Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 5.106
1.
Anal Chim Acta ; 1309: 342701, 2024 Jun 22.
Article En | MEDLINE | ID: mdl-38772662

BACKGROUND: Nanozymes, a new class of nanomaterials, have emerged as promising substitutes for enzymes in biosensor design due to their exceptional stability, affordability, and ready availability. While nanozymes address many limitations of natural enzymes, they still face challenges, particularly in achieving the catalytic activity levels of their natural counterparts. This indicates the need for enhancing the sensitivity of biosensors based on nanozymes. The catalytic activity of nanozyme can be significantly improved by regulating its size, morphology, and surface composition of nanomaterial. RESULTS: In this work, a kind of hollow core-shell structure was designed to enhance the catalytic activity of nanozymes. The hollow core-shell structure material consists of a nanozymes core layer, a hollow layer, and a MOF shell layer. Taking the classic peroxidase like Fe3O4 as an example, the development of a novel nanozyme@MOF, specifically p-Fe3O4@PDA@ZIF-67, is detailed, showcasing its application in enhancing the sensitivity of sensors based on Fe3O4 nanozymes. This innovative nanocomposite, featuring that MOF layer was designed to adsorb the signal molecules of the sensor to improve the utilization rate of reactive oxygen species generated by the nanozymes catalyzed reactions and the hollow layer was designed to prevent the active sites of nanozymes from being cover by the MOF layer. The manuscript emphasizes the nanocomposite's remarkable sensitivity in detecting hydrogen peroxide (H2O2), coupled with high specificity and reproducibility, even in complex environments like milk samples. SIGNIFICANCE AND NOVELTY: This work firstly proposed and proved that Fe3O4 nanozyme@MOF with hollow layer structure was designed to improve the catalytic activity of the Fe3O4 nanozyme and the sensitivity of the sensors based on Fe3O4 nanozyme. This research marks a significant advancement in nanozyme technology, demonstrating the potential of structural innovation in creating high-performance, sensitive, and stable biosensors for various applications.


Biosensing Techniques , Metal-Organic Frameworks , Biosensing Techniques/methods , Metal-Organic Frameworks/chemistry , Ferrosoferric Oxide/chemistry , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/analysis , Indoles/chemistry , Catalysis , Limit of Detection , Nanostructures/chemistry , Nanocomposites/chemistry , Imidazoles , Polymers , Zeolites
2.
J Biol Phys ; 50(2): 215-228, 2024 Jun.
Article En | MEDLINE | ID: mdl-38727764

The detection of magnetic fields by animals is known as magnetoreception. The ferromagnetic hypothesis explains magnetoreception assuming that magnetic nanoparticles are used as magnetic field transducers. Magnetite nanoparticles in the abdomen of Apis mellifera honeybees have been proposed in the literature as the magnetic field transducer. However, studies with ants and stingless bees have shown that the whole body of the insect contain magnetic material, and that the largest magnetization is in the antennae. The aim of the present study is to investigate the magnetization of all the body parts of honeybees as has been done with ants and stingless bees. To do that, the head without antennae, antennae, thorax, and abdomen obtained from Apis mellifera honeybees were analyzed using magnetometry and Ferromagnetic Resonance (FMR) techniques. The magnetometry and FMR measurements show the presence of magnetic material in all honeybee body parts. Our results present evidence of the presence of biomineralized magnetite nanoparticles in the honeybee abdomen and, for the first time, magnetite in the antennae. FMR measurements permit to identify the magnetite in the abdomen as biomineralized. As behavioral experiments reported in the literature have shown that the abdomen is involved in magnetoreception, new experimental approaches must be done to confirm or discard the involvement of the antennae in magnetoreception.


Abdomen , Arthropod Antennae , Animals , Bees/physiology , Arthropod Antennae/physiology , Ferrosoferric Oxide/chemistry , Ferrosoferric Oxide/metabolism , Magnetic Fields
3.
J Environ Manage ; 357: 120843, 2024 Apr.
Article En | MEDLINE | ID: mdl-38588621

Nitrite-dependent anaerobic methane oxidation (n-DAMO) is a novel denitrification process that simultaneously further removes and utilizes methane from anaerobic effluent from wastewater treatment plants. However, the metabolic activity of n-DAMO bacteria is relative low for practical application. In this study, conductive magnetite was added into lab-scale sequencing batch reactor inoculated with n-DAMO bacteria to study the influence on n-DAMO process. With magnetite amendment, the nitrogen removal rate could reach 34.9 mg N·L-1d-1, nearly 2.5 times more than that of control group. Magnetite significantly facilitated the interspecies electron transfer and built electrically connected community with high capacitance. Enzymatic activities of electron transport chain were significantly elevated. Functional gene expression and enzyme activities associated with nitrogen and methane metabolism had been highly up-regulated. These results not only propose a useful strategy in n-DAMO application but also provide insights into the stimulating mechanism of magnetite in n-DAMO process.


Ferrosoferric Oxide , Nitrites , Nitrites/metabolism , Electron Transport , Anaerobiosis , Methane , Electrons , Denitrification , Oxidation-Reduction , Bacteria/metabolism , Bacteria, Anaerobic/metabolism , Nitrogen/metabolism , Bioreactors/microbiology
4.
Nano Lett ; 24(15): 4588-4594, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38587406

Effective thawing of cryopreserved samples requires rapid and uniform heating. This is achievable through nanowarming, an approach that heats magnetic nanoparticles by using alternating magnetic fields. Here we demonstrate the synthesis and surface modification of magnetic nanoclusters for efficient nanowarming. Magnetite (Fe3O4) nanoclusters with an optimal diameter of 58 nm exhibit a high specific absorption rate of 1499 W/g Fe under an alternating magnetic field at 43 kA/m and 413 kHz, more than twice that of commercial iron oxide cores used in prior nanowarming studies. Surface modification with a permeable resorcinol-formaldehyde resin (RFR) polymer layer significantly enhances their colloidal stability in complex cryoprotective solutions, while maintaining their excellent heating capacity. The Fe3O4@RFR nanoparticles achieved a high average heating rate of 175 °C/min in cryopreserved samples at a concentration of 10 mg Fe/mL and were successfully applied in nanowarming porcine iliac arteries, highlighting their potential for enhancing the efficacy of cryopreservation.


Heating , Magnetics , Swine , Animals , Cryopreservation , Ferrosoferric Oxide , Magnetic Fields
5.
Environ Sci Technol ; 58(15): 6595-6604, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38573735

Meaningful interpretation of U isotope measurements relies on unraveling the impact of reduction mechanisms on the isotopic fractionation. Here, the isotope fractionation of hexavalent U [U(VI)] was investigated during its reductive mineralization by magnetite to intermediate pentavalent U [U(V)] and ultimately tetravalent U [U(IV)]. As the reaction proceeded, the remaining aqueous phase U [containing U(VI) and U(V)] systematically carried light isotopes, whereas in the bicarbonate-extracted solution [containing U(VI) and U(V)], the δ238U values varied, especially when C/C0 approached 0. This variation was interpreted as reflecting the variable relative contribution of unreduced U(VI) (δ238U < 0‰) and bicarbonate-extractable U(V) (δ238U > 0‰). The solid remaining after bicarbonate extraction included unextractable U(V) and U(IV), for which the δ238U values consistently followed the same trend that started at 0.3-0.5‰ and decreased to ∼0‰. The impact of PIPES buffer on isotopic fractionation was attributed to the variable abundance of U(V) in the aqueous phase. A few extremely heavy bicarbonate-extracted δ238U values were due to mass-dependent fractionation resulting from several hypothesized mechanisms. The results suggest the preferential accumulation of the heavy isotope in the reduced species and the significant influence of U(V) on the overall isotopic fractionation, providing insight into the U isotope fractionation behavior during its abiotic reduction process.


Ferrosoferric Oxide , Uranium , Bicarbonates , Isotopes , Chemical Fractionation
6.
Environ Sci Pollut Res Int ; 31(20): 29148-29161, 2024 Apr.
Article En | MEDLINE | ID: mdl-38568307

The global occurrence of micropollutants in water bodies has raised concerns about potential negative effects on aquatic ecosystems and human health. EU regulations to mitigate such widespread pollution have already been implemented and are expected to become increasingly stringent in the next few years. Catalytic wet peroxide oxidation (CWPO) has proved to be a promising alternative for micropollutant removal from water, but most studies were performed in batch mode, often involving complex, expensive, and hardly recoverable catalysts, that are prone to deactivation. This work aims to demonstrate the feasibility of a fixed-bed reactor (FBR) packed with natural magnetite powder for the removal of a representative mixture of azole pesticides, recently listed in the EU Watch Lists. The performance of the system was evaluated by analyzing the impact of H2O2 dose (3.6-13.4 mg L-1), magnetite load (2-8 g), inlet flow rate (0.25-1 mL min-1), and initial micropollutant concentration (100-1000 µg L-1) over 300 h of continuous operation. Azole pesticide conversion values above 80% were achieved under selected operating conditions (WFe3O4 = 8 g, [H2O2]0 = 6.7 mg L-1, flow rate = 0.5 mL min-1, pH0 = 5, T = 25 °C). Notably, the catalytic system showed a high stability upon 500 h in operation, with limited iron leaching (< 0.1 mg L-1). As a proof of concept, the feasibility of the system was confirmed using a real wastewater treatment plant (WWTP) effluent spiked with the mixture of azole pesticides. These results represent a clear advance for the application of CWPO as a tertiary treatment in WWTPs and open the door for the scale-up of FBR packed with natural magnetite.


Ferrosoferric Oxide , Pesticides , Water Pollutants, Chemical , Catalysis , Water Pollutants, Chemical/chemistry , Ferrosoferric Oxide/chemistry , Hydrogen Peroxide/chemistry , Oxidation-Reduction , Azoles/chemistry
7.
Water Res ; 256: 121567, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38581983

Discovery of nitrate/nitrite-dependent anaerobic methane oxidation (DAMO) challenges the conventional biological treatment processes, since it provides a possibility of simultaneously mitigating dissolved methane emissions from anaerobic effluents and reducing additional carbon sources for denitrification. Due to the slow growth of specialized DAMO microbes, this possibility has been just practiced with biofilms in membrane biofilm reactors or granular sludge in membrane bioreactors. In this study, simultaneous elimination of dissolved methane from anaerobic effluents and nitrate/nitrite reduction was achieved in a conventional anoxic reactor with magnetite. Calculations of electron flow balance showed that, with magnetite the eliminated dissolved methane was almost entirely used for nitrate/nitrite reduction, while without magnetite approximately 52 % of eliminated dissolved methane was converted to unknown organics. Metagenomic sequencing showed that, when dissolved methane served as an electron donor, the abundance of genes for reverse methanogenesis and denitrification dramatically increased, indicating that anaerobic oxidation of methane (AOM) coupled to nitrate/nitrite reduction occurred. Magnetite increased the abundance of genes encoding the key enzymes involved in whole reverse methanogenesis and Nir and Nor involved in denitrification, compared to that without magnetite. Analysis of microbial communities showed that, AOM coupled to nitrate/nitrite reduction was proceeded by syntrophic consortia comprised of methane oxidizers, Methanolinea and Methanobacterium, and nitrate/nitrite reducers, Armatimonadetes_gp5 and Thauera. With magnetite syntrophic consortia exchanged electrons more effectively than that without magnetite, further supporting the microbial growth.


Bioreactors , Ferrosoferric Oxide , Methane , Nitrates , Nitrites , Methane/metabolism , Anaerobiosis , Nitrates/metabolism , Ferrosoferric Oxide/chemistry , Nitrites/metabolism , Oxidation-Reduction , Denitrification
8.
Chemosphere ; 357: 141912, 2024 Jun.
Article En | MEDLINE | ID: mdl-38582166

The efficiency of the Fenton reaction is markedly contingent upon the operational pH related to iron solubility. Therefore, a heterogeneous Fenton reaction has been developed to function at neutral pH. In the present study, the Bio-Fenton reaction was carried out using magnetite (Fe(II)Fe(III)2O4) and H2O2 generated by a newly isolated H2O2-producing bacterium, Desemzia sp. strain C1 at pH 6.8 to degrade chloroacetanilide herbicides. The optimal conditions for an efficient Bio-Fenton reaction were 10 mM of lactate, 0.5% (w/v) of magnetite, and resting-cells (O.D.600 = 1) of strain C1. During the Bio-Fenton reaction, 1.8-2.0 mM of H2O2 was generated by strain C1 and promptly consumed by the Fenton reaction with magnetite, maintaining stable pH conditions. Approximately, 40-50% of the herbicides underwent oxidation through non-specific reactions of •OH, leading to dealkylation, dechlorination, and hydroxylation via hydrogen atom abstraction. These findings will contribute to advancing the Bio-Fenton system for non-specific oxidative degradation of diverse organic pollutants under in-situ environmental conditions with bacteria producing high amount of H2O2 and magnetite under a neutral pH condition.


Acetamides , Biodegradation, Environmental , Ferrosoferric Oxide , Herbicides , Hydrogen Peroxide , Iron , Herbicides/metabolism , Herbicides/chemistry , Hydrogen Peroxide/metabolism , Ferrosoferric Oxide/metabolism , Ferrosoferric Oxide/chemistry , Iron/metabolism , Iron/chemistry , Acetamides/metabolism , Acetamides/chemistry , Oxidation-Reduction , Hydrogen-Ion Concentration
9.
J Nanobiotechnology ; 22(1): 203, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38659001

BACKGROUND: Biogeochemical processing of metals including the fabrication of novel nanomaterials from metal contaminated waste streams by microbial cells is an area of intense interest in the environmental sciences. RESULTS: Here we focus on the fate of Ce during the microbial reduction of a suite of Ce-bearing ferrihydrites with between 0.2 and 4.2 mol% Ce. Cerium K-edge X-ray absorption near edge structure (XANES) analyses showed that trivalent and tetravalent cerium co-existed, with a higher proportion of tetravalent cerium observed with increasing Ce-bearing of the ferrihydrite. The subsurface metal-reducing bacterium Geobacter sulfurreducens was used to bioreduce Ce-bearing ferrihydrite, and with 0.2 mol% and 0.5 mol% Ce, an Fe(II)-bearing mineral, magnetite (Fe(II)(III)2O4), formed alongside a small amount of goethite (FeOOH). At higher Ce-doping (1.4 mol% and 4.2 mol%) Fe(III) bioreduction was inhibited and goethite dominated the final products. During microbial Fe(III) reduction Ce was not released to solution, suggesting Ce remained associated with the Fe minerals during redox cycling, even at high Ce loadings. In addition, Fe L2,3 X-ray magnetic circular dichroism (XMCD) analyses suggested that Ce partially incorporated into the Fe(III) crystallographic sites in the magnetite. The use of Ce-bearing biomagnetite prepared in this study was tested for hydrogen fuel cell catalyst applications. Platinum/carbon black electrodes were fabricated, containing 10% biomagnetite with 0.2 mol% Ce in the catalyst. The addition of bioreduced Ce-magnetite improved the electrode durability when compared to a normal Pt/CB catalyst. CONCLUSION: Different concentrations of Ce can inhibit the bioreduction of Fe(III) minerals, resulting in the formation of different bioreduction products. Bioprocessing of Fe-minerals to form Ce-containing magnetite (potentially from waste sources) offers a sustainable route to the production of fuel cell catalysts with improved performance.


Cerium , Ferrosoferric Oxide , Geobacter , Platinum , Cerium/chemistry , Cerium/metabolism , Geobacter/metabolism , Catalysis , Ferrosoferric Oxide/chemistry , Platinum/chemistry , Oxidation-Reduction , Ferric Compounds/chemistry , Ferric Compounds/metabolism
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124262, 2024 Jul 05.
Article En | MEDLINE | ID: mdl-38613900

Myeloid leukemia is a chronic cancer, which associated with abnormal BCR-ABL tyrosine kinase activity. Imatinib (IMB) acts as a tyrosine kinase inhibitor and averts tumor growth in cancer cells by controlling cell division, so it is urgent to develop an effective assay to detect and monitor its IMB concentration. Therefore, an innovative fluorescent biomimetic sensor is a promising sensing material that constructed for the efficient recognition of IMB and displays excellent selectivity and sensitivity stemming from molecularly imprinted polymer@Fe3O4 (MIP@Fe3O4). The detection strategy depends on the recognition of IMB molecules at the imprinted sites in the presence of coexisting molecules, which are then transferred to the fluorescence signal. The synthesized MIP@Fe3O4 was characterized using Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and atomic force microscopy (AFM). Furthermore, computational studies of the band gap (EHOMO-ELUMO) of the monomers, IMB, and their complexes were performed. These results confirmed that the copolymer is the most appropriate and has high stability (Binding energy; 0.004 x 10-19 KJ) and low reactivity. A comprehensive linear response over IMB concentrations from 5 × 10-6 mol/L to 8 × 10-4 mol/L with a low detection limit of 9.3 × 10-7 mol/L was achieved. Furthermore, the proposed technique displayed long-term stability (over 2 months), high intermediate precision (RSD<2.1 %), good reproducibility (RSD <1.9 %), and outstanding selectivity toward IMB over analogous molecules with similar chemical and spatial structure (no interference by 100 to 150-fold of the competitors). Owing to these merits, the proposed fluorescence sensor was utilized to detect IMB in drug tablets and human plasma, and satisfactory results (99.3-100.4 %) were obtained. Thus, the synthesized fluorescence sensor is a promising platform for IMB sensing in various applications.


Antineoplastic Agents , Fluorescent Dyes , Imatinib Mesylate , Molecularly Imprinted Polymers , Spectrometry, Fluorescence , Imatinib Mesylate/blood , Humans , Fluorescent Dyes/chemistry , Molecularly Imprinted Polymers/chemistry , Antineoplastic Agents/blood , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Spectrometry, Fluorescence/methods , Limit of Detection , Ferrosoferric Oxide/chemistry , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/blood , Polymers/chemistry , Spectroscopy, Fourier Transform Infrared , Molecular Imprinting/methods
11.
Chemosphere ; 357: 142040, 2024 Jun.
Article En | MEDLINE | ID: mdl-38615949

1,2,3-Trichloropropane (TCP) is an emerging groundwater pollutant, but there is a lack of reported studies on the abiotic natural attenuation of TCP by iron minerals. Furthermore, perturbation by O2 is common in the shallow subsurface by both natural and artificial processes. In this study, natural magnetite was selected as the reactive iron mineral to investigate its role in the degradation of TCP under O2 perturbation. The results indicated that the mineral structural Fe(II) on magnetite reacted with dissolved oxygen to generate O2-· and HO·. Both O2-· and HO· contributed to TCP degradation, with O2-· playing a more important role. After 56 days of reaction, 66.7% of TCP was completely dechlorinated. This study revealed that higher magnetite concentrations, smaller magnetite particle sizes, and lower initial TCP concentrations favored TCP degradation. The presence of <10 mg/L natural organic matter (NOM) did not affect TCP degradation. These findings significantly advance our understanding of the abiotic natural attenuation mechanisms facilitated by iron minerals under O2 perturbation, providing crucial insights for the study of natural attenuation.


Ferrosoferric Oxide , Oxygen , Propane , Water Pollutants, Chemical , Water Pollutants, Chemical/chemistry , Oxygen/chemistry , Ferrosoferric Oxide/chemistry , Propane/chemistry , Propane/analogs & derivatives , Groundwater/chemistry , Iron/chemistry , Biodegradation, Environmental
12.
Environ Sci Pollut Res Int ; 31(17): 25437-25453, 2024 Apr.
Article En | MEDLINE | ID: mdl-38472573

2,4-Dichlorophenoxyacetic acid (2,4-D) is an herbicide and is among the most widely distributed pollutant in the environment and wastewater. Herein is presented a complete comparison of adsorption performance between two different magnetic carbon nanomaterials: graphene oxide (GO) and its reduced form (rGO). Magnetic functionalization was performed employing a coprecipitation method, using only one source of Fe2+, requiring low energy, and potentially allowing the control of the amount of incorporated magnetite. For the first time in literature, a green reduction approach for GO with and without Fe3O4, maintaining the magnetic behavior after the reaction, and an adsorption performance comparison between both carbon nanomaterials are demonstrated. The nanoadsorbents were characterized by FTIR, XRD, Raman, VSM, XPS, and SEM analyses, which demonstrates the successful synthesis of graphene derivate, with different amounts of incorporate magnetite, resulting in distinct magnetization values. The reduction was confirmed by XPS and FTIR techniques. The type of adsorbent reveals that the amount of magnetite on nanomaterial surfaces has significant influence on adsorption capacity and removal efficiency. The procedure demonstrated that the best performance, for magnetic nanocomposites, was obtained by GO∙Fe3O4 1:1 and rGO∙Fe3O4 1:1, presenting values of removal percentage of 70.49 and 91.19%, respectively. The highest adsorption capacity was reached at pH 2.0 for GO∙Fe3O4 1:1 (69.98 mg g-1) and rGO∙Fe3O4 1:1 (89.27 mg g-1), through different interactions: π-π, cation-π, and hydrogen bonds. The adsorption phenomenon exhibited a high dependence on pH, initial concentration of adsorbate, and coexisting ions. Sips and PSO models demonstrate the best adjustment for experimental data, suggesting a heterogeneous surface and different energy sites, respectively. The thermodynamic parameters showed that the process was spontaneous and exothermic. Finally, the nanoadsorbents demonstrated a high efficiency in 2,4-D adsorption even after five adsorption/desorption cycles.


Graphite , Herbicides , Nanocomposites , Water Pollutants, Chemical , Adsorption , Herbicides/analysis , Graphite/chemistry , Ferrosoferric Oxide , Water/chemistry , Nanocomposites/chemistry , Magnetic Phenomena , 2,4-Dichlorophenoxyacetic Acid , Kinetics , Water Pollutants, Chemical/analysis , Hydrogen-Ion Concentration
13.
J Hazard Mater ; 470: 134150, 2024 May 15.
Article En | MEDLINE | ID: mdl-38552394

The misuse and overuse of chloramphenicol poses severe threats to food safety and human health. In this work, we developed a magnetic solid-phase extraction (MSPE) pretreatment material coated with a multilayered metal-organic framework (MOF), Fe3O4 @ (ZIF-8)3, for the separation and enrichment of chloramphenicol from fish. Furthermore, we designed an artificial-intelligence-enhanced single microsphere immunosensor. The inherent ultra-high porosity of the MOF and the multilayer assembly strategy allowed for efficient chloramphenicol enrichment (4.51 mg/g within 20 min). Notably, Fe3O4 @ (ZIF-8)3 exhibits a 39.20% increase in adsorption capacity compared to Fe3O4 @ZIF-8. Leveraging the remarkable decoding abilities of artificial intelligence, we achieved the highly sensitive detection of chloramphenicol using a straightforward procedure without the need for specialized equipment, obtaining a notably low detection limit of 46.42 pM. Furthermore, the assay was successfully employed to detect chloramphenicol in fish samples with high accuracy. The developed immunosensor offers a robust point-of-care testing tool for safeguarding food safety and public health.


Anti-Bacterial Agents , Chloramphenicol , Fishes , Food Contamination , Chloramphenicol/analysis , Animals , Food Contamination/analysis , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/chemistry , Metal-Organic Frameworks/chemistry , Limit of Detection , Immunoassay/methods , Adsorption , Solid Phase Extraction/methods , Artificial Intelligence , Biosensing Techniques/methods , Ferrosoferric Oxide/chemistry
14.
Am J Hematol ; 99(6): 1077-1083, 2024 Jun.
Article En | MEDLINE | ID: mdl-38476079

Restless legs syndrome (RLS) is a neurological disorder that can have a profound effect on sleep and quality of life. Idiopathic RLS is associated with brain iron insufficiency despite normal peripheral iron stores. There is, however, a five- to six-fold increase in prevalence of RLS in patients with iron deficiency anemia (IDA). Several open-label trials have demonstrated symptomatic improvement in RLS following treatment of IDA using oral or intravenous iron supplementation. To date, there have been no randomized double-blind controlled trials of intravenous iron compared with oral iron for the treatment of RLS patients with IDA. In the current study, oral ferrous sulfate and ferumoxytol were compared for efficacy and speed of response for treatment of RLS occurring in patients with IDA. The planned recruitment for this study was 70 patients with RLS and IDA, to be randomly assigned 1:1 to oral or intravenous iron, using double-blind, double-dummy procedures. At Week 6, the primary outcomes of Clinical Global Impression-Improvement score and change from baseline in the International Restless Legs Syndrome Study Group rating scale score were assessed. Due to challenges, performing the clinical trial during the COVID-19 pandemic, final-week data were found missing for 30 patients. As a result, in order to maintain the prespecified statistical analysis, an additional 30 patients were recruited. Both IV and oral iron were associated with a marked improvement in RLS symptoms, with no statistically significant difference between treatment groups. No serious adverse events were observed in either treatment group.


Administration, Intravenous , Anemia, Iron-Deficiency , Ferrous Compounds , Restless Legs Syndrome , Humans , Restless Legs Syndrome/drug therapy , Anemia, Iron-Deficiency/drug therapy , Administration, Oral , Double-Blind Method , Male , Female , Pilot Projects , Middle Aged , Ferrous Compounds/administration & dosage , Ferrous Compounds/therapeutic use , Ferrous Compounds/adverse effects , Adult , Aged , Treatment Outcome , Ferrosoferric Oxide/administration & dosage , Ferrosoferric Oxide/therapeutic use , Ferrosoferric Oxide/adverse effects , Iron/administration & dosage , Iron/therapeutic use
15.
Appl Microbiol Biotechnol ; 108(1): 253, 2024 Mar 05.
Article En | MEDLINE | ID: mdl-38441693

The synergistic corrosion effect of acid-producing bacteria (APB) and magnetite on carbon steel corrosion was assessed using two different microbial consortia. A synergistic corrosion effect was observed exclusively with Consortium 2, which was composed of Enterobacter sp., Pseudomonas sp., and Tepidibacillus sp. When Consortium 2 was accompanied by magnetite, uniform corrosion and pitting rates were one-time higher (0.094 mm/year and 0.777 mm/year, respectively) than the sum of the individual corrosion rates promoted by the consortium and deposit separately (0.084 and 0.648 mm/year, respectively). The synergistic corrosion effect observed exclusively with Consortium 2 is attributed to its microbial community structure. Consortium 2 exhibited higher microbial diversity that benefited the metabolic status of the community. Although both consortia induced acidification of the test solution and metal surface through glucose fermentation, heightened activity levels of Consortium 2, along with increased surface roughness caused by magnetite, contributed to the distinct synergistic corrosion effect observed with Consortium 2 and magnetite. KEY POINTS: • APB and magnetite have a synergistic corrosion effect on carbon steel. • The microbial composition of APB consortia drives the synergistic corrosion effect. • Magnetite increases carbon steel surface roughness.


Ferrosoferric Oxide , Microbiota , Corrosion , Carbon , Steel
16.
Sci Total Environ ; 926: 171963, 2024 May 20.
Article En | MEDLINE | ID: mdl-38537835

Significant research is focused on the ability of riparian zones to reduce groundwater nitrate contamination. Owing to the extremely high redox activity of nitrate, naturally existing electron donors, such as organic matter and iron minerals, are crucial in facilitating nitrate reduction in the riparian zone. Here, we examined the coexistence of magnetite, an iron mineral, and nitrate, a frequently observed coexisting system in sediments, to investigate nitrate reduction features at various C/N ratios and evaluate the response of microbial communities to these settings. Additionally, we aimed to use this information as a foundation for examining the effect of nutritional conditions on the nitrate reduction process in magnetite-present environments. These results emphasise the significance of organic matter in enabling dissimilatory nitrate reduction to ammonium (DNRA) and enhancing the connection between nitrate reduction and iron in sedimentary environments. In the later phases of nitrate reduction, nitrogen fixation was the prevailing process in low-carbon environments, whereas high-carbon environments tended to facilitate the breakdown of organic nitrogen. High-throughput sequencing analysis revealed a robust association between C/N ratios and alterations in microbial community composition, providing insights into notable modifications in essential functioning microorganisms. The nitrogen-fixing bacterium Ralstonia is more abundant in ecosystems with scarce organic matter. In contrast, in settings rich in organic matter, microorganisms, such as Acinetobacter and Clostridia, which may produce ammonia, play crucial roles. Moreover, the population of iron bacteria grows in such an environment. Hence, this study proposes that C/N ratios can influence Fe(II)/Fe(III) conversions and simultaneously affect the process of nitrate reduction by shaping the composition of specific microbial communities.


Ammonium Compounds , Nitrates , Nitrates/analysis , Ferrosoferric Oxide , Rivers , Ecosystem , Ferric Compounds , Denitrification , Iron , Nitrogen , Carbon , Oxidation-Reduction
17.
J Environ Manage ; 356: 120546, 2024 Apr.
Article En | MEDLINE | ID: mdl-38471321

Anaerobic granular sludge (AGS) has been regarded as the core of lots of advanced anaerobic reactors. Formation of biogenic Fe products and their incorporation into AGS could influence interspecies electron transfer and methanogenesis performance. In this study, with anaerobic granular sludge (AGS) from different sources (brewery, chemical plant, paper mill, citric acid factory, and food factory) as the research targets, the formation of biogenic iron products in AGS through the biologically induced mineralization process was studied. Furthermore, the influences of physicochemical properties and microbial community on methanogenesis were investigated. Results showed that all the AGS of different sources possessed the capacity to form biogenic Fe products through dissimilatory iron-reduction process, and diverse Fe minerals including magnetite (Fe3O4), hematite (Fe2O3), goethite (FeOOH), siderite (FeCO3) and wustite (FeO) were incorporated into AGS. The AGS loaded with Fe minerals (Fe-AGS) showed increased conductivity, magnetism and zeta-potential comparing to the control. Those Fe-AGS of different sources demonstrated different methanogenesis performance during the long-term operation (50 days). Methane production was increased for the Fe-AGS of citric acid (6.99-32.50%), food (8.33-37.46%), chemical (2.81-7.22%) and brewery plants (2.27-2.81%), but decreased for the Fe-AGS of paper mill (54.81-72.2%). The changes of microbial community and microbial correlations in AGS as a response to Fe minerals incorporation were investigated. For the Fe-AGS samples with enhanced methane production capability, it was widely to find the enriched populations of fermentative and dissimilatory iron reducing bacteria Clostridium_sensu_stricto_6, Bacteroidetes_vadinHA17 and acetoclastic methanogens Methanosaeta, and positive correlations between them. This study provides comprehensive understanding on the effects of incorporation biogenic Fe products on AGS from different sources.


Microbiota , Sewage , Sewage/chemistry , Anaerobiosis , Iron/chemistry , Ferrosoferric Oxide , Methane , Citric Acid , Bioreactors
18.
J Mater Chem B ; 12(14): 3494-3508, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38512116

Magnetite (Fe3O4) nanoparticle (MNP)-substituted glass-ceramic (MSGC) powders with compositions of (45 - x)SiO2-24.5CaO-24.5Na2O-6P2O5-xFe3O4 (x = 5, 8, and 10 wt%) have been prepared by a sol-gel route by introducing Fe3O4 nanoparticles during the synthesis. The X-ray diffraction patterns of the as-prepared MSGC nanopowders revealed the presence of combeite (Na2Ca2Si3O9), magnetite, and sodium nitrate (NaNO3) crystalline phases. Heat-treatment up to 700 °C for 1 h resulted in the complete dissolution of NaNO3 along with partial conversion of magnetite into hematite (α-Fe2O3). Optimal heat-treatment of the MSGC powders at 550 °C for 1 h yielded the highest relative percentage of magnetite (without hematite) with some residual NaNO3. The saturation magnetization and heat generation capacity of the MSGC fluids increased with an increase in the MNP content. The in vitro bioactivity of the MSGC pellets was evaluated by monitoring the pH and the formation of a hydroxyapatite surface layer upon immersion in modified simulated body fluid. Proliferation of MG-63 osteoblast cells indicated that all of the MSGC compositions were non-toxic and MSGC with 10 wt% MNPs exhibited extraordinarily high cell viability. The MSGC with 10 wt% MNPs demonstrated optimal characteristics in terms of cell viability, magnetic properties, and induction heating capacity, which surpass those of the commercial magnetic fluid FluidMag-CT employed in hyperthermia treatment.


Biocompatible Materials , Ferric Compounds , Magnetite Nanoparticles , Biocompatible Materials/chemistry , Silicon Dioxide/chemistry , Ferrosoferric Oxide , Heating , Ceramics/pharmacology , Ceramics/chemistry
19.
Math Biosci Eng ; 21(3): 3695-3712, 2024 Feb 18.
Article En | MEDLINE | ID: mdl-38549302

The two-dimensional (2D) cine cardiovascular magnetic resonance (CMR) technique is the reference standard for assessing cardiac function. However, one challenge with 2D cine is that the acquisition time for the whole cine stack is long and requires multiple breath holds, which may not be feasible for pediatric or ill patients. Though single breath-hold multi-slice cine may address the issue, it can only acquire low-resolution images, and hence, affect the accuracy of cardiac function assessment. To address these challenges, a Ferumoxytol-enhanced, free breathing, isotropic high-resolution 3D cine technique was developed. The method produces high-contrast cine images with short acquisition times by using compressed sensing together with a manifold-based method for image denoising. This study included fifteen patients (9.1 $ \pm $ 5.6 yrs.) who were referred for clinical cardiovascular magnetic resonance imaging (MRI) with Ferumoxytol contrast and were prescribed the 3D cine sequence. The data was acquired on a 1.5T scanner. Statistical analysis shows that the manifold-based denoised 3D cine can accurately measure ventricular function with no significant differences when compared to the conventional 2D breath-hold (BH) cine. The multiplanar reconstructed images of the proposed 3D cine method are visually comparable to the golden standard 2D BH cine method in terms of clarity, contrast, and anatomical precision. The proposed method eliminated the need for breath holds, reduced scan times, enabled multiplanar reconstruction within an isotropic data set, and has the potential to be used as an effective tool to access cardiovascular conditions.


Ferrosoferric Oxide , Magnetic Resonance Imaging, Cine , Humans , Child , Magnetic Resonance Imaging, Cine/methods , Imaging, Three-Dimensional/methods , Heart/diagnostic imaging , Respiration , Reproducibility of Results
20.
Sci Total Environ ; 920: 170981, 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38365034

Calcification accompanied by deactivation of anaerobic granular sludge (AnGS) is a continuing challenge for high calcium wastewater treatment. The interaction between Ca2+ and extracellular polymeric substances (EPS) is a precondition for this problem. In this study, magnetite for activity recovery and calcification alleviation simultaneously of AnGS under high calcium stress was investigated. The results showed that, in the presence of magnetite, the relative biogas production increased by 13.2 % with the higher activities of key enzymes involved in methanogenesis. Methanosarcina turned into the dominant methanogens, and syntrophic bacteria such as Chloroflexi, Synergistota were enriched, which indicated the enhancement of electron transfer by magnetite, supported by an 18 % increase of the electron transfer system (ETS) activity. Further characterizations of AnGS suggested that the granule calcification was alleviated with a final decrease of 13-40 % calcium content of AnGS with particle size of 1-2.5 mm. Besides, calcium was partially substituted by iron in the EPS, and the secretion of EPS especially proteins decreased. Batch tests demonstrated the competition between Fe2+ dissolved from magnetite and Ca2+, which interfered the interaction between Ca2+ and EPS, so the granule calcification was prevented. Therefore, magnetite played a pluripotent role in the alleviation of granule calcification and deactivation in situ via (1) enhancing electron transfer, and (2) blocking the complex between Ca2+ and EPS. This study provides a novel insight into the application of conductive metal materials in biological wastewater treatment systems suffering from high calcium attack.


Ferrosoferric Oxide , Sewage , Sewage/microbiology , Anaerobiosis , Calcium , Electrons , Bacteria , Bioreactors , Methane
...