Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.429
1.
Food Res Int ; 186: 114344, 2024 Jun.
Article En | MEDLINE | ID: mdl-38729696

The research aimed to evaluate the effect of ultrasonication and succinylation on the functional, iron binding, physiochemical, and cellular mineral uptake efficacy of chickpea protein concentrate. Succinylation resulted in significant improvements in the water-holding capacity (WHC) (25.47 %), oil-holding capacity (OHC) (31.38 %), and solubility (5.80 %) of the chickpea protein-iron complex. Mineral bioavailability significantly increased by 4.41 %, and there was a significant increase in cellular mineral uptake (64.64 %), retention (36.68 %), and transport (27.96 %). The ferritin content of the succinylated chickpea protein-iron complex showed a substantial increase of 66.31%. Furthermore, the dual modification approach combining ultrasonication and succinylation reduced the particle size of the protein-iron complex with a substantial reduction of 83.25 %. It also resulted in a significant enhancement of 51.5 % in the SH (sulfhydryl) content and 48.92 % in the surface hydrophobicity. Mineral bioavailability and cellular mineral uptake, retention, and transport were further enhanced through dual modification. In terms of application, the addition of single and dual-modified chickpea protein-iron complex to a fruit-based smoothie demonstrated positive acceptance in sensory attributes. Overall, the combined approach of succinylation and ultrasonication to the chickpea protein-iron complex shows a promising strategy for enhancing the physiochemical and techno-functional characteristics, cellular mineral uptake, and the development of vegan food products.


Biological Availability , Cicer , Iron , Cicer/chemistry , Iron/chemistry , Iron/metabolism , Humans , Food, Fortified , Plant Proteins/chemistry , Digestion , Minerals/chemistry , Caco-2 Cells , Succinic Acid/chemistry , Particle Size , Food Handling/methods , Solubility , Ferritins/chemistry , Ferritins/metabolism
2.
Int J Nanomedicine ; 19: 4263-4278, 2024.
Article En | MEDLINE | ID: mdl-38766663

Introduction: Photodynamic Therapy (PDT) is a promising, minimally invasive treatment for cancer with high immunostimulatory potential, no reported drug resistance, and reduced side effects. Indocyanine Green (ICG) has been used as a photosensitizer (PS) for PDT, although its poor stability and low tumor-target specificity strongly limit its efficacy. To overcome these limitations, ICG can be formulated as a tumor-targeting nanoparticle (NP). Methods: We nanoformulated ICG into recombinant heavy-ferritin nanocages (HFn-ICG). HFn has a specific interaction with transferrin receptor 1 (TfR1), which is overexpressed in most tumors, thus increasing HFn tumor tropism. First, we tested the properties of HFn-ICG as a PS upon irradiation with a continuous-wave diode laser. Then, we evaluated PDT efficacy in two breast cancer (BC) cell lines with different TfR1 expression levels. Finally, we measured the levels of intracellular endogenous heavy ferritin (H-Fn) after PDT treatment. In fact, it is known that cells undergoing ROS-induced autophagy, as in PDT, tend to increase their ferritin levels as a defence mechanism. By measuring intracellular H-Fn, we verified whether this interplay between internalized HFn and endogenous H-Fn could be used to maximize HFn uptake and PDT efficacy. Results: We previously demonstrated that HFn-ICG stabilized ICG molecules and increased their delivery to the target site in vitro and in vivo for fluorescence guided surgery. Here, with the aim of using HFn-ICG for PDT, we showed that HFn-ICG improved treatment efficacy in BC cells, depending on their TfR1 expression. Our data revealed that endogenous H-Fn levels were increased after PDT treatment, suggesting that this defence reaction against oxidative stress could be used to enhance HFn-ICG uptake in cells, increasing treatment efficacy. Conclusion: The strong PDT efficacy and peculiar Trojan horse-like mechanism, that we revealed for the first time in literature, confirmed the promising application of HFn-ICG in PDT.


Breast Neoplasms , Indocyanine Green , Nanoparticles , Photochemotherapy , Photosensitizing Agents , Receptors, Transferrin , Indocyanine Green/chemistry , Indocyanine Green/pharmacokinetics , Indocyanine Green/pharmacology , Indocyanine Green/administration & dosage , Breast Neoplasms/therapy , Breast Neoplasms/drug therapy , Humans , Female , Photochemotherapy/methods , Cell Line, Tumor , Receptors, Transferrin/metabolism , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Nanoparticles/chemistry , Apoferritins/chemistry , Ferritins/chemistry , Antigens, CD/metabolism , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Cell Survival/drug effects , MCF-7 Cells
3.
Nat Commun ; 15(1): 3802, 2024 May 07.
Article En | MEDLINE | ID: mdl-38714719

The interaction between nuclear receptor coactivator 4 (NCOA4) and the iron storage protein ferritin is a crucial component of cellular iron homeostasis. The binding of NCOA4 to the FTH1 subunits of ferritin initiates ferritinophagy-a ferritin-specific autophagic pathway leading to the release of the iron stored inside ferritin. The dysregulation of NCOA4 is associated with several diseases, including neurodegenerative disorders and cancer, highlighting the NCOA4-ferritin interface as a prime target for drug development. Here, we present the cryo-EM structure of the NCOA4-FTH1 interface, resolving 16 amino acids of NCOA4 that are crucial for the interaction. The characterization of mutants, designed to modulate the NCOA4-FTH1 interaction, is used to validate the significance of the different features of the binding site. Our results explain the role of the large solvent-exposed hydrophobic patch found on the surface of FTH1 and pave the way for the rational development of ferritinophagy modulators.


Cryoelectron Microscopy , Ferritins , Nuclear Receptor Coactivators , Ferritins/metabolism , Ferritins/chemistry , Ferritins/genetics , Humans , Nuclear Receptor Coactivators/metabolism , Nuclear Receptor Coactivators/chemistry , Nuclear Receptor Coactivators/genetics , Protein Binding , Binding Sites , Iron/metabolism , Autophagy , Models, Molecular , HEK293 Cells , Oxidoreductases/metabolism , Oxidoreductases/chemistry , Oxidoreductases/genetics , Proteolysis , Mutation
4.
ACS Chem Biol ; 19(5): 1151-1160, 2024 May 17.
Article En | MEDLINE | ID: mdl-38648729

Magnetogenetics has shown great potential for cell function and neuromodulation using heat or force effects under different magnetic fields; however, there is still a contradiction between experimental effects and underlying mechanisms by theoretical computation. In this study, we aimed to investigate the role of reactive oxygen species (ROS) in mechanical force-dependent regulation from a physicochemical perspective. The transient receptor potential vanilloid 4 (TRPV4) cation channels fused to ferritin (T4F) were overexpressed in HEK293T cells and exposed to static magnetic fields (sMF, 1.4-5.0 mT; gradient: 1.62 mT/cm). An elevation of ROS levels was found under sMF in T4F-overexpressing cells, which could lead to lipid oxidation. Compared with the overexpression of TRPV4, ferritin in T4F promoted the generation of ROS under the stimulation of sMF, probably related to the release of iron ions from ferritin. Then, the resulting ROS regulated the opening of the TRPV4 channel, which was attenuated by the direct addition of ROS inhibitors or an iron ion chelator, highlighting a close relationship among iron release, ROS production, and TRPV4 channel activation. Taken together, these findings indicate that the produced ROS under sMF act on the TRPV4 channel, regulating the influx of calcium ions. The study would provide a scientific basis for the application of magnetic regulation in cellular or neural regulation and disease treatment and contribute to the development of the more sensitive regulatory technology.


Ferritins , Magnetic Fields , Reactive Oxygen Species , TRPV Cation Channels , TRPV Cation Channels/metabolism , Humans , Reactive Oxygen Species/metabolism , HEK293 Cells , Ferritins/metabolism , Ferritins/chemistry , Iron/metabolism , Calcium/metabolism
5.
Biochem Biophys Res Commun ; 712-713: 149939, 2024 Jun 18.
Article En | MEDLINE | ID: mdl-38640729

Human heavy-chain ferritin is a naturally occurring protein with high stability and multifunctionality in biological systems. This study aims to utilize a prokaryotic expression system to produce recombinant human heavy-chain ferritin nanoparticles and investigate their targeting ability in brain tissue. The human heavy-chain ferritin gene was cloned into the prokaryotic expression vector pET28a and transformed into Escherichia coli BL21 (DE3) competent cells to explore optimal expression conditions. The recombinant protein was then purified to evaluate its immunoreactivity and characteristics. Additionally, the distribution of the administered protein in normal mice and its permeability in an in vitro blood-brain barrier (BBB) model were measured. The results demonstrate that the purified protein can self-assemble extracellularly into nano-cage structures of approximately 10 nm and is recognized by corresponding antibodies. The protein effectively penetrates the blood-brain barrier and exhibits slow clearance in mouse brain tissue, showing excellent permeability in the in vitro BBB model. This study highlights the stable expression of recombinant human heavy-chain ferritin using the Escherichia coli prokaryotic expression system, characterized by favorable nano-cage structures and biological activity. Its exceptional brain tissue targeting and slow metabolism lay an experimental foundation for its application in neuropharmaceutical delivery and vaccine development fields.


Blood-Brain Barrier , Brain , Escherichia coli , Ferritins , Nanoparticles , Recombinant Proteins , Animals , Humans , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Mice , Blood-Brain Barrier/metabolism , Brain/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Nanoparticles/chemistry , Ferritins/metabolism , Ferritins/genetics , Ferritins/chemistry , Apoferritins/metabolism , Apoferritins/genetics , Apoferritins/chemistry , Tissue Distribution
6.
ACS Nano ; 18(17): 11217-11233, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38627234

Due to its intrinsic tumor-targeting attribute, limited immunogenicity, and cage architecture, ferritin emerges as a highly promising nanocarrier for targeted drug delivery. In the effort to develop ferritin cage-encapsulated cisplatin (CDDP) as a therapeutic agent, we found unexpectedly that the encapsulation led to inactivation of the drug. Guided by the structural information, we deciphered the interactions between ferritin cages and CDDP, and we proposed a potential mechanism responsible for attenuating the antitumor efficacy of CDDP encapsulated within the cage. Six platinum prodrugs were then designed to avoid the inactivation. The antitumor activities of these ferritin-platinum prodrug complexes were then evaluated in cells of esophageal squamous cell carcinoma (ESCC). Compared with free CDDP, the complexes were more effective in delivering and retaining platinum in the cells, leading to increased DNA damage and enhanced cytotoxic action. They also exhibited improved pharmacokinetics and stronger antitumor activities in mice bearing ESCC cell-derived xenografts as well as patient-derived xenografts. The successful encapsulation also illustrates the critical significance of comprehending the interactions between small molecular drugs and ferritin cages for the development of precision-engineered nanocarriers.


Antineoplastic Agents , Cisplatin , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Ferritins , Prodrugs , Prodrugs/chemistry , Prodrugs/pharmacology , Humans , Ferritins/chemistry , Ferritins/metabolism , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/pathology , Esophageal Neoplasms/metabolism , Mice , Esophageal Squamous Cell Carcinoma/drug therapy , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/metabolism , Cisplatin/pharmacology , Cisplatin/chemistry , Drug Design , Platinum/chemistry , Platinum/pharmacology , Mice, Nude , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Drug Delivery Systems
7.
Int J Biol Macromol ; 267(Pt 1): 131492, 2024 May.
Article En | MEDLINE | ID: mdl-38604418

Human heavy chain ferritin (HFn) protein cage has been explored as a nanocarrier for targeted anticancer drug delivery. Here, we introduced a matrix metalloproteinases (MMPs)-cleavable sequence into the DE loop of HFn, creating an MMP-responsive variant, MR-HFn, for localized and extracellular drug release. The crystal structure of MR-HFn revealed that the addition of the MMPs recognition sequence did not affect the self-assembly of HFn but presented a surface-exposed loop susceptible to MMPs cleavage. Biochemical analysis indicated that this engineered protein cage is responsive to MMPs, enabling the targeted release of encapsulated drugs. To evaluate the therapeutic potential of this engineered protein cage, monosubstituted ß-carboxy phthalocyanine zinc (CPZ), a type of photosensitizer, was loaded inside this protein cage. The prepared CPZ@MR-HFn showed higher uptake and stronger phototoxicity in MMPs overexpressed tumor cells, as well as enhanced penetration into multicellular tumor spheroids compared with its counterpart CPZ@HFn in vitro. In vivo, CPZ@MR-HFn displayed a higher tumor inhibitory rate than CPZ@HFn under illumination. These results indicated that MR-HFn is a promising nanocarrier for anticancer drug delivery and the MMP-responsive strategy here can also be adapted for other stimuli.


Antineoplastic Agents , Drug Liberation , Matrix Metalloproteinases , Protein Engineering , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Matrix Metalloproteinases/metabolism , Animals , Cell Line, Tumor , Mice , Ferritins/chemistry , Ferritins/metabolism , Indoles/chemistry , Indoles/pharmacology , Drug Carriers/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry
8.
Bioconjug Chem ; 35(5): 593-603, 2024 May 15.
Article En | MEDLINE | ID: mdl-38592684

Ferritin is a multivalent, self-assembling protein scaffold found in most human cell types, in addition to being present in invertebrates, higher plants, fungi, and bacteria, that offers an attractive alternative to polymer-based drug delivery systems (DDS). In this study, the utility of the ferritin cage as a DDS was demonstrated within the context of T cell agonism for tumor killing. Members of the tumor necrosis factor receptor superfamily (TNFRSF) are attractive targets for the development of anticancer therapeutics. These receptors are endogenously activated by trimeric ligands that occur in transmembrane or soluble forms, and oligomerization and cell-surface anchoring have been shown to be essential aspects of the targeted agonism of this receptor class. Here, we demonstrated that the ferritin cage could be easily tailored for multivalent display of anti-OX40 antibody fragments on its surface and determined that these arrays are capable of pathway activation through cell-surface clustering. Together, these results confirm the utility, versatility, and developability of ferritin as a DDS.


Ferritins , Humans , Ferritins/chemistry , Ferritins/metabolism , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Drug Delivery Systems
9.
J Am Chem Soc ; 146(17): 11657-11668, 2024 May 01.
Article En | MEDLINE | ID: mdl-38641862

All protein-directed syntheses of metal nanoclusters (NCs) and nanoparticles (NPs) have attracted considerable attention because protein scaffolds provide a unique metal coordination environment and can adjust the shape and morphology of NCs and NPs. However, the detailed formation mechanisms of NCs or NPs directed by protein templates remain unclear. In this study, by taking advantage of the ferritin nanocage as a biotemplate to monitor the growth of Fe-O NCs as a function of time, we synthesized a series of iron NCs with different sizes and shapes and subsequently solved their corresponding three-dimensional atomic-scale structures by X-ray protein crystallography and cryo-electron microscopy. The time-dependent structure analyses revealed the growth process of these Fe-O NCs with the 4-fold channel of ferritin as nucleation sites. To our knowledge, the newly biosynthesized Fe35O23Glu12 represents the largest Fe-O NCs with a definite atomic structure. This study contributes to our understanding of the formation mechanism of iron NCs and provides an effective method for metal NC synthesis.


Ferritins , Particle Size , Ferritins/chemistry , Metal Nanoparticles/chemistry , Iron/chemistry , Models, Molecular , Crystallography, X-Ray , Ferric Compounds/chemistry
10.
J Agric Food Chem ; 72(14): 7629-7654, 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38518374

Ferritin nanocages possess remarkable structural properties and biological functions, making them highly attractive for applications in functional materials and biomedicine. This comprehensive review presents an overview of the molecular characteristics, extraction and identification of ferritin, ferritin receptors, as well as the advancements in the directional design of high-order assemblies of ferritin and the applications based on its unique structural properties. Specifically, this Review focuses on the regulation of ferritin assembly from one to three dimensions, leveraging the symmetry of ferritin and modifications on key interfaces. Furthermore, it discusses targeted delivery of nutrition and drugs through facile loading and functional modification of ferritin. The aim of this Review is to inspire the design of micro/nano functional materials using ferritin and the development of nanodelivery vehicles for nutritional fortification and disease treatment.


Ferritins , Ferritins/chemistry , Structure-Activity Relationship
11.
Biomater Sci ; 12(9): 2408-2417, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38511491

Alzheimer's disease is a severe brain condition caused by the formation of amyloid plaques composed of amyloid beta (Aß) peptides. These peptides form oligomers, protofibrils, and fibrils before deposition into amyloid plaques. Among these intermediates, Aß oligomers (AßOs) were found to be the most toxic and therefore an appealing target for drug development and understanding their role in the disease. However, precise isolation and characterization of AßOs have proven challenging because AßOs tend to aggregate and form heterogeneous mixtures in solution. As a solution, we genetically fused the Aß peptide with a ferritin monomer. Such fusion allowed the encapsulation of precisely 24 Aß peptides inside the 24-mer ferritin cage. Using high-speed atomic force microscopy (HS-AFM), we disassembled ferritin and directly visualized the Aß core enclosed within the cage. The thioflavin-T assay (ThT) and attenuated total reflection infrared spectroscopy (ATR-IR) revealed the presence of a ß-sheet structure in the encapsulated oligomeric aggregate. Gallic acid, an amyloid inhibitor, can inhibit the fluorescence of ThT bound AßOs. Our approach represents a significant advancement in the isolation and characterization of ß-sheet rich AßOs and is expected to be useful for future studies of other disordered peptides such as α-synuclein and tau.


Amyloid beta-Peptides , Ferritins , Protein Conformation, beta-Strand , Amyloid beta-Peptides/chemistry , Ferritins/chemistry , Microscopy, Atomic Force , Protein Aggregates/drug effects , Humans , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/isolation & purification
12.
J Agric Food Chem ; 72(13): 7464-7475, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38527235

Ferritin is a cage-like protein with modifiable outer and inner surfaces. To functionalize ferritin with preferable carrier applications, caffeic acid was first covalently bound to the soybean ferritin outer surface to fabricate a caffeic acid-ferritin complex (CFRT) by alkali treatment (pH 9.0). A decreased content of free amino acid (0.34 µmol/mg) and increased polyphenol binding equivalent (63.76 nmol/mg) indicated the formation of CFRT (ferritin/caffeic acid, 1:80). Fluorescence and infrared spectra verified the binding of caffeic acids to the ferritin structure. DSC indicated that the covalent modification enhanced the thermal stability of CFRT. Besides, CFRT maintained the typically spherical shape of ferritin (12 nm) and a hydration radius of 7.58 nm. Moreover, the bioactive colorant betanin was encapsulated in CFRT to form betanin-loaded CFRT (CFRTB), with an encapsulation rate of 15.5% (w/w). The betanin stabilities in CFRTB were significantly improved after heat, light, and Fe3+ treatments, and its red color retention was enhanced relative to the free betanin. This study delves into the modifiable ferritin application as nanocarriers of dual molecules and gives guidelines for betanin as a food colorant.


Betacyanins , Ferritins , Betacyanins/chemistry , Ferritins/chemistry , Caffeic Acids
13.
Adv Sci (Weinh) ; 11(17): e2309271, 2024 May.
Article En | MEDLINE | ID: mdl-38368258

Well-defined nanostructures are crucial for precisely understanding nano-bio interactions. However, nanoparticles (NPs) fabricated through conventional synthesis approaches often lack poor controllability and reproducibility. Herein, a synthetic biology-based strategy is introduced to fabricate uniformly reproducible protein-based NPs, achieving precise control over heterogeneous components of the NPs. Specifically, a ferritin assembly toolbox system is developed that enables intracellular assembly of ferritin subunits/variants in Escherichia coli. Using this strategy, a proof-of-concept study is provided to explore the interplay between ligand density of NPs and their tumor targets/penetration. Various ferritin hybrid nanocages (FHn) containing human ferritin heavy chains (FH) and light chains are accurately assembled, leveraging their intrinsic binding with tumor cells and prolonged circulation time in blood, respectively. Further studies reveal that tumor cell uptake is FH density-dependent through active binding with transferrin receptor 1, whereas in vivo tumor accumulation and tissue penetration are found to be correlated to heterogeneous assembly of FHn and vascular permeability of tumors. Densities of 3.7 FH/100 nm2 on the nanoparticle surface exhibit the highest degree of tumor accumulation and penetration, particularly in tumors with high permeability compared to those with low permeability. This study underscores the significance of nanoparticle heterogeneity in determining particle fate in biological systems.


Ferritins , Nanoparticles , Animals , Humans , Mice , Cell Line, Tumor , Disease Models, Animal , Ferritins/metabolism , Ferritins/chemistry , Nanoparticles/chemistry , Nanoparticles/metabolism , Nanostructures/chemistry , Neoplasms/metabolism , Female , Mice, Inbred BALB C
14.
Angew Chem Int Ed Engl ; 63(16): e202401379, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38407997

Ferritins are multimeric cage-forming proteins that play a crucial role in cellular iron homeostasis. All H-chain-type ferritins harbour a diiron site, the ferroxidase centre, at the centre of a 4 α-helical bundle, but bacterioferritins are unique in also binding 12 hemes per 24 meric assembly. The ferroxidase centre is known to be required for the rapid oxidation of Fe2+ during deposition of an immobilised ferric mineral core within the protein's hollow interior. In contrast, the heme of bacterioferritin is required for the efficient reduction of the mineral core during iron release, but has little effect on the rate of either oxidation or mineralisation of iron. Thus, the current view is that these two cofactors function in iron uptake and release, respectively, with no functional overlap. However, rapid electron transfer between the heme and ferroxidase centre of bacterioferritin from Escherichia coli was recently demonstrated, suggesting that the two cofactors may be functionally connected. Here we report absorbance and (magnetic) circular dichroism spectroscopies, together with in vitro assays of iron-release kinetics, which demonstrate that the ferroxidase centre plays an important role in the reductive mobilisation of the bacterioferritin mineral core, which is dependent on the heme-ferroxidase centre electron transfer pathway.


Ceruloplasmin , Iron , Iron/chemistry , Ceruloplasmin/chemistry , Escherichia coli/metabolism , Ferritins/chemistry , Bacterial Proteins/metabolism , Cytochrome b Group/chemistry , Minerals , Oxidation-Reduction , Heme/metabolism
15.
Inorg Chem ; 63(7): 3359-3365, 2024 Feb 19.
Article En | MEDLINE | ID: mdl-38315811

The Fe(II) oxidation mechanism in the ferroxidase center of heavy chain ferritin has been studied extensively. However, the actual production of H2O2 was found to be substantially lower than expected at low flux of Fe(II) to ferritin subunits. Here, we demonstrated that H2O2 could interact with the di-iron nuclear center, leading to the production of hydroxyl radicals and oxygen. Two reaction intermediates were captured in the ferroxidase center by using the time-lapse crystallographic techniques in a shellfish ferritin. The crystal structures revealed the binding of H2O2 as a µ -1,2-peroxo-diferric species and the binding of O2 to the diferric structure. This investigation sheds light on the reaction between the di-iron nuclear center and H2O2 and provides insights for the exploitation of metalloenzymes.


Ferritins , Iron , Iron/chemistry , Ferritins/chemistry , Hydrogen Peroxide/chemistry , Ceruloplasmin/chemistry , Oxidation-Reduction , Ferrous Compounds/chemistry
16.
Nat Commun ; 15(1): 233, 2024 Jan 03.
Article En | MEDLINE | ID: mdl-38172125

Biominerals, the inorganic minerals of organisms, are known mainly for their physical property-related functions in modern living organisms. Our recent discovery of the enzyme-like activities of nanomaterials, coined as nanozyme, inspires the hypothesis that nano-biominerals might function as enzyme-like catalyzers in cells. Here we report that the iron cores of biogenic ferritins act as natural nanozymes to scavenge superoxide radicals. Through analyzing eighteen representative ferritins from three living kingdoms, we find that the iron core of prokaryote ferritin possesses higher superoxide-diminishing activity than that of eukaryotes. Further investigation reveals that the differences in catalytic capability result from the iron/phosphate ratio changes in the iron core, which is mainly determined by the structures of ferritins. The phosphate in the iron core switches the iron core from single crystalline to amorphous iron phosphate-like structure, resulting in decreased affinity to the hydrogen proton of the ferrihydrite-like core that facilitates its reaction with superoxide in a manner different from that of ferric ions. Furthermore, overexpression of ferritins with high superoxide-diminishing activities in E. coli increases the resistance to superoxide, whereas bacterioferritin knockout or human ferritin knock-in diminishes free radical tolerance, highlighting the physiological antioxidant role of this type of nanozymes.


Escherichia coli , Superoxides , Humans , Escherichia coli/genetics , Escherichia coli/metabolism , Ferritins/chemistry , Iron/metabolism , Phosphates
17.
Biomater Sci ; 12(5): 1249-1262, 2024 Feb 27.
Article En | MEDLINE | ID: mdl-38247338

Ferritins are globular proteins with an internal cavity that enables the encapsulation of a plethora of low-mass compounds. Unfortunately, the overall negative surface charge of ferritin's internal cavity hampers efficient loading of negatively charged molecules. Therefore, we produced a genetically engineered human H-chain ferritin containing a cationic RKRK domain, reversing the natural net charge of the cavity to positive, thus allowing for efficient encapsulation of negatively charged siRNA. Due to the reversed, positive charge mediated by RKRK domains, the recombinant ferritin produced in E. coli inherently carries a load of bacterial RNA inside its cavity, turning the protein into an effective sponge possessing high affinity for DNA/RNA-binding substances that can be loaded with markedly higher efficiency compared to the wildtype protein. Using doxorubicin as payload, we show that due to its loading through the RNA sponge, doxorubicin is released in a sustained manner, with a cytotoxicity profile similar to the free drug. In summary, this is the first report demonstrating a ferritin/nucleic acid hybrid delivery vehicle with a broad spectrum of properties exploitable in various fields of biomedical applications.


Apoferritins , RNA , Humans , Apoferritins/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Ferritins/genetics , Ferritins/chemistry , Doxorubicin/pharmacology , Doxorubicin/chemistry
18.
Biomacromolecules ; 25(1): 177-187, 2024 01 08.
Article En | MEDLINE | ID: mdl-38059469

The precise assembly of multiple biomacromolecules into well-defined structures and materials is of great importance for various biomedical and nanobiotechnological applications. In this study, we investigate the assembly requirements for two-component materials using charged protein nanocages as building blocks. To achieve this, we designed several variants of ferritin nanocages to determine the surface characteristics necessary for the formation of large-scale binary three-dimensional (3D) assemblies. These nanocage variants were employed in protein crystallization experiments and macromolecular crystallography analyses, complemented by computational methods. Through the screening of nanocage variant combinations at various ionic strengths, we identified three essential features for successful assembly: (1) the presence of a favored crystal contact region, (2) the presence of a charged patch not involved in crystal contacts, and (3) sufficient distinctiveness between the nanocages. Surprisingly, the absence of noncrystal contact mediating patches had a detrimental effect on the assemblies, highlighting their unexpected importance. Intriguingly, we observed the formation of not only binary structures but also both negatively and positively charged unitary structures under previously exclusively binary conditions. Overall, our findings will inform future design strategies by providing some design rules, showcasing the utility of supercharging symmetric building blocks in facilitating the assembly of biomacromolecules into large-scale binary 3D assemblies.


Ferritins , Macromolecular Substances/chemistry , Ferritins/chemistry , Crystallization
19.
Food Chem ; 439: 138132, 2024 May 01.
Article En | MEDLINE | ID: mdl-38081094

The ferritin cage can not only load iron ions in its inner cavity, but also has the capacity to carry other metal ions, thus constructing a new biological nano-transport system. The nanoparticles formed by ferritin and minerals can be used as ingredients of mineral supplements, which overcome the shortcomings of traditional mineral ingredients such as low bioavailability. Moreover, ferritin can be used to remove heavy metal ions from contaminated food. Silver and palladium nanoparticles formed by ferritin are also applied as anticancer agents. Ferritin combined with metal ions can be also used to detect harmful substances. This review aims to provide a comprehensive overview of ferritin's function in transporting and binding metal ions, and discusses the limitations and future prospects, which offers valuable insights for the application of ferritin in mineral supplements, food detoxifiers, anticancer agents, and food detections.


Antineoplastic Agents , Metal Nanoparticles , Ferritins/chemistry , Palladium , Minerals/metabolism , Ions
20.
Biochim Biophys Acta Gen Subj ; 1868(2): 130525, 2024 Feb.
Article En | MEDLINE | ID: mdl-38043914

The development of new drug delivery systems for targeted chemotherapy release in cancer cells represents a very promising tool. In this contest, protein-based nanocages have considerable potential as drug delivery devices. Notably, ferritin has emerged as an excellent candidate due to its unique architecture, surface properties and high biocompatibility. A promising strategy might then involve ferritin cargos for specifical release of AntiMicrobial Peptides endowed with anticancer activity to cancer cells. In this paper, we encapsulated the TRIL analogue of Temporin-L peptide within a ferritin nanocage and evaluated the cargo biological properties. The results demonstrated a reduced haemolytic activity of the peptide and a selective cytotoxicity activity on cancer cells likely mediated by oxidative stress while having no effects on non-tumoral cells. The combination of the properties of ferritin with TRIL, might open up the way to the development of novel peptide delivery systems for future pharmaceutical applications.


Ferritins , Peptides , Ferritins/chemistry , Peptides/pharmacology , Peptides/chemistry , Drug Delivery Systems/methods
...