MgFe2O4 nanoparticles exhibited potent antibacterial activity against E. coli and S. aureus in a dose dependent manner with maximum utilized concentration of 30 µg/ml. Specifically, MgFe2O4 nanoparticles demonstrated substantial antibacterial activity via disk diffusion and microbroth dilution tests with zones of inhibition and minimum inhibitory concentrations (MIC) for E. coli (26.0 mm, 1.25 µg/ml) and S. aureus (23.0 mm, 2.5 µg/ml), respectively. Moreover, 10.0 µg/ml of MgFe2O4 nanoparticles elicited marked percent reduction in biofilm formation by E. coli (89%) followed by S. aureus (78.5%) after treatment. In conclusion, MgFe2O4 nanoparticles demonstrated efficient dye removal capabilities along with significant antimicrobial and antibiofilm activity against gram-positive and gram-negative bacterial strains suggesting their potential as promising antimicrobial and detoxifying agents.


Anti-Bacterial Agents , Biofilms , Ferric Compounds , Magnetite Nanoparticles , Biofilms/drug effects , Ferric Compounds/chemistry , Ferric Compounds/pharmacology , Catalysis , Magnetite Nanoparticles/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Microbial Sensitivity Tests , Escherichia coli/drug effects , Ultraviolet Rays , Staphylococcus aureus/drug effects , Magnesium/chemistry , Magnesium/pharmacology , Spectroscopy, Fourier Transform Infrared
11.
Molecules ; 29(11)2024 May 24.
Article En | MEDLINE | ID: mdl-38893373

Developing clinically meaningful nanomedicines for cancer therapy requires the drugs to be effective, safe, simple, cheap, and easy to store. In the present work, we report that a simple cationic Fe(III)-rich salt of [FeIIICl(TMPPH2)][FeIIICl4]2 (Fe-TMPP) exhibits a superior anticancer performance on a broad spectrum of cancer cell lines, including breast, colorectal cancer, liver, pancreatic, prostate, and gastric cancers, with half maximal inhibitory concentration (IC50) values in the range of 0.098-3.97 µM (0.066-2.68 µg mL-1), comparable to the best-reported medicines. Fe-TMPP can form stand-alone nanoparticles in water without the need for extra surface modification or organic-solvent-assisted antisolvent precipitation. Critically, Fe-TMPP is TME-responsive (TME = tumor microenvironment), and can only elicit its function in the TME with overexpressed H2O2, converting H2O2 to the cytotoxic •OH to oxidize the phospholipid of the cancer cell membrane, causing ferroptosis, a programmed cell death process of cancer cells.


Antineoplastic Agents , Ferroptosis , Nanomedicine , Humans , Ferroptosis/drug effects , Cell Line, Tumor , Nanomedicine/methods , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Nanoparticles/chemistry , Ferric Compounds/chemistry , Tumor Microenvironment/drug effects , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/pharmacology , Cell Survival/drug effects , Neoplasms/drug therapy , Neoplasms/pathology
12.
Sci Rep ; 14(1): 13987, 2024 06 17.
Article En | MEDLINE | ID: mdl-38886466

The nuclear receptor-related factor 1 (Nurr1), an orphan nuclear receptor in microglia, has been recognized as a major player in attenuating the transcription of the pro-inflammatory genes to maintain CNS homeostasis. In this study, we investigate Nurr1 trans-repression activity by targeting this receptor with one of the indole derivatives 3-Indole acetic acid hydrazide (IAAH) loaded onto zinc iron oxide (ZnFe2O4) NPs coated with PEG. XRD, SEM, FTIR, UV-Vis spectroscopy, and DLS were used to characterize the synthesized IAAH-NPs. The anti-inflammatory properties of IAAH-NPs on LPS-stimulated SimA9 microglia were assayed by measuring pro-inflammatory cytokine gene expressions and protein levels using RT-PCR and ELISA, respectively. As a result, IAAH-NPs showed an ability to suppress pro-inflammatory genes, including IL-6, IL-1ß, and TNF-α in LPS-stimulated SimA9 via targeting Nurr1. The current study suggests that ZnFe2O4 NPs as a delivery system can increase the efficiency of cellular uptake and enhance the IAAH ability to inhibit the pro-inflammatory cytokines. Collectively, we demonstrate that IAAH-NPs is a potential modulator of Nurr1 that combines nanotechnology as a delivery system to suppress neuroinflammation in CNS which opens a window for possible ambitious neuroprotective therapeutic approaches to neuro disorders.


Microglia , Nanoparticles , Nuclear Receptor Subfamily 4, Group A, Member 2 , Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 2/genetics , Microglia/drug effects , Microglia/metabolism , Animals , Mice , Nanoparticles/chemistry , Cell Line , Indoles/pharmacology , Indoles/chemistry , Gene Expression Regulation/drug effects , Ferric Compounds/chemistry , Ferric Compounds/pharmacology , Lipopolysaccharides/pharmacology , Cytokines/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Ligands , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Indoleacetic Acids
13.
Environ Sci Pollut Res Int ; 31(27): 39735-39747, 2024 Jun.
Article En | MEDLINE | ID: mdl-38833050

As innovative and versatile agents with potential applications in a wide range of fields including medicine, electronics, wastewater treatment, cosmetics, and energy storage devices, magnetic nanoparticles (NPs) are significant attention. However, our knowledge of the harmful effects of different-sized NPs, particularly of their effects on aquatic animals, is limited. In this study, we evaluated the impact of different-sized (sub-2, 5, and 15 nm) cobalt ferrite (CoFe2O4) NPs on the biological parameters of rainbow trout (Oncorhynchus mykiss) embryos and larvae. The NPs were characterized using techniques such as high-resolution transmission electron microscopy (HRTEM) for imaging, X-ray diffraction (XRD) for crystallographic analysis, and energy-dispersive X-ray spectroscopy (EDX) for elemental analysis, and were tested for impact through a series of toxicity, genotoxicity, and biochemical assays at a concentration of 100 mg/L. The obtained results showed that toxicity of CoFe2O4 NPs depended on the size of NPs and the developmental stage of the fish. Our results, which revealed significant changes in biological parameters of O. mykiss under exposure to CoFe2O4 NPs, imply that these NPs may be not environmentally safe. The hierarchical cluster analysis showed that embryos of the control group were clearly separated from those exposed to NPs of various sizes. However, in the exposed larvae, the effects of control and the smallest-sized NPs (sub-2 nm) differed from those induced by larger NPs (5 nm and 15 nm). Additional research is necessary to comprehend the mechanisms underlying the observed variations, which would be advantageous for both managing the risk of NPs to humans and advancing the field of aquatic nanotoxicology.


Cobalt , Ferric Compounds , Oncorhynchus mykiss , Animals , Cobalt/toxicity , Cobalt/chemistry , Ferric Compounds/toxicity , Ferric Compounds/chemistry , Embryo, Nonmammalian/drug effects , Nanoparticles/toxicity , Nanoparticles/chemistry , Water Pollutants, Chemical/toxicity
14.
Chemosphere ; 361: 142516, 2024 Aug.
Article En | MEDLINE | ID: mdl-38850691

Activated siderite, endowed with excellent properties, was simply prepared by co-grinding with Fe sulfate to enhance its high reducing ability for Cr(VI). Batch experiments were conducted to investigate the main affecting parameters, such as material ratio, pH, temperature, etc. The removal of Cr(VI) by activated siderite was completed within 4 h of the reaction. The activated siderite maintained a high removal effect of Cr(VI) within a wide pH range (3-9). Various analytical methods, including XRD, SEM/EDS, XPS, etc., were employed to characterize the samples and discover variations before and after the reaction. The Fe (Ⅱ) in activated siderite becomes highly active, and it can even be released from the solid phase in the mildly acidic liquid phase to efficiently reduce Cr(VI) and mitigate its toxicity. These findings introduce an innovative approach for activating various minerals widely distributed in nature to promote the recovery of the ecological system.


Chromium , Ferric Compounds , Oxidation-Reduction , Chromium/chemistry , Ferric Compounds/chemistry , Hydrogen-Ion Concentration , Iron/chemistry , Ferrous Compounds/chemistry , Minerals/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Carbonates
15.
Chemosphere ; 361: 142556, 2024 Aug.
Article En | MEDLINE | ID: mdl-38851499

In this study, the Fe(III)/WS2/peroxymonosulfate (PMS) system was found to remove up to 97% of cyclohexanecarboxylic acid (CHA) within 10 min. CHA is a model compound for naphthenic acids (NAs), which are prevalent in petroleum industrial wastewater. The addition of WS2 effectively activated the Fe(III)/PMS system, significantly enhancing its ability to produce reactive oxidative species (ROS) for the oxidation of CHA. Further experimental results and characterization analyses demonstrated that the metallic element W(IV) in WS2 could provide electrons for the direct reduction of Fe(III) to Fe(II), thus rapidly activating PMS and initiating a chain redox process to produce ROS (SO4•-, •OH, and 1O2). Repeated tests and practical exploratory experiments indicated that WS2 exhibited excellent catalytic performance, reusability and anti-interference capacity, achieving efficient degradation of commercial NAs mixtures. Therefore, applying WS2 to catalyze the Fe(III)/PMS system can overcome speed limitations and facilitate simple, economical engineering applications.


Oxidation-Reduction , Peroxides , Tungsten , Peroxides/chemistry , Tungsten/chemistry , Catalysis , Carboxylic Acids/chemistry , Water Pollutants, Chemical/chemistry , Sulfides/chemistry , Ferric Compounds/chemistry , Wastewater/chemistry , Petroleum , Iron/chemistry , Reactive Oxygen Species/chemistry
16.
Environ Monit Assess ; 196(7): 625, 2024 Jun 17.
Article En | MEDLINE | ID: mdl-38884667

In the current work, Response Surface Methodology (RSM)-a statistical method-is used to optimize procedures like photocatalysis with the least amount of laboratory testing. However, to determine the most effective model for achieving the maximum rate of removal efficiency, the Response Surface Methodology was employed. The Ba-doped BiFeO3 photocatalyst was synthesized by the co-precipitation method, and its intrinsic properties were investigated by utilizing a range of spectroscopic techniques, such as FESEM, EDX, XRD, FTIR, and UV-vis. Herein, four independent factors such as, pH, contact time, pollutant concentration, and catalyst dosage were chosen. The results revealed that under acidic conditions with a contact duration of 2 min, a moderate catalyst dosage, and higher pollutant concentration, a degradation rate of 89.8% was achieved. The regression coefficient (R2) and probability value (P) were determined to be 0.99551 and 0.0301, respectively, therefore confirming the excellent fit of the RSM model. Furthermore, this research investigated the potential photocatalytic degradation mechanisms of cefixime, demonstrating that the removal efficiency of cefixime is greatly influenced by the functional parameters.


Cefixime , Nanostructures , Water Pollutants, Chemical , Catalysis , Nanostructures/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Cefixime/chemistry , Bismuth/chemistry , Photolysis , Photochemical Processes , Ferric Compounds/chemistry
17.
Water Res ; 259: 121889, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38852389

Photocatalytic technology emerges as a promising solution for the sustainable treatment of contaminated wastewater. However, the practical implementation of designed photocatalysts often faces challenges due to the intricate 'high carbon footprint' process and limited outdoor laboratory investigations. Herein, a simple yet versatile impregnation approach is proposed to anchor highly dispersed FeCl3 on a g-C3N4 substrate (Fe-C3N4) with minimal energy consumption and post-processing. Fe-C3N4 enhances photocatalytic reactivity for antibiotic degradation via a synergistic photo-Fenton-like oxidation technique, efficiently removing antibiotic pollutants from actual livestock wastewater. The Fe-C3N4 catalyst exhibited consistent degradation performance over five cycles in laboratory conditions, maintaining a degradation efficiency exceeding 90 % for tetracycline hydrochloride (TCHCl). Furthermore, we engineered a straightforward Fe-C3N4Na2SiO3 reactor for treating livestock wastewater, achieving an 81.8 % removal of TCHCl in outdoor field tests conducted in the winter and summer in China. The Fe-C3N4 catalyst demonstrated high feasibility in treating antibiotic-contaminated livestock wastewater under year-round climatic conditions, leveraging synergistic effects. The stabilization of Fe-C3N4 for the degradation of antibiotic-containing wastewater under sunlight represents a significant advancement in the practical application of photocatalysts, marking a crucial milestone from experimental conception to implementation. Acute toxicity estimation suggested that intermediates/products generated exhibited lower toxicity compared to TCHCl, indicating their practical applicability. Density functional theory (DFT) analysis successfully predicted significant electron transfer between Fe-C3N4 and TCHCl, indicating efficient interfacial interactions on the TCHCl surface. To ensure the environmental sustainability of Fe-C3N4, a life cycle assessment (LCA) was conducted to compared this photocatalyst with other commonly used emerging photocatalysts. The results demonstrated that Fe-C3N4 exhibits a two orders of magnitude lower CO2 equivalent emission compared to the ZnO photocatalyst, indicating a cost-effective and efficient synergistic photo-Fenton-like catalytic approach. This low-cost photocatalyst, moving from the laboratory to real-world wastewater applications, provides a powerful and more sustainable solution for the efficient treatment of wastewater containing antibiotics from livestock farming.


Livestock , Oxidation-Reduction , Wastewater , Water Pollutants, Chemical , Wastewater/chemistry , Animals , Water Pollutants, Chemical/chemistry , Waste Disposal, Fluid/methods , Ferric Compounds/chemistry , Catalysis , Iron/chemistry , Anti-Bacterial Agents/chemistry
18.
BMC Complement Med Ther ; 24(1): 241, 2024 Jun 20.
Article En | MEDLINE | ID: mdl-38902620

Iron nanoparticles comprise a significant class of inorganic nanoparticles, which discover applications in various zones by prudence of their few exciting properties. This study achieved the green synthesis of iron oxide nanoparticles (IONPs) by black cumin seed (Nigella sativa) extract, which acts as a reducing and capping agent. The iron nanoparticles and black cumin extract were synthesized in three different concentrations: (01:01, 02:04,01:04). UV-visible spectroscopy, XRD, FTIR, and AFM characterized the synthesized iron oxide nanoparticles. UV-visible spectra show the maximum absorbance peak of 01:01 concentration at 380 nm. The other concentrations, such as 02:04, peaked at 400 nm and 01:04 at 680 nm, confirming the formation of iron oxide nanoparticles. AFM analysis reveals the spherical shape of iron oxide nanoparticles. The XRD spectra reveal the (fcc) cubic crystal structure of the iron oxide nanoparticles. The FTIR analysis's peaks at 457.13, 455.20, and 457.13 cm-1 depict the characteristic iron nanoparticle synthesis. The black cumin extract-mediated iron oxide nanoparticles show substantial antibacterial, antifungal, antioxidant and anti-inflammatory activity in a dose-dependent manner.


Anti-Infective Agents , Anti-Inflammatory Agents , Nigella sativa , Plant Extracts , Seeds , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Seeds/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Nigella sativa/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Free Radical Scavengers/pharmacology , Free Radical Scavengers/chemistry , Magnetic Iron Oxide Nanoparticles/chemistry , Ferric Compounds/chemistry , Green Chemistry Technology
19.
Environ Sci Technol ; 58(24): 10601-10610, 2024 Jun 18.
Article En | MEDLINE | ID: mdl-38833530

The mobility and bioavailability of phosphate in paddy soils are closely coupled to redox-driven Fe-mineral dynamics. However, the role of phosphate during Fe-mineral dissolution and transformations in soils remains unclear. Here, we investigated the transformations of ferrihydrite and lepidocrocite and the effects of phosphate pre-adsorbed to ferrihydrite during a 16-week field incubation in a flooded sandy rice paddy soil in Thailand. For the deployment of the synthetic Fe-minerals in the soil, the minerals were contained in mesh bags either in pure form or after mixing with soil material. In the latter case, the Fe-minerals were labeled with 57Fe to allow the tracing of minerals in the soil matrix with 57Fe Mössbauer spectroscopy. Porewater geochemical conditions were monitored, and changes in the Fe-mineral composition were analyzed using 57Fe Mössbauer spectroscopy and/or X-ray diffraction analysis. Reductive dissolution of ferrihydrite and lepidocrocite played a minor role in the pure mineral mesh bags, while in the 57Fe-mineral-soil mixes more than half of the minerals was dissolved. The pure ferrihydrite was transformed largely to goethite (82-85%), while ferrihydrite mixed with soil only resulted in 32% of all remaining 57Fe present as goethite after 16 weeks. In contrast, lepidocrocite was only transformed to 12% goethite when not mixed with soil, but 31% of all remaining 57Fe was found in goethite when it was mixed with soil. Adsorbed phosphate strongly hindered ferrihydrite transformation to other minerals, regardless of whether it was mixed with soil. Our results clearly demonstrate the influence of the complex soil matrix on Fe-mineral transformations in soils under field conditions and how phosphate can impact Fe oxyhydroxide dynamics under Fe reducing soil conditions.


Ferric Compounds , Oryza , Phosphates , Soil , Oryza/chemistry , Phosphates/chemistry , Soil/chemistry , Adsorption , Ferric Compounds/chemistry , Minerals/chemistry , Spectroscopy, Mossbauer , Iron/chemistry , Oxidation-Reduction
20.
ACS Appl Mater Interfaces ; 16(24): 31489-31499, 2024 Jun 19.
Article En | MEDLINE | ID: mdl-38833169

Currently, photodynamic therapy (PDT) is restricted by the laser penetration depth. Except for PDT at 1064 nm wavelength excitation, the development of other NIR-II-activated nanomaterials with a higher response depth is still hindered and rarely reported in the literature. To overcome these problems, we fabricated a nanoplatform with heterostructures that generate reactive oxygen species (ROS) and ferrite nanoparticles under a high concentration of zinc doping (ZnxFe3-xO4 NPs), which can achieve oxidative damage of tumor cells under near-infrared (NIR) illumination. The recombination of photoelectrons and holes has been markedly inhibited due to the formation of heterostructures in the interfaces, thus greatly enhancing the capability for ROS and oxygen production by modulating the single-component doping content. The efficiency of PDT was verified by in vivo and in vitro assays under NIR light. Our results revealed that NIR-II (1208 nm) light irradiation of ZnxFe3-xO4 NPs exerted a remarkable antitumor activity, superior to NIR-I light (808 nm). More importantly, the reported ZnxFe3-xO4 NPs strategy provides an opportunity for the success of comparison with light in the first and second near-infrared regions.


Infrared Rays , Photochemotherapy , Zinc , Humans , Zinc/chemistry , Zinc/pharmacology , Animals , Mice , Reactive Oxygen Species/metabolism , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Ferric Compounds/chemistry , Ferric Compounds/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Mice, Inbred BALB C
...