Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 11.269
1.
Anal Chim Acta ; 1309: 342685, 2024 Jun 22.
Article En | MEDLINE | ID: mdl-38772667

The monitoring of heavy metal ions in ocean is crucial for environment protection and assessment of seawater quality. However, the detection of heavy metal ions in seawater with electrochemical sensors, especially for long-term monitoring, always faces challenges due to marine biofouling caused by the nonspecific adsorption of microbial and biomolecules. Herein, an electrochemical aptasensor, integrating both antifouling and antibacterial properties, was developed for the detection of Hg2+ in the ocean. In this electrochemical aptasensor, eco-friendly peptides with superior hydrophilicity served as anti-biofouling materials, preventing nonspecific adsorption on the sensing interface, while silver nanoparticles were employed to eliminate bacteria. Subsequently, a ferrocene-modified aptamer was employed for the specific recognition of Hg2+, leveraging the aptamer's ability to fold into a thymine-Hg2+-thymine (T-Hg2+-T) structure upon interaction, and bringing ferrocene nearer to the sensor surface, significantly amplifying the electrochemical response. The prepared electrochemical aptasensor significantly reduced the nonspecific adsorption in seawater while maintaining sensitive electrochemical response. Furthermore, the biosensor exhibited a linear response range of 0.01-100 nM with a detection limit of 2.30 pM, and realized the accurate monitoring of mercury ions in real marine environment. The research results offer new insights into the preparation of marine antifouling sensing devices, and it is expected that sensors with antifouling and antimicrobial capabilities will find broad applications in the monitoring of marine pollutants.


Anti-Bacterial Agents , Biofouling , Biosensing Techniques , Electrochemical Techniques , Mercury , Seawater , Mercury/analysis , Seawater/chemistry , Seawater/microbiology , Electrochemical Techniques/methods , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/pharmacology , Biosensing Techniques/methods , Biofouling/prevention & control , Aptamers, Nucleotide/chemistry , Silver/chemistry , Water Pollutants, Chemical/analysis , Metal Nanoparticles/chemistry , Limit of Detection , Ferrous Compounds/chemistry , Metallocenes
2.
Molecules ; 29(9)2024 May 05.
Article En | MEDLINE | ID: mdl-38731638

Copper-catalyzed azide-alkyne cycloaddition click (CuAAC) reaction is widely used to synthesize drug candidates and other biomolecule classes. Homogeneous catalysts, which consist of copper coordinated to a ligand framework, have been optimized for high yield and specificity of the CuAAC reaction, but CuAAC reaction with these catalysts requires the addition of a reducing agent and basic conditions, which can complicate some of the desired syntheses. Additionally, removing copper from the synthesized CuAAC-containing biomolecule is necessary for biological applications but inconvenient and requires additional purification steps. We describe here the design and synthesis of a PNN-type pincer ligand complex with copper (I) that stabilizes the copper (I) and, therefore, can act as a CuAAC catalyst without a reducing agent and base under physiologically relevant conditions. This complex was immobilized on two types of resin, and one of the immobilized catalyst forms worked well under aqueous physiological conditions. Minimal copper leaching was observed from the immobilized catalyst, which allowed its use in multiple reaction cycles without the addition of any reducing agent or base and without recharging with copper ion. The mechanism of the catalytic cycle was rationalized by density functional theory (DFT). This catalyst's utility was demonstrated by synthesizing coumarin derivatives of small molecules such as ferrocene and sugar.


Alkynes , Azides , Click Chemistry , Copper , Cycloaddition Reaction , Copper/chemistry , Click Chemistry/methods , Ligands , Catalysis , Azides/chemistry , Alkynes/chemistry , Coumarins/chemistry , Ferrous Compounds/chemistry , Metallocenes/chemistry , Molecular Structure
3.
J Hazard Mater ; 471: 134451, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38691935

Anaerobic biotechnology for wastewaters treatment can nowadays be considered as state of the art methods. Nonetheless, this technology exhibits certain inherent limitations when employed for industrial wastewater treatment, encompassing elevated substrate consumption, diminished electron transfer efficiency, and compromised system stability. To address the above issues, increasing interest is being given to the potential of using conductive non-biological materials, e,g., iron sulfide (FeS), as a readily accessible electron donor and electron shuttle in the biological decontamination process. In this study, Mackinawite nanoparticles (FeS NPs) were studied for their ability to serve as electron donors for p-chloronitrobenzene (p-CNB) anaerobic reduction within a coupled system. This coupled system achieved an impressive p-CNB removal efficiency of 78.3 ± 2.9% at a FeS NPs dosage of 1 mg/L, surpassing the efficiencies of 62.1 ± 1.5% of abiotic and 30.6 ± 1.6% of biotic control systems, respectively. Notably, the coupled system exhibited exclusive formation of aniline (AN), indicating the partial dechlorination of p-CNB. The improvements observed in the coupled system were attributed to the increased activity in the electron transport system (ETS), which enhanced the sludge conductivity and nitroaromatic reductases activity. The analysis of equivalent electron donors confirmed that the S2- ions dominated the anaerobic reduction of p-CNB in the coupled system. However, the anaerobic reduction of p-CNB would be adversely inhibited when the FeS NPs dosage exceeded 5 g/L. In a continuous operation, the p-CNB concentration and HRT were optimized as 125 mg/L and 40 h, respectively, resulting in an outstanding p-CNB removal efficiency exceeding 94.0% after 160 days. During the anaerobic reduction process, as contributed by the predominant bacterium of Thiobacillus with a 6.6% relative abundance, a mass of p-chloroaniline (p-CAN) and AN were generated. Additionally, Desulfomonile was emerged with abundances ranging from 0.3 to 0.7%, which was also beneficial for the reduction of p-CNB to AN. The long-term stable performance of the coupled system highlighted that anaerobic technology mediated by FeS NPs has a promising potential for the treatment of wastewater containing chlorinated nitroaromatic compounds, especially without the aid of organic co-substrates.


Ferrous Compounds , Nitrobenzenes , Anaerobiosis , Nitrobenzenes/metabolism , Nitrobenzenes/chemistry , Ferrous Compounds/chemistry , Ferrous Compounds/metabolism , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/chemistry , Nanoparticles/chemistry , Oxidation-Reduction , Waste Disposal, Fluid/methods , Aniline Compounds/chemistry , Aniline Compounds/metabolism , Wastewater/chemistry , Bioreactors
4.
Int J Mol Sci ; 25(9)2024 Apr 28.
Article En | MEDLINE | ID: mdl-38732028

The development of turn-based inhibitors of protein-protein interactions has attracted considerable attention in medicinal chemistry. Our group has synthesized a series of peptides derived from an amino-functionalized ferrocene to investigate their potential to mimic protein turn structures. Detailed DFT and spectroscopic studies (IR, NMR, CD) have shown that, for peptides, the backbone chirality and bulkiness of the amino acid side chains determine the hydrogen-bond pattern, allowing tuning of the size of the preferred hydrogen-bonded ring in turn-folded structures. However, their biological potential is more dependent on their lipophilicity. In addition, our pioneering work on the chiroptical properties of aminoferrocene-containing peptides enables the correlation of their geometry with the sign of the CD signal in the absorption region of the ferrocene chromophore. These studies have opened up the possibility of using aminoferrocene and its derivatives as chirooptical probes for the determination of various chirality elements, such as the central chirality of amino acids and the helicity of peptide sequences.


Amino Acids , Ferrous Compounds , Metallocenes , Peptides , Ferrous Compounds/chemistry , Amino Acids/chemistry , Metallocenes/chemistry , Peptides/chemistry , Hydrogen Bonding , Stereoisomerism
5.
Environ Sci Pollut Res Int ; 31(24): 35651-35665, 2024 May.
Article En | MEDLINE | ID: mdl-38740683

In the present study, two iron phthalocyanine (FePc)-based nanocatalysts were synthesized and fully characterized. The carbon nanotubes (CNT) functionalized in an easy way with either Fe(II)Pc or Fe(III)Pc exhibit a very good catalytical activity. The activity in real wastewater effluent was comparable with the activity in distilled water. The procedure of modeling and optimizing with the assistance of chemometrics, utilizing design of experiments (DOE) and response surface methodology (RSM), revealed the conditions of optimum for decaying Reactive Yellow 84 on the nanocatalysts FePc_CNT. These optimal conditions included a catalyst dose of 1.70 g/L and an initial concentration (C0) of 20.0 mg/L. Under the indicated optimal conditions, the experimental findings verified that the removal efficiency was equal to Y = 98.92%, representing the highest observed value in this study. Under UVA light, after only 15 min of reaction, over 94% of dye was removed using both catalysts. The reuse experiments show that the activity of both nanohybrid material based on FePc-CNT slightly decreases over four consecutive runs. The quenching experiments show that RY84 was removed through radical pathways (O2•- and •OH) as well as non-radical pathways (1O2 and direct electron transfer).


Indoles , Nanotubes, Carbon , Water Pollutants, Chemical , Nanotubes, Carbon/chemistry , Catalysis , Indoles/chemistry , Water Pollutants, Chemical/chemistry , Iron/chemistry , Isoindoles , Wastewater/chemistry , Ferrous Compounds
6.
J Hazard Mater ; 472: 134583, 2024 Jul 05.
Article En | MEDLINE | ID: mdl-38749250

Iron-based materials such as nanoscale zerovalent iron (nZVI) are effective candidates to in situ remediate hexachromium (Cr(VI))-contaminated groundwater. The anaerobic bacteria could influence the remediation efficiency of Cr(VI) during its cotransport with nZVI in porous media. To address this issue, the present study investigated the adsorption and reduction of Cr(VI) during its cotransport with green tea (GT) modified nZVI (nZVI@GT) and iron sulfides (FeS and FeS2) in the presence of D. vulgaris or S. putrefaciens in water-saturated sand columns. Experimental results showed that the nZVI@GT preferred to heteroaggregate with FeS2 rather than FeS, forming nZVI@GT-FeS2 heteroaggregates. Although the presence of D. vulgaris further induced nZVI@GT-FeS2 heteroaggregates to form larger clusters, it pronouncedly improved the dissolution of FeS and FeS2 for more Cr(VI) reduction associated with lower Cr(VI) flux through sand. In contrast, S. putrefaciens could promote the dispersion of the heteroaggregates of nZVI@GT-FeS2 and the homoaggregates of nZVI@GT or FeS by adsorption on the extracellular polymeric substances, leading to the improved transport of Fe-based materials for a much higher Cr(VI) immobilization in sand media. Overall, our study provides the essential perspectives into a chem-biological remediation technique through the synergistic removal of Cr(VI) by nZVI@GT and FeS in contaminated groundwater. ENVIRONMENTAL IMPLICATION: The green-synthesized nano-zero-valent iron particles (nZVI@GT) using plant extracts (or iron sulfides) have been used for in situ remediation of Cr(VI) contaminated groundwater. Nevertheless, the removal of Cr(VI) (including Cr(VI) adsorption and Cr(III) generation) could be influenced by the anaerobic bacteria governing the transport of engineered nanoparticles in groundwater. This study aims to reveal the inherent mechanisms of D. vulgaris and S. putrefaciens governing the cotransport of nZVI@GT combined with FeS (or FeS2) to further influence the Cr(VI) removal in simulated complex groundwater media. Our findings provides a chemical and biological synergistic remediation strategy for nZVI@GT application in Cr(VI)-contaminated groundwater.


Chromium , Groundwater , Iron , Metal Nanoparticles , Water Pollutants, Chemical , Groundwater/chemistry , Water Pollutants, Chemical/chemistry , Chromium/chemistry , Iron/chemistry , Metal Nanoparticles/chemistry , Sulfides/chemistry , Adsorption , Tea/chemistry , Water Purification/methods , Ferrous Compounds
7.
J Inorg Biochem ; 256: 112551, 2024 Jul.
Article En | MEDLINE | ID: mdl-38678911

The solvated iron(II) salt [Fe(NCMe)6](BF4)2 (Me = methyl) is shown to be a bifunctional catalyst with respect to aziridination of styrene. The salt serves as an active catalyst for nitrene transfer from PhINTs to styrene to form 2-phenyl-N-tosylaziridine (Ph = phenyl; Ts = tosyl, -S{O}2-p-C6H4Me). The iron(II) salt also acts as a Lewis acid in non-coordinating CH2Cl2 solution, to catalyze heterolytic CN bond cleavage of the aziridine and insertion of dipolarophiles. The 1,3-zwitterionic intermediate is presumably supported by interaction of the metal dication with the anion, and by resonance stabilization of the carbocation. Nucleophilic dipolarophiles then insert to give a five-membered heterocyclic ring. The result is a two-step cycloaddition, formally [2 + 1 + 2], that is typically regiospecific, but not stereospecific. This reaction mechanism was confirmed by conducting a series of one-step, [3 + 2] additions of unsaturated molecules into pre-formed 2-phenyl-N-tosylaziridine, also catalyzed by [Fe(NCMe)6](BF4)2. Relevant substrates include styrenes, carbonyl compounds and alkynes. These yield five-membered heterocylic rings, including pyrrolidines, oxazolidines and dihydropyrroles, respectively. The reaction scope appears limited only by the barrier to formation of the dipolar intermediate, and by the nucleophilicity of the captured dipolarophile. The bifunctionality of an inexpensive, earth-abundant and non-toxic catalyst suggests a general strategy for one-pot construction of heterocyclic rings, as demonstrated specifically for pyrrolidine ring formation.


Aziridines , Styrene , Aziridines/chemistry , Catalysis , Styrene/chemistry , Ferrous Compounds/chemistry , Heterocyclic Compounds/chemistry , Cycloaddition Reaction , Imines
8.
Talanta ; 274: 126023, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38583328

Dual-potential ratiometric electrochemiluminescence (ECL) is in favor of resistance to environmental interference. However, two kinds of emitters or coreactants, and a wide scan potential range (>2 V) are mandatory. This work developed a new dual-potential ratiometric ECL sensor for detection of carcinoembryonic antigen (CEA) using single emitter (luminol) and single coreactant (H2O2) with a mild potential range from -0.1 to 0.6 V. Luminol could produce a strong cathodic ECL (Ec) induced by hydroxyl radicals (HO‧) from the reduction of H2O2, and a relatively weak anodic ECL (Ea). After the ferrocene modified CEA aptamer (Apt-Fc) was attached, Fc could promote Ea by catalyzing the oxidation of H2O2, and reduce Ec by consuming HO‧. With the cycling amplification of the exonuclease I, CEA could substantially reduce the amount of Apt-Fc, resulting in the decrease of Ea and the rise of Ec. So, the ratio of Ec to Ea (Ec/Ea) was used as the detection signal, realizing the sensitive determination of CEA from 0.1 pg mL-1 to 10 ng mL-1 with a LOD of 41.85 fg mL-1 (S/N = 3). The developed sensor demonstrated excellent specificity, stability and reproducibility, with satisfactory results in practical detection.


Aptamers, Nucleotide , Carcinoembryonic Antigen , Electrochemical Techniques , Hydrogen Peroxide , Luminescent Measurements , Luminol , Carcinoembryonic Antigen/analysis , Carcinoembryonic Antigen/blood , Electrochemical Techniques/methods , Humans , Luminescent Measurements/methods , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/analysis , Luminol/chemistry , Aptamers, Nucleotide/chemistry , Limit of Detection , Biosensing Techniques/methods , Metallocenes/chemistry , Ferrous Compounds/chemistry
9.
Talanta ; 274: 125999, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38583327

The construction of efficient methods for highly sensitive and rapid detection of disease markers is essential for the early diagnosis of serious diseases. In this paper, taking advantage of the UiO-66-NH2 signal molecule in combination with a waste-free entropy-driven DNA machine, a novel homogeneous electrochemical ratiometric platform is developed to detect MircoRNA (miRNA). Metal-organic framework materials (UiO-66-NH2 MOF) and ferrocene were utilized as electrochemical signal tags and reference probes, respectively. The target-initiated waste-free three-dimensional (3D) entropy-driven DNA nanomachine is activated in the presence of miRNA, resulting in DNA-labeled-UiO-66-NH2 falling off from the electrode, leading to a decrease in the signal of UiO-66-NH2 at 0.83V. Our strategy can mitigate false positive responses induced by the DNA probes immobilized on electrodes in traditional distance-dependent signal adjustment ratiometric strategies. The proposed ratiometric platform demonstrates superior sensitivity (a detection limit of 9.8 fM), simplified operation, high selectivity, and high repeatability. The ratiometric biosensor is also applied to detect miRNA content in spiked serum samples.


Biosensing Techniques , Electrochemical Techniques , Entropy , Metal-Organic Frameworks , MicroRNAs , MicroRNAs/blood , MicroRNAs/analysis , Biosensing Techniques/methods , Electrochemical Techniques/methods , Humans , Metal-Organic Frameworks/chemistry , DNA/chemistry , Limit of Detection , Electrodes , DNA Probes/chemistry , DNA Probes/genetics , Ferrous Compounds/chemistry , Metallocenes/chemistry
10.
J Am Chem Soc ; 146(15): 10381-10392, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38573229

DNA cross-links severely challenge replication and transcription in cells, promoting senescence and cell death. In this paper, we report a novel type of DNA interstrand cross-link (ICL) produced as a side product during the attempted repair of 1,N6-ethenoadenine (εA) by human α-ketoglutarate/Fe(II)-dependent enzyme ALKBH2. This stable/nonreversible ICL was characterized by denaturing polyacrylamide gel electrophoresis analysis and quantified by high-resolution LC-MS in well-matched and mismatched DNA duplexes, yielding 5.7% as the highest level for cross-link formation. The binary lesion is proposed to be generated through covalent bond formation between the epoxide intermediate of εA repair and the exocyclic N6-amino group of adenine or the N4-amino group of cytosine residues in the complementary strand under physiological conditions. The cross-links occur in diverse sequence contexts, and molecular dynamics simulations rationalize the context specificity of cross-link formation. In addition, the cross-link generated from attempted εA repair was detected in cells by highly sensitive LC-MS techniques, giving biological relevance to the cross-link adducts. Overall, a combination of biochemical, computational, and mass spectrometric methods was used to discover and characterize this new type of stable cross-link both in vitro and in human cells, thereby uniquely demonstrating the existence of a potentially harmful ICL during DNA repair by human ALKBH2.


Adenine/analogs & derivatives , Dioxygenases , Ketoglutaric Acids , Humans , Dioxygenases/metabolism , DNA/chemistry , DNA Repair , Ferrous Compounds , DNA Adducts , AlkB Homolog 2, Alpha-Ketoglutarate-Dependent Dioxygenase/metabolism
11.
Environ Pollut ; 350: 124004, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38641039

The Fe(II)/Fe(III) cycle is an important driving force for dissolution and transformation of jarosite. Divalent heavy metals usually coexist with jarosite; however, their effects on Fe(II)-induced jarosite transformation and different repartitioning behavior during mineral dissolution-recrystallization are still unclear. Here, we investigated Fe(II)-induced (1 mM Fe(II)) jarosite conversion in the presence of Cd(II), Mn(II), Co(II), Ni(II) and Pb(II) (denoted as Me(II), 1 mM), respectively, under anaerobic condition at neutral pH. The results showed that all co-existing Me(II) retarded Fe(II)-induced jarosite dissolution. In the Fe(II)-only system, jarosite first rapidly transformed to lepidocrocite (an intermediate product) and then slowly to goethite; lepidocrocite was the main product. In Fe(II)-Cd(II), -Mn(II), and -Pb(II) systems, coexisting Cd(II), Mn(II) and Pb(II) retarded the above process and lepidocrocite was still the dominant conversion product. In Fe(II)-Co(II) system, coexisting Co(II) promoted lepidocrocite transformation into goethite. In Fe(II)-Ni(II) system, jarosite appeared to be directly converted into goethite, although small amounts of lepidocrocite were detected in the final product. In all treatments, the appearance or accumulation of lepidocrocite may be also related to the re-adsorption of released sulfate. By the end of reaction, 6.0 %, 4.0 %, 76.0 % 11.3 % and 19.2 % of total Cd(II), Mn(II), Pb(II) Co(II) and Ni(II) were adsorbed on the surface of solid products. Up to 49.6 %, 44.3 %, and 21.6 % of Co(II), Ni(II), and Pb(II) incorporated into solid product, with the reaction indicating that the dynamic process of Fe(II) interaction with goethite may promote the continuous incorporation of Co(II), Ni(II), and Pb(II).


Ferric Compounds , Metals, Heavy , Minerals , Ferric Compounds/chemistry , Minerals/chemistry , Metals, Heavy/chemistry , Cations, Divalent , Sulfates/chemistry , Ferrous Compounds/chemistry , Manganese/chemistry , Iron/chemistry , Soil Pollutants/chemistry
12.
ACS Sens ; 9(4): 2141-2148, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38578241

The glycated hemoglobin (HbA1c) level, which is defined as the ratio of HbA1c to total hemoglobin (tHb, including glycated and unglycated hemoglobin), is considered one of the preferred indicators for diabetes monitoring. Generally, assessment of the HbA1c level requires separate determination of tHb and HbA1c concentrations after a complex separation step. This undoubtedly increases the cost of the assay, and the loss or degradation of HbA1c during the separation process results in a decrease in the accuracy of the assay. Therefore, this study explored a dual-signal acquisition method for the one-step simultaneous evaluation of tHb and HbA1c. Quantification of tHb: graphene adsorbed carbon quantum dots and methylene blue were utilized as the substrate material and linked to the antibody. tHb was captured on the substrate by the antibody. The unique heme group on tHb catalyzed the production of •OH from H2O2 to degrade methylene blue on the substrate, and a quantitative relationship between the tHb concentration and the methylene blue oxidation current signal was constructed. Quantification of HbA1c: complex labels with HbA1c recognition were made of ZIF-8-ferrocene-gold nanoparticles-mercaptophenylboronic acid. The specific recognition of the boronic acid bond with the unique cis-diol structure of HbA1c establishes a quantitative relationship between the oxidation current of the label-loaded ferrocene and the concentration of HbA1c. Thus, the HbA1c level can be assessed with only one signal readout. The sensor exhibited extensive detection ranges (0.200-600 ng/mL for tHb and 0.100-300 ng/mL for HbA1c) and low detection limits (4.00 × 10-3 ng/mL for tHb and 1.03 × 10-2 ng/mL for HbA1c).


Glycated Hemoglobin , Methylene Blue , Glycated Hemoglobin/analysis , Humans , Methylene Blue/chemistry , Graphite/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Quantum Dots/chemistry , Hemoglobins/analysis , Hemoglobins/chemistry , Boronic Acids/chemistry , Ferrous Compounds/chemistry , Metallocenes/chemistry , Limit of Detection , Electrochemical Techniques/methods , Hydrogen Peroxide/chemistry
13.
Biosens Bioelectron ; 256: 116276, 2024 Jul 15.
Article En | MEDLINE | ID: mdl-38599073

Fat mass and obesity-associated protein (FTO) has gained attention as the first RNA N6-methyladenosine (m6A) modification eraser due to its overexpression being associated with various cancers. In this study, an electrochemiluminescence (ECL) biosensor for the detection of demethylase FTO was developed based on DNAzyme-mediated CRISPR/Cas12a signal cascade amplification system and carboxylated carbon nitride nanosheets/phosphorus-doped nitrogen-vacancy modified carbon nitride nanosheets (C-CN/PCNV) heterojunction as the emitter. The biosensor was constructed by modifying the C-CN/PCNV heterojunction and a ferrocene-tagged probe (ssDNA-Fc) on a glassy carbon electrode. The presence of FTO removes the m6A modification on the catalytic core of DNAzyme, restoring its cleavage activity and generating activator DNA. This activator DNA further activates the trans-cleavage ability of Cas12a, leading to the cleavage of the ssDNA-Fc and the recovery of the ECL signal. The C-CN/PCNV heterojunction prevents electrode passivation and improves the electron-hole recombination, resulting in significantly enhanced ECL signal. The biosensor demonstrates high sensitivity with a low detection limit of 0.63 pM in the range from 1.0 pM to 100 nM. Furthermore, the biosensor was successfully applied to detect FTO in cancer cell lysate and screen FTO inhibitors, showing great potential in early clinical diagnosis and drug discovery.


Alpha-Ketoglutarate-Dependent Dioxygenase FTO , Biosensing Techniques , CRISPR-Cas Systems , DNA, Catalytic , Electrochemical Techniques , Limit of Detection , Luminescent Measurements , Metallocenes , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/chemistry , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism , Humans , DNA, Catalytic/chemistry , Electrochemical Techniques/methods , Nitriles/chemistry , Endodeoxyribonucleases/chemistry , Endodeoxyribonucleases/metabolism , CRISPR-Associated Proteins/chemistry , Adenosine/analogs & derivatives , Adenosine/analysis , Adenosine/chemistry , Nanostructures/chemistry , Ferrous Compounds/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/genetics
15.
Biosensors (Basel) ; 14(4)2024 Mar 28.
Article En | MEDLINE | ID: mdl-38667154

We designed and optimized a glucose biosensor system based on a screen-printed electrode modified with the NAD-GDH enzyme. To enhance the electroactive surface area and improve the electron transfer efficiency, we introduced graphene oxide (GO) and ferrocene-modified linear poly(ethylenimine) (LPEI-Fc) onto the biosensor surface. This strategic modification exploits the electrostatic interaction between graphene oxide, which possesses a negative charge, and LPEI-Fc, which is positively charged. This interaction results in increased catalytic current during glucose oxidation and helps improve the overall glucose detection sensitivity by amperometry. We integrated the developed glucose sensor into a flow injection (FI) system. This integration facilitates a swift and reproducible detection of glucose, and it also mitigates the risk of contamination during the analyses. The incorporation of an FI system improves the efficiency of the biosensor, ensuring precise and reliable results in a short time. The proposed sensor was operated at a constant applied potential of 0.35 V. After optimizing the system, a linear calibration curve was obtained for the concentration range of 1.0-40 mM (R2 = 0.986). The FI system was successfully applied to determine the glucose content of a commercial sports drink.


Biosensing Techniques , Ferrous Compounds , Glucose , Graphite , Metallocenes , Polyethyleneimine , Graphite/chemistry , Metallocenes/chemistry , Ferrous Compounds/chemistry , Polyethyleneimine/chemistry , Glucose/analysis , Electrodes , Oxidation-Reduction
16.
Proc Natl Acad Sci U S A ; 121(17): e2316452121, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38621125

The main sources of redox gradients supporting high-productivity life in the Europan and other icy ocean world oceans were proposed to be photolytically derived oxidants, such as reactive oxygen species (ROS) from the icy shell, and reductants (Fe(II), S(-II), CH4, H2) from bottom waters reacting with a (ultra)mafic seafloor. Important roadblocks to maintaining life, however, are that the degree of ocean mixing to combine redox species is unknown, and ROS damage biomolecules. Here, we envisage a unique solution using an acid mine drainage (AMD)-filled pit lakes analog system for the Europan ocean, which previous models predicted to be acidic. We hypothesize that surface-generated ROS oxidize dissolved Fe(II) resulting in Fe(III) (hydr)oxide precipitates, that settle to the seafloor as "iron snow." The iron snow provides a respiratory substrate for anaerobic microorganisms ("breathing iron"), and limits harmful ROS exposure since they are now neutralized at the ice-water interface. Based on this scenario, we calculated Gibbs energies and maximal biomass productivities of various anaerobic metabolisms for a range of pH, temperatures, and H2 fluxes. Productivity by iron reducers was greater for most environmental conditions considered, whereas sulfate reducers and methanogens were more favored at high pH. Participation of Fe in the metabolic redox processes is largely neglected in most models of Europan biogeochemistry. Our model overcomes important conceptual roadblocks to life in icy ocean worlds and broadens the potential metabolic diversity, thus increasing total primary productivity, the diversity and volume of habitable environmental niches and, ultimately, the probability of biosignature detection.


Ice , Iron , Reactive Oxygen Species , Snow , Oxidation-Reduction , Ferrous Compounds
17.
Eur J Med Chem ; 271: 116429, 2024 May 05.
Article En | MEDLINE | ID: mdl-38663284

Amodiaquine (AQ) is a potent antimalarial drug used in combination with artesunate as part of artemisinin-based combination therapies (ACTs) for malarial treatment. Due to the rising emergence of resistant malaria parasites, some of which have been reported for ACT, the usefulness of AQ as an efficacious therapeutic drug is threatened. Employing the organometallic hybridisation approach, which has been shown to restore the antimalarial activity of chloroquine in the form of an organometallic hybrid clinical candidate ferroquine (FQ), the present study utilises this strategy to modulate the biological performance of AQ by incorporating ferrocene. Presently, we have conceptualised ferrocenyl AQ derivatives and have developed facile, practical routes for their synthesis. A tailored library of AQ derivatives was assembled and their antimalarial activity evaluated against chemosensitive (NF54) and multidrug-resistant (K1) strains of the malaria parasite, Plasmodium falciparum. The compounds generally showed enhanced or comparable activities to those of the reference clinical drugs chloroquine and AQ, against both strains, with higher selectivity for the sensitive phenotype, mostly in the double-digit nanomolar IC50 range. Moreover, representative compounds from this series show the potential to block malaria transmission by inhibiting the growth of stage II/III and V gametocytes in vitro. Preliminary mechanistic insights also revealed hemozoin inhibition as a potential mode of action.


Amodiaquine , Antimalarials , Ferrous Compounds , Metallocenes , Plasmodium falciparum , Antimalarials/pharmacology , Antimalarials/chemistry , Antimalarials/chemical synthesis , Ferrous Compounds/chemistry , Ferrous Compounds/pharmacology , Plasmodium falciparum/drug effects , Metallocenes/chemistry , Metallocenes/pharmacology , Amodiaquine/pharmacology , Amodiaquine/chemistry , Structure-Activity Relationship , Molecular Structure , Humans , Parasitic Sensitivity Tests , Dose-Response Relationship, Drug
18.
Microbiol Res ; 284: 127711, 2024 Jul.
Article En | MEDLINE | ID: mdl-38636240

Microbial ferroptosis has been proved to combat drug-resistant pathogens, but whether this pattern can be applied to the prevention and control of Escherichia coli remains to be further explored. In this study, ferrous gluconate (FeGlu) showed remarkable efficacy in killing E. coli MG1655 with a mortality rate exceeding 99.9%, as well as enterotoxigenic E. coli H10407 (ETEC H10407) and enterohemorrhagic E. coli O157:H7 (EHEC O157:H7). Bacteria death was instigated by the infiltration of Fe2+, accompanied by a burst of intracellular reactive oxygen species (ROS) and lipid peroxidation. Notably, mitigating lipid peroxidation failed to alleviate death of E. coli. Further findings confirmed that FeGlu induced DNA damage, and ΔrecA mutant showed more sensitive, implicating that DNA damage was involved in the death of E. coli. The direct interaction of Fe2+ with DNA was demonstrated by fluorescent staining, gel electrophoresis, and circular dichroism (CD). Moreover, proteomic analysis unveiled 50 differentially expressed proteins (DEPs), including 18 significantly down-regulated proteins and 32 significantly up-regulated proteins. Among them, the down-regulation of SOS-responsive transcriptional suppressor LexA indicated DNA damage induced severely by FeGlu. Furthermore, FeGlu influenced pathways such as fatty acid metabolism (FadB, FadE), iron-sulfur cluster assembly (IscA, IscU, YadR), iron binding, and DNA-binding transcription, along with α-linolenic acid metabolism, fatty acid degradation, and pyruvate metabolism. These pathways were related to FeGlu stress, including lipid peroxidation and DNA damage. In summary, FeGlu facilitated ferroptosis in E. coli through mechanisms involving lipid peroxidation and DNA damage, which presents a new strategy for the development of innovative antimicrobial strategies targeting E. coli infections.


DNA Damage , Escherichia coli , Ferroptosis , Ferrous Compounds , Lipid Peroxidation , Reactive Oxygen Species , Ferroptosis/drug effects , DNA Damage/drug effects , Lipid Peroxidation/drug effects , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/metabolism , Ferrous Compounds/metabolism , Ferrous Compounds/pharmacology , Reactive Oxygen Species/metabolism , Anti-Bacterial Agents/pharmacology , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Gene Expression Regulation, Bacterial/drug effects , Proteomics , Escherichia coli O157/drug effects , Escherichia coli O157/genetics , Escherichia coli O157/metabolism
19.
Int J Mol Sci ; 25(8)2024 Apr 10.
Article En | MEDLINE | ID: mdl-38673758

Animal tumors serve as reasonable models for human cancers. Both human and animal tumors often reveal triplet EPR signals of nitrosylhemoglobin (HbNO) as an effect of nitric oxide formation in tumor tissue, where NO is complexed by Hb. In search of factors determining the appearance of nitrosylhemoglobin (HbNO) in solid tumors, we compared the intensities of electron paramagnetic resonance (EPR) signals of various iron-nitrosyl complexes detectable in tumor tissues, in the presence and absence of excess exogenous iron(II) and diethyldithiocarbamate (DETC). Three types of murine tumors, namely, L5178Y lymphoma, amelanotic Cloudman S91 melanoma, and Ehrlich carcinoma (EC) growing in DBA/2 or Swiss mice, were used. The results were analyzed in the context of vascularization determined histochemically using antibodies to CD31. Strong HbNO EPR signals were found in melanoma, i.e., in the tumor with a vast amount of a hemorrhagic necrosis core. Strong Fe(DETC)2NO signals could be induced in poorly vascularized EC. In L5178Y, there was a correlation between both types of signals, and in addition, Fe(RS)2(NO)2 signals of non-heme iron-nitrosyl complexes could be detected. We postulate that HbNO EPR signals appear during active destruction of well-vascularized tumor tissue due to hemorrhagic necrosis. The presence of iron-nitrosyl complexes in tumor tissue is biologically meaningful and defines the evolution of complicated tumor-host interactions.


Ditiocarb , Hemoglobins , Nitric Oxide , Animals , Nitric Oxide/metabolism , Ditiocarb/pharmacology , Ditiocarb/chemistry , Mice , Hemoglobins/metabolism , Hemoglobins/chemistry , Electron Spin Resonance Spectroscopy/methods , Spin Trapping/methods , Neovascularization, Pathologic/metabolism , Cell Line, Tumor , Disease Models, Animal , Mice, Inbred DBA , Ferrous Compounds/chemistry
20.
ACS Macro Lett ; 13(5): 475-482, 2024 May 21.
Article En | MEDLINE | ID: mdl-38591821

The development of antioxidant wound dressings to remove excessive free radicals around wounds is essential for wound healing. In this study, we developed an efficient strategy to prepare antioxidant self-healing hydrogels as wound dressings by combining multicomponent reactions (MCRs) and postpolymerization modification. A polymer containing ferrocene and phenylboronic acid groups was developed via the Biginelli reaction, followed by efficient modification. This polymer is antioxidant due to its ferrocene moieties and can rapidly cross-link poly(vinyl alcohol) to realize an antioxidant self-healing hydrogel through dynamic borate ester linkages. This hydrogel has low cytotoxicity and is biocompatible. In in vivo experiments, this hydrogel is superior to existing clinical dressings in promoting wound healing. This study demonstrates the value of the Biginelli reaction in exploring biomaterials, potentially offering insights into the design of other multifunctional polymers and related materials using different MCRs.


Antioxidants , Ferrous Compounds , Hydrogels , Metallocenes , Wound Healing , Ferrous Compounds/chemistry , Metallocenes/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Wound Healing/drug effects , Antioxidants/pharmacology , Antioxidants/chemistry , Animals , Mice , Boronic Acids/chemistry , Polyvinyl Alcohol/chemistry , Humans , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology
...