Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.610
1.
Nat Commun ; 15(1): 4045, 2024 May 14.
Article En | MEDLINE | ID: mdl-38744835

Vesicular transport is essential for delivering cargo to intracellular destinations. Evi5 is a Rab11-GTPase-activating protein involved in endosome recycling. In humans, Evi5 is a high-risk locus for multiple sclerosis, a debilitating disease that also presents with excess iron in the CNS. In insects, the prothoracic gland (PG) requires entry of extracellular iron to synthesize steroidogenic enzyme cofactors. The mechanism of peripheral iron uptake in insect cells remains controversial. We show that Evi5-depletion in the Drosophila PG affected vesicle morphology and density, blocked endosome recycling and impaired trafficking of transferrin-1, thus disrupting heme synthesis due to reduced cellular iron concentrations. We show that ferritin delivers iron to the PG as well, and interacts physically with Evi5. Further, ferritin-injection rescued developmental delays associated with Evi5-depletion. To summarize, our findings show that Evi5 is critical for intracellular iron trafficking via transferrin-1 and ferritin, and implicate altered iron homeostasis in the etiology of multiple sclerosis.


Drosophila Proteins , Drosophila melanogaster , Ferritins , Iron , Transferrin , Animals , Iron/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Ferritins/metabolism , Ferritins/genetics , Transferrin/metabolism , Drosophila melanogaster/metabolism , Drosophila melanogaster/genetics , Endosomes/metabolism , Humans , Protein Transport
2.
Nat Commun ; 15(1): 3802, 2024 May 07.
Article En | MEDLINE | ID: mdl-38714719

The interaction between nuclear receptor coactivator 4 (NCOA4) and the iron storage protein ferritin is a crucial component of cellular iron homeostasis. The binding of NCOA4 to the FTH1 subunits of ferritin initiates ferritinophagy-a ferritin-specific autophagic pathway leading to the release of the iron stored inside ferritin. The dysregulation of NCOA4 is associated with several diseases, including neurodegenerative disorders and cancer, highlighting the NCOA4-ferritin interface as a prime target for drug development. Here, we present the cryo-EM structure of the NCOA4-FTH1 interface, resolving 16 amino acids of NCOA4 that are crucial for the interaction. The characterization of mutants, designed to modulate the NCOA4-FTH1 interaction, is used to validate the significance of the different features of the binding site. Our results explain the role of the large solvent-exposed hydrophobic patch found on the surface of FTH1 and pave the way for the rational development of ferritinophagy modulators.


Cryoelectron Microscopy , Ferritins , Nuclear Receptor Coactivators , Ferritins/metabolism , Ferritins/chemistry , Ferritins/genetics , Humans , Nuclear Receptor Coactivators/metabolism , Nuclear Receptor Coactivators/chemistry , Nuclear Receptor Coactivators/genetics , Protein Binding , Binding Sites , Iron/metabolism , Autophagy , Models, Molecular , HEK293 Cells , Oxidoreductases/metabolism , Oxidoreductases/chemistry , Oxidoreductases/genetics , Proteolysis , Mutation
3.
Sci Signal ; 17(830): eade4335, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38564492

Serum ferritin concentrations increase during hepatic inflammation and correlate with the severity of chronic liver disease. Here, we report a molecular mechanism whereby the heavy subunit of ferritin (FTH) contributes to hepatic inflammation. We found that FTH induced activation of the NLRP3 inflammasome and secretion of the proinflammatory cytokine interleukin-1ß (IL-1ß) in primary rat hepatic stellate cells (HSCs) through intercellular adhesion molecule-1 (ICAM-1). FTH-ICAM-1 stimulated the expression of Il1b, NLRP3 inflammasome activation, and the processing and secretion of IL-1ß in a manner that depended on plasma membrane remodeling, clathrin-mediated endocytosis, and lysosomal destabilization. FTH-ICAM-1 signaling at early endosomes stimulated Il1b expression, implying that this endosomal signaling primed inflammasome activation in HSCs. In contrast, lysosomal destabilization was required for FTH-induced IL-1ß secretion, suggesting that lysosomal damage activated inflammasomes. FTH induced IL-1ß production in liver slices from wild-type mice but not in those from Icam1-/- or Nlrp3-/- mice. Thus, FTH signals through its receptor ICAM-1 on HSCs to activate the NLRP3 inflammasome. We speculate that this pathway contributes to hepatic inflammation, a key process that stimulates hepatic fibrogenesis associated with chronic liver disease.


Inflammasomes , Liver Diseases , Rats , Mice , Animals , Inflammasomes/genetics , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Intercellular Adhesion Molecule-1/genetics , Intercellular Adhesion Molecule-1/metabolism , Hepatic Stellate Cells/metabolism , Ferritins/genetics , Ferritins/metabolism , Interleukin-1beta/metabolism , Inflammation/genetics , Inflammation/metabolism
4.
Food Chem Toxicol ; 188: 114682, 2024 Jun.
Article En | MEDLINE | ID: mdl-38657941

Butylated hydroxyanisole (BHA) is one of the most commonly used antioxidants and is widely used in food, but whether it causes vascular damage has not been clearly studied. The present study demonstrated for the first time that BHA reduced the viability of human umbilical vein endothelial cells (HUVECs) and mouse brain microvascular endothelial cells (BEND3) in a dose- and time-dependent manner. Moreover, BHA inhibited the migration and proliferation of vascular endothelial cells (ECs). Further analysis revealed that in ECs, the ferroptosis inhibitor ferrostatin-1 (Fer-1) reversed the BHA-induced increase in Fe2+ and malonaldehyde (MDA) levels. Acridine orange staining demonstrated that BHA increased lysosomal permeability. At the protein level, BHA increased the expression of transcription factor EB (TFEB) and decreased the expression of glutathione peroxidase (GPX4), solute carrier family 7 member 11 (SLC7A11, xCT), and ferritin heavy chain 1 (FTH1). Moreover, these effects of BHA could be reversed by knocking down TFEB. In vivo experiments confirmed that BHA caused elevated pulse wave velocity (PWV) and reduced acetylcholine-dependent vascular endothelial diastole. In conclusion, BHA degrades GPX4, xCT, and FTH1 through activation of the TFEB-mediated lysosomal pathway and promotes ferroptosis, ultimately leading to vascular endothelial cell injury.


Butylated Hydroxyanisole , Human Umbilical Vein Endothelial Cells , Phospholipid Hydroperoxide Glutathione Peroxidase , Animals , Humans , Mice , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Butylated Hydroxyanisole/pharmacology , Human Umbilical Vein Endothelial Cells/drug effects , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Amino Acid Transport System y+/metabolism , Amino Acid Transport System y+/genetics , Ferroptosis/drug effects , Cell Proliferation/drug effects , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Cell Movement/drug effects , Ferritins/metabolism , Ferritins/genetics , Cyclohexylamines , Oxidoreductases , Phenylenediamines
5.
Free Radic Biol Med ; 219: 153-162, 2024 Jul.
Article En | MEDLINE | ID: mdl-38657753

The anemia of inflammation (AI) is characterized by the presence of inflammation and abnormal elevation of hepcidin. Accumulating evidence has proved that Rocaglamide (RocA) was involved in inflammation regulation. Nevertheless, the role of RocA in AI, especially in iron metabolism, has not been investigated, and its underlying mechanism remains elusive. Here, we demonstrated that RocA dramatically suppressed the elevation of hepcidin and ferritin in LPS-treated mice cell line RAW264.7 and peritoneal macrophages. In vivo study showed that RocA can restrain the depletion of serum iron (SI) and transferrin (Tf) saturation caused by LPS. Further investigation showed that RocA suppressed the upregulation of hepcidin mRNA and downregulation of Fpn1 protein expression in the spleen and liver of LPS-treated mice. Mechanistically, this effect was attributed to RocA's ability to inhibit the IL-6/STAT3 pathway, resulting in the suppression of hepcidin mRNA and subsequent increase in Fpn1 and TfR1 expression in LPS-treated macrophages. Moreover, RocA inhibited the elevation of the cellular labile iron pool (LIP) and reactive oxygen species (ROS) induced by LPS in RAW264.7 cells. These findings reveal a pivotal mechanism underlying the roles of RocA in modulating iron homeostasis and also provide a candidate natural product on alleviating AI.


Hepcidins , Homeostasis , Interleukin-6 , Iron , Lipopolysaccharides , Receptors, Transferrin , STAT3 Transcription Factor , Hepcidins/metabolism , Hepcidins/genetics , Animals , Mice , Iron/metabolism , RAW 264.7 Cells , Receptors, Transferrin/metabolism , Receptors, Transferrin/genetics , Lipopolysaccharides/pharmacology , Interleukin-6/metabolism , Interleukin-6/genetics , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Reactive Oxygen Species/metabolism , Gene Expression Regulation/drug effects , Inflammation/metabolism , Inflammation/genetics , Inflammation/pathology , Signal Transduction/drug effects , Anemia/metabolism , Anemia/genetics , Anemia/drug therapy , Anemia/pathology , Ferritins/metabolism , Ferritins/genetics , Male , Liver/metabolism , Liver/pathology , Macrophages/metabolism , Macrophages/drug effects , Cation Transport Proteins
6.
Biochem Biophys Res Commun ; 712-713: 149939, 2024 Jun 18.
Article En | MEDLINE | ID: mdl-38640729

Human heavy-chain ferritin is a naturally occurring protein with high stability and multifunctionality in biological systems. This study aims to utilize a prokaryotic expression system to produce recombinant human heavy-chain ferritin nanoparticles and investigate their targeting ability in brain tissue. The human heavy-chain ferritin gene was cloned into the prokaryotic expression vector pET28a and transformed into Escherichia coli BL21 (DE3) competent cells to explore optimal expression conditions. The recombinant protein was then purified to evaluate its immunoreactivity and characteristics. Additionally, the distribution of the administered protein in normal mice and its permeability in an in vitro blood-brain barrier (BBB) model were measured. The results demonstrate that the purified protein can self-assemble extracellularly into nano-cage structures of approximately 10 nm and is recognized by corresponding antibodies. The protein effectively penetrates the blood-brain barrier and exhibits slow clearance in mouse brain tissue, showing excellent permeability in the in vitro BBB model. This study highlights the stable expression of recombinant human heavy-chain ferritin using the Escherichia coli prokaryotic expression system, characterized by favorable nano-cage structures and biological activity. Its exceptional brain tissue targeting and slow metabolism lay an experimental foundation for its application in neuropharmaceutical delivery and vaccine development fields.


Blood-Brain Barrier , Brain , Escherichia coli , Ferritins , Nanoparticles , Recombinant Proteins , Animals , Humans , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Mice , Blood-Brain Barrier/metabolism , Brain/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Nanoparticles/chemistry , Ferritins/metabolism , Ferritins/genetics , Ferritins/chemistry , Apoferritins/metabolism , Apoferritins/genetics , Apoferritins/chemistry , Tissue Distribution
7.
PLoS One ; 19(3): e0300143, 2024.
Article En | MEDLINE | ID: mdl-38547239

OBJECTIVES: Observational studies had investigated the association of iron metabolism with anxiety disorders. The conclusions were inconsistent and not available to reveal the causal or reverse-causal association due to the confounding. In this study we estimated the potential causal effect of iron homeostasis markers on anxiety disorders using two-sample Mendelian randomization (MR) analysis. METHODS: Summary data of single nucleotide polymorphisms (SNPs) associated with four iron-related biomarkers were extracted from a recent report about analysis of three genome-wide association study (GWAS), the sample size of which ranged from 131471 to 246139 individuals. The corresponding data for anxiety disorders were from Finngen database (20992 cases and 197800 controls). The analyses were mainly based on inverse variance weighted (IVW) method. In addition, the heterogeneity and pleiotropy of the results were assessed by Cochran's Q test and MR-Egger regression. RESULTS: Basing on IVW method, genetically predicted serum iron level, ferritin and transferrin had negative effects on anxiety disorders. The odd ratios (OR) of anxiety disorders per 1 standard deviation (SD) unit increment in iron status biomarkers were 0.922 (95% confidence interval (CI) 0.862-0.986; p = 0.018) for serum iron level, 0.873 (95% CI 0.790-0.964; p = 0.008) for log-transformed ferritin and 0.917 (95% CI 0.867-0.969; p = 0.002) for transferrin saturation. But no statical significance was found in the association of 1 SD unit increased total iron-binding capacity (TIBC) with anxiety disorders (OR 1.080; 95% CI 0.988-1.180; p = 0.091). The analyses were supported by pleiotropy test which suggested no pleiotropic bias. CONCLUSION: Our results indicated that genetically determined iron status biomarkers causally linked to the risk of anxiety disorders, providing valuable insights into the genetic research and clinical intervention of anxiety disorders.


Genome-Wide Association Study , Iron , Humans , Mendelian Randomization Analysis , Ferritins/genetics , Transferrin/genetics , Anxiety Disorders/epidemiology , Anxiety Disorders/genetics , Biomarkers
8.
Int J Biol Macromol ; 264(Pt 2): 130820, 2024 Apr.
Article En | MEDLINE | ID: mdl-38484812

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and its variants has resulted in global economic losses and posed a threat to human health. The pandemic highlights the urgent need for an efficient, easily producible, and broad-spectrum vaccine. Here, we present a potentially universal strategy for the rapid and general design of vaccines, focusing on the design and testing of omicron BA.5 RBD-conjugated self-assembling ferritin nanoparticles (NPs). The covalent bonding of RBD-Fc to protein A-ferritin was easily accomplished through incubation, resulting in fully multivalent RBD-conjugated NPs that exhibited high structural uniformity, stability, and efficient assembly. The ferritin nanoparticle vaccine synergistically stimulated the innate immune response, Tfh-GCB-plasma cell-mediated activation of humoral immunity and IFN-γ-driven cellular immunity. This nanoparticle vaccine induced a high level of cross-neutralizing responses and protected golden hamsters challenged with multiple mutant strains from infection-induced clinical disease, providing a promising strategy for broad-spectrum vaccine development for SARS-CoV-2 prophylaxis. In conclusion, the nanoparticle conjugation platform holds promise for its potential universality and competitive immunization efficacy and is expected to facilitate the rapid manufacturing and broad application of next-generation vaccines.


COVID-19 , Nanoparticles , Animals , Cricetinae , Humans , SARS-CoV-2 , COVID-19/prevention & control , COVID-19 Vaccines , Immunity, Innate , Ferritins/genetics , Nanovaccines , Antibodies, Neutralizing , Antibodies, Viral
9.
Food Microbiol ; 120: 104466, 2024 Jun.
Article En | MEDLINE | ID: mdl-38431318

In this study, we evaluated the histomorphology, reactive oxygen species (ROS), protein degradation, and iron metabolism characteristics and differential expression analysis of genes for siderophores synthesis and protease secretion in prepared beef steaks inoculated alone or co-inoculated with P. weihenstephanensis, B. thermotrichothrix and M. caseolyticus at 4 °C for 12 days. The results showed that the P. weihenstephanensis was the key bacteria that degraded protein in the process of prepared beef steaks spoilage, which led to protein oxidation by promoting ferritin degradation to release free iron and inducing ROS accumulation. The highest expression of FpvA and AprE was detected in the P. weihenstephanensis group by comparing qRT-PCR of the different inoculation groups. Both qRT-PCR and Western blot revealed that ferritin heavy polypeptide and ferritin light chain polypeptide gene and protein expressions were significantly higher in the P. weihenstephanensis inoculation group compared to the other inoculation groups. Results suggested that FpvA and AprE might play roles in meat spoilage and were potential positional, physiological and functional candidate genes for improving the quality traits of prepared beef steaks. This work may provide insights on controlling food quality and safety by intervening in spoilage pathways targeting iron carrier biosynthesis or protease secretion genes.


Meat , Peptide Hydrolases , Pseudomonas , Animals , Cattle , Reactive Oxygen Species , Meat/microbiology , Ferritins/genetics , Peptides
10.
J Tradit Chin Med ; 44(2): 345-352, 2024 Apr.
Article En | MEDLINE | ID: mdl-38504540

OBJECTIVE: To explore the effect of acupuncture treatment on cerebral ischaemia-reperfusion injury (CIRI) and reveal the underlying mechanism of the effect based on nuclear receptor coactivator 4 (NCOA4) mediated ferritinophagy. METHODS: Sprague-Dawley male rats were divided into four groups: the sham group, model group, acupuncture group, and sham acupuncture group. After 2 h of middle cerebral artery occlusion (MCAO), reperfusion was performed for 24 h to induce CIRI. The rats were treated with acupuncture at the Neiguan (PC6) and Shuigou (GV26) acupoints. Their neurological function was evaluated by taking their Bederson scores at 2 h after ischaemia and 24 h after reperfusion. Triphenyltetrazolium chloride staining was applied to assess the cerebral infarct volume at 24 h after reperfusion. The malondialdehyde (MDA) and ferrous iron (Fe2+) levels were observed after 24 h of reperfusion using an assay kit. Western blotting was performed to detect the expression of NCOA4 and ferritin heavy chain 1 (FTH1) at 24 h after reperfusion. Moreover, the colocalization of ferritin with neurons, NCOA4 with microtubule-associated protein 1 light chain 3 (LC3), and NCOA4 with ferritin was visualized using immunofluorescence staining. RESULTS: Acupuncture significantly improved neurological function and decreased cerebral infarct volume in the acupuncture group. Following CIRI, the expression of NCOA4, LC3 and FTH1 was increased, which enhanced ferritinophagy and induced an inappropriate accumulation of Fe2+ and MDA in the ischaemic brain. However, acupuncture dramatically downregulated the expression of NCOA4, LC3 and FTH1, inhibited the overactivation of ferritinophagy, and decreased the levels of MDA and Fe2+. CONCLUSIONS: Acupuncture can inhibit NCOA4-mediated ferritinophagy and protect neurons against CIRI in a rat model.


Acupuncture Therapy , Brain Ischemia , Reperfusion Injury , Rats , Male , Animals , Rats, Sprague-Dawley , Brain Ischemia/genetics , Brain Ischemia/therapy , Brain Ischemia/metabolism , Cerebral Infarction , Reperfusion Injury/genetics , Reperfusion Injury/therapy , Reperfusion Injury/metabolism , Ferritins/genetics , Nuclear Receptor Coactivators/metabolism
11.
J Vis Exp ; (204)2024 Feb 23.
Article En | MEDLINE | ID: mdl-38465922

Mutations in the autophagy gene WDR45/WIPI4 are the cause of beta-propeller-associated neurodegeneration (BPAN), a subtype of human diseases known as neurodegeneration with brain iron accumulation (NBIA) due to the presence of iron deposits in the brains of patients. Intracellular iron levels are tightly regulated by a number of cellular mechanisms, including the critical mechanism of ferritinophagy. This paper describes how ferritinophagy can be assessed in primary, skin-derived human fibroblasts. In this protocol, we use iron-modulating conditions for inducing or inhibiting ferritinophagy at the cellular level, such as the administration of bafilomycin A1 to inhibit lysosome function and ferric ammonium citrate (FAC) or deferasiox (DFX) treatments to overload or deplete iron, respectively. Such treated fibroblasts are then subjected to high-throughput imaging and CellProfiler-based quantitative localization analysis of endogenous ferritin and autophagosomal/lysosomal markers, here LAMP2. Based on the level of autophagosomal/lysosomal ferritin, conclusions can be drawn regarding the level of ferritinophagy. This protocol can be used to assess ferritinophagy in BPAN patient-derived primary fibroblasts or other types of mammalian cells.


Ferritins , Iron , Animals , Humans , Iron/metabolism , Ferritins/genetics , Ferritins/metabolism , Brain/metabolism , Autophagy , Fibroblasts/metabolism , Mammals/metabolism , Carrier Proteins/metabolism
12.
Front Immunol ; 15: 1346512, 2024.
Article En | MEDLINE | ID: mdl-38352881

Self-assembling protein nanoparticles are used as a novel vaccine design platform to improve the stability and immunogenicity of safe subunit vaccines, while providing broader protection against viral infections. Infectious Hematopoietic Necrosis virus (IHNV) is the causative agent of the WOAH-listed IHN diseases for which there are currently no therapeutic treatments and no globally available commercial vaccine. In this study, by genetically fusing the virus glycoprotein to the H. pylori ferritin as a scaffold, we constructed a self-assembling IHNV nanovaccine (FerritVac). Despite the introduction of an exogenous fragment, the FerritVac NPs show excellent stability same as Ferritin NPs under different storage, pH, and temperature conditions, mimicking the harsh gastrointestinal condition of the virus main host (trout). MTT viability assays showed no cytotoxicity of FerritVac or Ferritin NPs in zebrafish cell culture (ZFL cells) incubated with different doses of up to 100 µg/mL for 14 hours. FerritVac NPs also upregulated expression of innate antiviral immunity, IHNV, and other fish rhabdovirus infection gene markers (mx, vig1, ifit5, and isg-15) in the macrophage cells of the host. In this study, we demonstrate the development of a soluble recombinant glycoprotein of IHNV in the E. coli system using the ferritin self-assembling nanoplatform, as a biocompatible, stable, and effective foundation to rescue and produce soluble protein and enable oral administration and antiviral induction for development of a complete IHNV vaccine. This self-assembling protein nanocages as novel vaccine approach offers significant commercial potential for non-mammalian and enveloped viruses.


Infectious hematopoietic necrosis virus , Viral Vaccines , Animals , Infectious hematopoietic necrosis virus/genetics , Ferritins/genetics , Escherichia coli , Zebrafish , Glycoproteins/genetics
13.
Mar Biotechnol (NY) ; 26(2): 261-275, 2024 Apr.
Article En | MEDLINE | ID: mdl-38353762

The role of hepcidins, antimicrobial peptides involved in iron metabolism, immunity, and inflammation, is studied. First, gilthead seabream (Sparus aurata L.) head-kidney leucocytes (HKLs) were incubated with λ-carrageenin to study the expression of hepcidin and iron metabolism-related genes. While the expression of most of the genes studied was upregulated, the expression of ferroportin gene (slc40a) was downregulated. In the second part of the study, seabream specimens were injected intramuscularly with λ-carrageenin or buffer (control). The expression of the same genes was evaluated in the head kidney, liver, and skin at different time points after injection. The expression of Hamp1m, ferritin b, and ferroportin genes (hamp1, fthb, and slc40a) was upregulated in the head kidney of fish from the λ-carrageenin-injected group, while the expression of Hamp2C and Hamp2E genes (hamp2.3 and hamp2.7) was downregulated. In the liver, the expression of hamp1, ferritin a (ftha), slc40a, Hamp2J, and Hamp2D (hamp2.5/6) genes was downregulated in the λ-carrageenin-injected group. In the skin, the expression of hamp1 and (Hamp2A Hamp2C) hamp2.1/3/4 genes was upregulated in the λ-carrageenin-injected group. A bioinformatic analysis was performed to predict the presence of transcription factor binding sites in the promoter region of hepcidins. The primary sequence of hepcidin was conserved among the different mature peptides, although changes in specific amino acid residues were identified. These changes affected the charge, hydrophobicity, and probability of hepcidins being antimicrobial peptides. This study sheds light on the poorly understood roles of hepcidins in fish. The results provide insight into the regulatory mechanisms of inflammation in fish and could contribute to the development of new strategies for treat inflammation in farm animals.


Fish Proteins , Hepcidins , Inflammation , Sea Bream , Animals , Sea Bream/genetics , Sea Bream/metabolism , Sea Bream/immunology , Hepcidins/genetics , Hepcidins/metabolism , Fish Proteins/genetics , Fish Proteins/metabolism , Inflammation/genetics , Inflammation/metabolism , Liver/metabolism , Fish Diseases/immunology , Fish Diseases/genetics , Fish Diseases/metabolism , Head Kidney/metabolism , Iron/metabolism , Gene Expression Regulation/drug effects , Leukocytes/metabolism , Leukocytes/drug effects , Skin/metabolism , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Ferritins/genetics , Ferritins/metabolism , Promoter Regions, Genetic
15.
Fish Shellfish Immunol ; 146: 109417, 2024 Mar.
Article En | MEDLINE | ID: mdl-38301814

Edwardsiella piscicida (E. piscicida) is a gram-negative pathogen that survives in intracellular environment. Currently, the interplay between E. piscicida and host cells has not been completely explored. In this study, we found that E. piscicida disturbed iron homeostasis in grass carp monocytes/macrophages to maintain its own growth. Further investigation revealed the bacteria induced an increase of intracellular iron, which was subjected to the degradation of ferritin. Moreover, the autophagy inhibitor impeded the degradation of ferritin and increase of intracellular iron in E. piscicida-infected monocytes/macrophages, implying possible involvement of autophagy response in the process of E. piscicida-broken iron homeostasis. Along this line, confocal microscopy observed that E. piscicida elicited the colocalization of ferritin with LC3-positive autophagosome in the monocytes/macrophages, indicating that E. piscicida mediated the degradation of ferritin possibly through the autophagic pathway. These results deepened our understanding of the interaction between E. piscicida and fish cells, hinting that the disruption of iron homeostasis was an important factor for pathogenicity of E. piscicida. They also indicated that autophagy was a possible mechanism governing intracellular iron metabolism in response to E. piscicida infection and might offer a new avenue for anti-E. piscicida strategies in the future.


Edwardsiella , Enterobacteriaceae Infections , Fish Diseases , Hemochromatosis , Animals , Monocytes/metabolism , Fishes/metabolism , Edwardsiella/physiology , Macrophages/metabolism , Autophagy , Iron/metabolism , Ferritins/genetics , Fish Diseases/microbiology , Enterobacteriaceae Infections/veterinary , Enterobacteriaceae Infections/microbiology , Bacterial Proteins/metabolism
16.
Int J Mol Sci ; 25(4)2024 Feb 18.
Article En | MEDLINE | ID: mdl-38397073

Cancer cells frequently present elevated intracellular iron levels, which are thought to facilitate an enhanced proliferative capacity. Targeting iron metabolism within cancer cells presents an avenue to enhance therapeutic responses, necessitating the use of non-invasive models to modulate iron manipulation to predict responses. Moreover, the ubiquitous nature of iron necessitates the development of unique, non-invasive markers of metabolic disruptions to develop more personalized approaches and enhance the clinical utility of these approaches. Ferritin, an iron storage enzyme that is often upregulated as a response to iron accumulation, plays a central role in iron metabolism and has been frequently associated with unfavorable clinical outcomes in cancer. Herein, we demonstrate the successful utility, validation, and functionality of a doxycycline-inducible ferritin heavy chain (FtH) overexpression model in H1299T non-small-cell lung cancer (NSCLC) cells. Treatment with doxycycline increased the protein expression of FtH with a corresponding decrease in labile iron in vitro and in vivo, as determined by calcein-AM staining and EPR, respectively. Moreover, a subsequent increase in TfR expression was observed. Furthermore, T2* MR mapping effectively detected FtH expression in our in vivo model. These results demonstrate that T2* relaxation times can be used to monitor changes in FtH expression in tumors with bidirectional correlations depending on the model system. Overall, this study describes the development of an FtH overexpression NSCLC model and its correlation with T2* mapping for potential use in patients to interrogate iron metabolic alterations and predict clinical outcomes.


Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Ferritins/genetics , Ferritins/metabolism , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/genetics , Doxycycline/pharmacology , Lung Neoplasms/diagnostic imaging , Iron/metabolism , Apoferritins/genetics , Apoferritins/metabolism , Magnetic Resonance Imaging/methods
17.
Int Immunopharmacol ; 129: 111630, 2024 Mar 10.
Article En | MEDLINE | ID: mdl-38320355

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) incessantly engenders mutating strains via immune escape mechanisms, substantially escalating the risk of severe acute respiratory syndrome. In this context, the urgent development of innovative and efficacious mRNA vaccines is imperative. In our study, we synthesized six unique mRNA vaccine formulations: the Receptor Binding Domain (RBD) monomer vaccine, RBD dimer (2RBD) vaccine, RBD-Ferritin (RBD-Fe) vaccine, ubiquitin-modified wild-type Nucleocapsid gene (WT-N) vaccine, rearranged Nucleocapsid gene (Re-N) vaccine, and an epitope-based (COVID-19 epitope) vaccine, all encapsulated within the lipid nanoparticle SM102. Immunization studies conducted on C57BL/6 mice with these vaccines revealed that the RBD monomer, RBD dimer (2RBD), and RBD-Fe vaccines elicited robust titers of specific antibodies, including neutralizing antibodies. In contrast, the wild-type N gene (WT-N), rearrange N gene (Re-N), and COVID-19 epitope vaccines predominantly induced potent cellular immune responses. Protective efficacy assays in golden hamsters demonstrated that vaccinated cohorts showed significant reduction in lung pathology, markedly lower viral loads in the lungs, nasal turbinates, and trachea, and substantially reduced transcriptional and expression levels of pro-inflammatory cytokines. Overall, our vaccine candidates pave the way for novel strategies in vaccine development against various infectious agents and establish a critical foundation for the formulation of advanced vaccines targeting emerging pathogens.


COVID-19 , mRNA Vaccines , Mice , Animals , Cricetinae , Mice, Inbred C57BL , SARS-CoV-2 , Ferritins/genetics , COVID-19/prevention & control , Ubiquitination , COVID-19 Vaccines , Antibodies, Neutralizing , Epitopes , Immunity , Antibodies, Viral
18.
PLoS One ; 19(2): e0297273, 2024.
Article En | MEDLINE | ID: mdl-38300967

Currently, we can label the certain cells by transducing specific genes, called reporter genes, and distinguish them from other cells. For example, fluorescent protein such as green fluorescence protein (GFP) is commonly used for cell labeling. However, fluorescent protein is difficult to observe in living animals. We can observe the reporter signals of the luciferin-luciferase system from the outside of living animals using in vivo imaging systems, although the resolution of this system is low. Therefore, in this study, we examined the reporter genes, which allowed the MRI-mediated observation of labeled cells in living animals. As a preliminary stage of animal study, we transduced some groups of plasmids that coded the protein that could take and store metal ions to the cell culture, added metal ions solutions, and measured their T1 or T2 relaxation values. Finally, we specified the best reporter gene combination for MRI, which was the combination of transferrin receptor, DMT1, and Ferritin-M6A for T1WI, and Ferritin-M6A for T2WI.


Ferritins , Magnetic Resonance Imaging , Animals , Genes, Reporter , Ferritins/genetics , Cell Line, Tumor , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Magnetic Resonance Imaging/methods , Ions/metabolism
19.
Mol Metab ; 80: 101871, 2024 Feb.
Article En | MEDLINE | ID: mdl-38184276

OBJECTIVE: Ferritin, the principal iron storage protein, is essential to iron homeostasis. How iron homeostasis affects the adipose tissue is not well understood. We investigated the role of ferritin heavy chain in adipocytes in energy metabolism. METHODS: We generated adipocyte-specific ferritin heavy chain (Fth, also known as Fth1) knockout mice, herein referred to as FthAKO. These mice were analyzed for iron homeostasis, oxidative stress, mitochondrial biogenesis and activity, adaptive thermogenesis, insulin sensitivity, and metabolic measurements. Mouse embryonic fibroblasts and primary mouse adipocytes were used for in vitro experiments. RESULTS: In FthAKO mice, the adipose iron homeostasis was disrupted, accompanied by elevated expression of adipokines, dramatically induced heme oxygenase 1(Hmox1) expression, and a notable decrease in the mitochondrial ROS level. Cytosolic ROS elevation in the adipose tissue of FthAKO mice was very mild, and we only observed this in the brown adipose tissue (BAT) but not in the white adipose tissue (WAT). FthAKO mice presented an altered metabolic profile and showed increased insulin sensitivity, glucose tolerance, and improved adaptive thermogenesis. Interestingly, loss of ferritin resulted in enhanced mitochondrial respiration capacity and a preference for lipid metabolism. CONCLUSIONS: These findings indicate that ferritin in adipocytes is indispensable to intracellular iron homeostasis and regulates systemic lipid and glucose metabolism.


Apoferritins , Insulin Resistance , Animals , Mice , Adipose Tissue, Brown/metabolism , Apoferritins/genetics , Apoferritins/metabolism , Energy Metabolism/physiology , Ferritins/genetics , Ferritins/metabolism , Fibroblasts/metabolism , Iron/metabolism , Mice, Knockout , Obesity/metabolism , Reactive Oxygen Species/metabolism
20.
Sci Rep ; 14(1): 1820, 2024 01 20.
Article En | MEDLINE | ID: mdl-38245605

Vitellogenesis is the most important process in animal reproduction, in which yolk proteins play a vital role. Among multiple yolk protein precursors, vitellogenin (Vtg) is a well-known major yolk protein (MYP) in most oviparous animals. However, the nature of MYP in the freshwater gastropod snail Biomphalaria glabrata remains elusive. In the current study, we applied bioinformatics, tissue-specific transcriptomics, ovotestis-targeted proteomics, and phylogenetics to investigate the large lipid transfer protein (LLTP) superfamily and ferritin-like family in B. glabrata. Four members of LLTP superfamily (BgVtg1, BgVtg2, BgApo1, and BgApo2), one yolk ferritin (Bg yolk ferritin), and four soma ferritins (Bg ferritin 1, 2, 3, and 4) were identified in B. glabrata genome. The proteomic analysis demonstrated that, among the putative yolk proteins, BgVtg1 was the yolk protein appearing in the highest amount in the ovotestis, followed by Bg yolk ferritin. RNAseq profile showed that the leading synthesis sites of BgVtg1 and Bg yolk ferritin are in the ovotestis (presumably follicle cells) and digestive gland, respectively. Phylogenetic analysis indicated that BgVtg1 is well clustered with Vtgs of other vertebrates and invertebrates. We conclude that, vitellogenin (BgVtg1), not yolk ferritin (Bg yolk ferritin), is the major yolk protein precursor in the schistosomiasis vector snail B. glabrata.


Biomphalaria , Schistosomiasis , Animals , Biomphalaria/genetics , Vitellogenins/genetics , Vitellogenins/metabolism , Multiomics , Phylogeny , Proteomics , Egg Proteins/metabolism , Ferritins/genetics , Schistosoma mansoni/metabolism
...