Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 7.363
1.
J Neuroinflammation ; 21(1): 121, 2024 May 08.
Article En | MEDLINE | ID: mdl-38720368

BACKGROUND: Umbilical cord blood (UCB) cells are a promising treatment for preterm brain injury. Access to allogeneic sources of UCB cells offer the potential for early administration to optimise their therapeutic capacities. As preterm infants often require ventilatory support, which can contribute to preterm brain injury, we investigated the efficacy of early UCB cell administration following ventilation to reduce white matter inflammation and injury. METHODS: Preterm fetal sheep (0.85 gestation) were randomly allocated to no ventilation (SHAM; n = 5) or 15 min ex utero high tidal volume ventilation. One hour following ventilation, fetuses were randomly allocated to i.v. administration of saline (VENT; n = 7) or allogeneic term-derived UCB cells (24.5 ± 5.0 million cells/kg; VENT + UCB; n = 7). Twenty-four hours after ventilation, lambs were delivered for magnetic resonance imaging and post-mortem brain tissue collected. Arterial plasma was collected throughout the experiment for cytokine analyses. To further investigate the results from the in vivo study, mononuclear cells (MNCs) isolated from human UCB were subjected to in vitro cytokine-spiked culture medium (TNFα and/or IFNγ; 10 ng/mL; n = 3/group) for 16 h then supernatant and cells collected for protein and mRNA assessments respectively. RESULTS: In VENT + UCB lambs, systemic IFNγ levels increased and by 24 h, there was white matter neuroglial activation, vascular damage, reduced oligodendrocytes, and increased average, radial and mean diffusivity compared to VENT and SHAM. No evidence of white matter inflammation or injury was present in VENT lambs, except for mRNA downregulation of OCLN and CLDN1 compared to SHAM. In vitro, MNCs subjected to TNFα and/or IFNγ displayed both pro- and anti-inflammatory characteristics indicated by changes in cytokine (IL-18 & IL-10) and growth factor (BDNF & VEGF) gene and protein expression compared to controls. CONCLUSIONS: UCB cells administered early after brief high tidal volume ventilation in preterm fetal sheep causes white matter injury, and the mechanisms underlying these changes are likely dysregulated responses of the UCB cells to the degree of injury/inflammation already present. If immunomodulatory therapies such as UCB cells are to become a therapeutic strategy for preterm brain injury, especially after ventilation, our study suggests that the inflammatory state of the preterm infant should be considered when timing UCB cells administration.


Tidal Volume , Animals , Sheep , Female , Humans , Tidal Volume/physiology , Fetal Blood/cytology , Pregnancy , Cytokines/metabolism , Cord Blood Stem Cell Transplantation/methods , Respiration, Artificial/methods , Respiration, Artificial/adverse effects , Animals, Newborn
2.
Int J Mol Sci ; 25(8)2024 Apr 18.
Article En | MEDLINE | ID: mdl-38674031

Hemangioblasts give rise to endothelial progenitor cells (EPCs), which also express the cell surface markers CD133 and c-kit. They may differentiate into the outgrowth endothelial cells (OECs) that control neovascularization in the developing embryo. According to numerous studies, reduced levels of EPCs in circulation have been linked to human cardiovascular disorders. Furthermore, preeclampsia and senescence have been linked to levels of EPCs produced from cord blood. Uncertainties surround how preeclampsia affects the way EPCs function. It is reasonable to speculate that preeclampsia may have an impact on the function of fetal EPCs during the in utero period; however, the present literature suggests that maternal vasculopathies, including preeclampsia, damage fetal circulation. Additionally, the differentiation potential and general activity of EPCs may serve as an indicator of the health of the fetal vascular system as they promote neovascularization and repair during pregnancy. Thus, the purpose of this review is to compare-through the assessment of their quantity, differentiation potency, angiogenic activity, and senescence-the angiogenic function of fetal EPCs obtained from cord blood for normal and pregnancy problems (preeclampsia, gestational diabetes mellitus, and fetal growth restriction). This will shed light on the relationship between the angiogenic function of fetal EPCs and pregnancy complications, which could have an effect on the management of long-term health issues like metabolic and cardiovascular disorders in offspring with abnormal vasculature development.


Diabetes, Gestational , Endothelial Progenitor Cells , Fetal Blood , Fetal Growth Retardation , Pre-Eclampsia , Humans , Pregnancy , Female , Diabetes, Gestational/metabolism , Diabetes, Gestational/blood , Pre-Eclampsia/blood , Endothelial Progenitor Cells/metabolism , Fetal Blood/cytology , Fetal Blood/metabolism , Fetal Growth Retardation/pathology , Cell Differentiation
3.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(2): 577-582, 2024 Apr.
Article Zh | MEDLINE | ID: mdl-38660869

OBJECTIVE: To explore the optimal storage condition and time of umbilical cord blood from collection to preparation. METHODS: Collect cord blood samples from 30 healthy newborns, with each new born's umbilical cord blood was divided into two parts on average. One part was stored in cold storage (4 ℃) and the other was stored at room temperature (20-24 ℃). Samples were taken at 24, 36, 48, 60 and 72 h, respectively, total nucleated cells (TNC) count and TNC viability was analyzed. Flow cytometry was used to detect the ratio of viable CD34+ cells to viable CD45+ cells and viability of CD34+ cells, and colony-forming unit-granulocyte-macrophage (CFU-GM) count was performed by hematopoietic progenitor cell colony culture. The change trend of each index over time was observed, and the differences in each index was compared between cold storage and room temperature storage under the same storage time. RESULTS: The TNC count (r 4 ℃=-0.9588, r 20-24 ℃=-0.9790), TNC viability (r 4 ℃=-0.9941, r 20-24 ℃=-0.9970), CD34+ cells viability (r 4 ℃=-0.9932, r 20-24 ℃=-0.9828) of cord blood stored in cold storage (4 ℃) and room temperature storage (20-24 ℃) showed a consistent downward trend with the prolongation of storage time. The percentage of viable CD34+ cells (r 4 ℃=0.9169, r 20-24 ℃=0.7470) and CFU-GM count (r 4 ℃=-0.2537, r 20-24 ℃=-0.8098) did not show consistent trends. When the storage time was the same, the TNC count, TNC viability, CD34+ cells viability and CFU-GM count of cord blood stored in cold storage were higher than those stored at room temperature. Under the same storage time (24, 36, 48, 60 or 72 h), TNC viability in room temperature storage was significantly lower than that in cold storage (P <0.001), but TNC count, percentage of viable CD34+ cells and CFU-GM count were not significantly different between room temperature storage and cold storage. When stored at room temperature for 24 h and 36 h, the viability of CD34+ cells was significantly lower than that in cold storage (P <0.001, P <0.01), when the storage time for 48, 60 and 72 h, there was no significant difference in the CD34+ cells viability between room temperature storage and cold storage. CONCLUSION: It is recommended that cord blood be stored in cold storage (4 ℃) from collection to preparation, and processed as soon as possible.


Antigens, CD34 , Blood Preservation , Fetal Blood , Humans , Fetal Blood/cytology , Infant, Newborn , Time Factors , Flow Cytometry , Hematopoietic Stem Cells/cytology , Cell Survival , Temperature , Blood Specimen Collection
4.
J Thromb Haemost ; 22(5): 1447-1462, 2024 May.
Article En | MEDLINE | ID: mdl-38160730

BACKGROUND: Recent clinical studies have shown that transfusions of adult platelets increase morbidity and mortality in preterm infants. Neonatal platelets are hyporesponsive to agonist stimulation, and emerging evidence suggests developmental differences in platelet immune functions. OBJECTIVES: This study was designed to compare the proteome and phosphoproteome of resting adult and neonatal platelets. METHODS: We isolated resting umbilical cord blood-derived platelets from healthy full-term neonates (n = 8) and resting blood platelets from healthy adults (n = 6) and compared protein and phosphoprotein contents using data-independent acquisition mass spectrometry. RESULTS: We identified 4770 platelet proteins with high confidence across all samples. Adult and neonatal platelets were clustered separately by principal component analysis. Adult platelets were significantly enriched in immunomodulatory proteins, including ß2 microglobulin and CXCL12, whereas neonatal platelets were enriched in ribosomal components and proteins involved in metabolic activities. Adult platelets were enriched in phosphorylated GTPase regulatory enzymes and proteins participating in trafficking, which may help prime them for activation and degranulation. Neonatal platelets were enriched in phosphorylated proteins involved in insulin growth factor signaling. CONCLUSION: Using label-free data-independent acquisition mass spectrometry, our findings expanded the known neonatal platelet proteome and identified important differences in protein content and phosphorylation between neonatal and adult platelets. These developmental differences suggested enhanced immune functions for adult platelets and presence of molecular machinery related to platelet activation. These findings are important to understanding mechanisms underlying key platelet functions as well as the harmful effects of adult platelet transfusions given to preterm infants.


Blood Platelets , Fetal Blood , Phosphoproteins , Proteomics , Signal Transduction , Humans , Blood Platelets/metabolism , Infant, Newborn , Adult , Fetal Blood/metabolism , Fetal Blood/cytology , Phosphorylation , Proteomics/methods , Phosphoproteins/blood , Proteome , Female , Age Factors , Male , Principal Component Analysis , Mass Spectrometry , Tandem Mass Spectrometry
5.
Nature ; 615(7950): 127-133, 2023 03.
Article En | MEDLINE | ID: mdl-36813966

Haematopoietic stem cells (HSCs) are a rare cell type that reconstitute the entire blood and immune systems after transplantation and can be used as a curative cell therapy for a variety of haematological diseases1,2. However, the low number of HSCs in the body makes both biological analyses and clinical application difficult, and the limited extent to which human HSCs can be expanded ex vivo remains a substantial barrier to the wider and safer therapeutic use of HSC transplantation3. Although various reagents have been tested in attempts to stimulate the expansion of human HSCs, cytokines have long been thought to be essential for supporting HSCs ex vivo4. Here we report the establishment of a culture system that allows the long-term ex vivo expansion of human HSCs, achieved through the complete replacement of exogenous cytokines and albumin with chemical agonists and a caprolactam-based polymer. A phosphoinositide 3-kinase activator, in combination with a thrombopoietin-receptor agonist and the pyrimidoindole derivative UM171, were sufficient to stimulate the expansion of umbilical cord blood HSCs that are capable of serial engraftment in xenotransplantation assays. Ex vivo HSC expansion was further supported by split-clone transplantation assays and single-cell RNA-sequencing analysis. Our chemically defined expansion culture system will help to advance clinical HSC therapies.


Cell Culture Techniques , Cell Proliferation , Cytokines , Hematopoietic Stem Cells , Humans , Cell Proliferation/drug effects , Clone Cells/cytology , Clone Cells/drug effects , Clone Cells/metabolism , Fetal Blood/cytology , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Cell Culture Techniques/methods , Albumins , Caprolactam , Polymers , Receptors, Thrombopoietin , Transplantation, Heterologous , Single-Cell Gene Expression Analysis
6.
Clin Transl Med ; 13(1): e1175, 2023 01.
Article En | MEDLINE | ID: mdl-36683248

BACKGROUND: Hematopoietic stem cells (HSCs) from different sources show varied repopulating capacity, and HSCs lose their stemness after long-time ex vivo culture. A deep understanding of these phenomena may provide helpful insights for HSCs. METHODS: Here, we applied single-cell RNA-seq (scRNA-seq) to analyse the naïve and stimulated human CD34+ cells from cord blood (CB) and mobilised peripheral blood (mPB). RESULTS: We collected over 16 000 high-quality single-cell data to construct a comprehensive inference map and characterised the HSCs under a quiescent state on the hierarchy top. Then, we compared HSCs in CB with those in mPB and HSCs of naïve samples to those of cultured samples, and identified stemness-related genes (SRGs) associated with cell source (CS-SRGs) and culture time (CT-SRGs), respectively. Interestingly, CS-SRGs and CT-SRGs share genes enriched in the signalling pathways such as mRNA catabolic process, translational initiation, ribonucleoprotein complex biogenesis and cotranslational protein targeting to membrane, suggesting dynamic protein translation and processing may be a common requirement for stemness maintenance. Meanwhile, CT-SRGs are enriched in pathways involved in glucocorticoid and corticosteroid response that affect HSCs homing and engraftment. In contrast, CS-SRGs specifically contain genes related to purine and ATP metabolic process, which is crucial for HSC homeostasis in the stress settings. Particularly, when CT-SRGs are used as reference genes for the construction of the development trajectory of CD34+ cells, lymphoid and myeloid lineages are clearly separated after HSCs/MPPs. Finally, we presented an application through a small-scale drug screening using Connectivity Map (CMap) against CT-SRGs. A small molecule, cucurbitacin I, was found to efficiently expand HSCs ex vivo while maintaining its stemness. CONCLUSIONS: Our findings provide new perspectives for understanding HSCs, and the strategy to identify candidate molecules through SRGs may be applicable to study other stem cells.


Cell Differentiation , Fetal Blood , Hematopoietic Stem Cells , Humans , Antigens, CD34/analysis , Fetal Blood/cytology , Hematopoietic Stem Cells/cytology , Single-Cell Analysis , Gene Expression Profiling , Cell Differentiation/genetics
7.
Am J Reprod Immunol ; 88(1): e13555, 2022 07.
Article En | MEDLINE | ID: mdl-35452164

PROBLEM: Although pregnant women with gestational diabetes (GD), morbidly adherent placenta (MAP), and pregnancy hypertension (pHT) diseases lead to intrauterine growth restriction (IUGR), little is known about their effect on mucosal-associated invariant T (MAIT) and innate lymphoid cells (ILC) in the umbilical cord. This study aimed to quantify and characterize MAIT cells and ILCs in the cord blood of pregnant women with GD, MAP, and pHT diseases. METHOD OF STUDY: Cord blood mononuclear cells (CBMCs) were isolated by Ficoll-Paque gradient. CD3+ TCRVα7.2+ CD161high cells and ILC subsets were quantified by flow cytometry. CBMCs were stimulated with PMA/Ionomycin and Golgi Plug for 4 h and stained for IFN-γ, TNF-α, and granzyme B. The stained cells were analyzed on FACS ARIA III. RESULTS: Compared with healthy pregnancies, in the cord blood of the pHT group, elevated number of lymphocytes was observed. Moreover, the absolute number of IFN-γ producing CD4+ or CD4- subsets of CD3+ TCRVα7.2+ CD161high cells as well as those producing granzyme B were significantly elevated in the pHT group compared to healthy controls suggesting increased MAIT cell activity in the pHT cord blood. Similarly, in the MAP group, the absolute number of total CD3+ TCRVα7.2+ CD161high cells, but not individual CD4+ or negative subsets, were significantly increased compared with healthy controls' cord blood. Absolute numbers of total CD3+ TCRVα7.2+ CD161high cells and their subsets were comparable in the cord blood of the GD group compared with healthy controls. Finally, the absolute number of total ILCs and ILC3 subset were significantly elevated in only pHT cord blood compared with healthy controls. Our data also reveal that IFN-γ+ or granzyme B+ cell numbers negatively correlated with fetal birth weight. CONCLUSIONS: CD3+ TCRVα7.2+ CD161high cells and ILCs show unique expansion and activity in the cord blood of pregnant women with distinct diseases causing IUGR and may play roles in fetal growth restriction.


Diabetes, Gestational , Hypertension, Pregnancy-Induced , Placenta Accreta , T-Lymphocyte Subsets , Diabetes, Gestational/immunology , Female , Fetal Blood/cytology , Fetal Blood/immunology , Granzymes , Humans , Hypertension, Pregnancy-Induced/immunology , Immunity, Innate , Lymphocytes , Placenta/pathology , Placenta Accreta/immunology , Pregnancy , T-Lymphocyte Subsets/cytology
8.
Hematology ; 27(1): 263-273, 2022 Dec.
Article En | MEDLINE | ID: mdl-35192776

BACKGROUND: The reactivation of fetal γ-globin expression is an effective strategy for ameliorating the clinical symptoms of ß-hemoglobinopathies. However, the mechanism of globin switching, especially the roles of long non-coding RNAs (lncRNAs) in this process, remains elusive. METHODS: We compared the in vivo transcriptome profiles of nucleated red blood cells (NRBCs) isolated from the umbilical cord blood of preterm and full-term newborns. We collected 75 umbilical cord blood samples and performed qPCR of the candidate genes. RESULTS: In this study, we identified 7,166 differentially expressed protein-coding genes, 3,243 differentially expressed lncRNAs, and 79 differentially expressed microRNAs. Our data show that the Fanconi anemia pathway and the H19/let-7/LIN28B axis may be involved in γ- to ß-globin gene switching. Moreover, we constructed the hub gene network of the differentially expressed transcription factors. Based on qPCR, we found that BCL11A was differentially expressed based on biological sex. We also confirmed that H19 is differentially expressed and established the H19-related network to reveal the potential regulatory mechanisms. CONCLUSION: We present the profiles of the in vivo transcriptome differences of NRBCs between preterm and full-term neonates for the first time, and provide novel research targets for ß-hemoglobinopathies.


Erythrocytes/metabolism , Fetal Blood/metabolism , Transcriptome/immunology , Female , Fetal Blood/cytology , Humans , Infant, Newborn , Infant, Premature , Pregnancy
9.
PLoS One ; 17(1): e0262854, 2022.
Article En | MEDLINE | ID: mdl-35077481

Chondroitin sulfate (CS) and its isomeric variant, dermatan sulfate (DS), are complex glycosaminoglycans (GAGs) which are ubiquitous components of the extracellular matrix in various tissues including the brain. CS and/or DS are known to bind to a variety of growth factors and regulate many cellular events such as proliferation and differentiation. Although the biological activities of CS and/or DS towards neural stem/progenitor cells (NSPCs) have been well investigated, the CS and/or DS of hematopoietic stem cells (HSCs) have not been fully characterized. Here, we analyzed GAGs on mononuclear cells of rat umbilical cord blood cells (UCB-MNCs). CS was detected in vascular intima and media of rat umbilical cord at embryonic day 19 (E19) by immunohistochemistry. The stem-cell-enriched-UCBCs (SCE-UCBCs), which were expanded from rat UCB-MNCs, expressed CS. CS chains are composed of repeating disaccharide units, which are classified into several types such as O-, A-, B-, C-, D-, and E-unit according to the number and positions of sulfation. A disaccharide composition analysis revealed that CS and/or DS were abundant in rat UCB-MNCs as well as in their expanded SCE-UCBCs, while the amount of heparan sulfate (HS) was less. The degree of sulfation of CS/DS was relatively low and the major component in UCB-MNCs and SCE-UCBCs was the A-unit. A colony-forming cell assay revealed that the percentage of colony-forming cells decreased in culture with CS degradation enzyme. The CS and/or DS of UCBCs may be involved in biological activities such as stem cell proliferation and/or differentiation.


Cell Differentiation/drug effects , Cell Proliferation/drug effects , Chondroitin Sulfates/pharmacology , Fetal Blood/metabolism , Stem Cells/metabolism , Animals , Cell Culture Techniques , Cells, Cultured , Chondroitin Sulfates/chemistry , Disaccharides/chemistry , Disaccharides/pharmacology , Female , Fetal Blood/cytology , Rats , Stem Cells/cytology
10.
Sci Rep ; 12(1): 412, 2022 01 10.
Article En | MEDLINE | ID: mdl-35013490

The endometrium plays a critical role in embryo implantation and pregnancy, and a thin uterus is recognized as a key factor in embryo implantation failure. Umbilical cord mesenchymal stem cells (UC-MSCs) have attracted interest for the repair of intrauterine adhesions. The current study investigated the repair of thin endometrium in rats using the UC-MSCs and the mechanisms involved. Rats were injected with 95% ethanol to establish a model of thin endometrium. The rats were randomly divided into normal, sham, model, and UC-MSCs groups. Endometrial morphological alterations were observed by hematoxylin-eosin staining and Masson staining, and functional restoration was assessed by testing embryo implantation. The interaction between UC-MSCs and rat endometrial stromal cells (ESCs) was evaluated using a transwell 3D model and immunocytochemistry. Microarray mRNA and miRNA platforms were used for miRNA-mRNA expression profiling. Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) analyses were performed to identify the biological processes, molecular functions, cellular components, and pathways of endometrial injury and UC-MSCs transplantation repair and real-time quantitative reverse transcription PCR (qRT-PCR) was performed to further identify the expression changes of key molecules in the pathways. Endometrium thickness, number of glands, and the embryo implantation numbers were improved, and the degree of fibrosis was significantly alleviated by UC-MSCs treatment in the rat model of thin endometrium. In vitro cell experiments showed that UC-MSCs migrated to injured ESCs and enhanced their proliferation. miRNA microarray chip results showed that expression of 45 miRNAs was downregulated in the injured endometrium and upregulated after UC-MSCs transplantation. Likewise, expression of 39 miRNAs was upregulated in the injured endometrium and downregulated after UC-MSCs transplantation. The miRNA-mRNA interactions showed the changes in the miRNA and mRNA network during the processes of endometrial injury and repair. GO and KEGG analyses showed that the process of endometrial injury was mainly attributed to the decomposition of the extracellular matrix (ECM), protein degradation and absorption, and accompanying inflammation. The process of UC-MSCs transplantation and repair were accompanied by the reconstruction of the ECM, regulation of chemokines and inflammation, and cell proliferation and apoptosis. The key molecules involved in ECM-receptor interaction pathways were further verified by qRT-PCR. Itga1 and Thbs expression decreased in the model group and increased by UC-MSCs transplantation, while Laminin and Collagen expression increased in both the model group and MSCs group, with greater expression observed in the latter. This study showed that UC-MSCs transplantation could promote recovery of thin endometrial morphology and function. Furthermore, it revealed the expression changes of miRNA and mRNA after endometrial injury and UC-MSCs transplantation repair processed, and signaling pathways that may be involved in endometrial injury and repair.


Cell Proliferation , Cord Blood Stem Cell Transplantation , Endometrium/pathology , Extracellular Matrix/pathology , Regeneration , Uterine Diseases/surgery , Animals , Cell Communication , Cell Culture Techniques, Three Dimensional , Cells, Cultured , Disease Models, Animal , Endometrium/metabolism , Endometrium/physiopathology , Extracellular Matrix/genetics , Extracellular Matrix/metabolism , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Female , Fetal Blood/cytology , Gene Expression Regulation , Gene Regulatory Networks , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Rats, Sprague-Dawley , Signal Transduction , Transcriptome , Uterine Diseases/metabolism , Uterine Diseases/pathology , Uterine Diseases/physiopathology
11.
Mol Biol Rep ; 49(2): 931-941, 2022 Feb.
Article En | MEDLINE | ID: mdl-34741711

BACKGROUND: Hematopoietic stem cell (HSC) transplantation is considered a possible treatment option capable of curing various diseases. The aim of this study was the co-culturing of mesenchymal stem cell (MSC) spheres with HSCs under hypoxic condition to enhance the proliferation, self-renewal, stemness, and homing capacities of HSCs. METHODS AND RESULTS: HSCs were expanded after being subjected to different conditions including cytokines without feeder (Cyto), co-culturing with adherent MSCs (MSC), co-culturing with adherent MSCs + hypoxia (MSC + Hyp), co-culturing with MSCs spheres (Sph-MSC), co-culturing with MSCs spheres + hypoxia (Sph-MSC + Hyp), co-culturing with MSC spheres + cytokines (Sph-MSC + Cyto). After 10 days, total nucleated cell (TNC) and CD34+/CD38- cell counts, colony-forming unit assay (CFU), long-term culture initiating cell (LTC-IC), the expression of endothelial protein C receptor (EPCR), nucleostemin (NS), nuclear factor I/X (Nfix) CXCR4, and VLA-4 were evaluated. The TNC, CD34+/CD38- cell count, CFU, and LTC-IC were higher in the Sph-MSC + Hyp and Sph-MSC + Cyto groups as compared with those of the MSC + Hyp group (P < 0.001). The expanded HSCs co-cultured with MSC spheres in combination with hypoxia expressed more EPCR, CXCR4, VLA-4, NS, and Nfix mRNA. The protein expression was also more up-regulated in the Sph-MSC + Cyto and Sph-MSC + Hyp groups. CONCLUSION: Co-culturing HSCs with MSC spheres under hypoxic condition not only leads to higher cellular yield but also increases the expression of self-renewal and homing genes. Therefore, we suggest this approach as a simple and non-expensive strategy that might improve the transplantation efficiency of HSCs.


Coculture Techniques/methods , Hematopoietic Stem Cells/metabolism , Mesenchymal Stem Cells/metabolism , Antigens, CD34/metabolism , Cell Culture Techniques , Cell Differentiation , Cell Hypoxia/physiology , Cell Proliferation , Cells, Cultured , Coculture Techniques/economics , Cost-Benefit Analysis , Cytokines/metabolism , Fetal Blood/cytology , Humans , Receptors, CXCR4
12.
Gene ; 809: 146005, 2022 Jan 30.
Article En | MEDLINE | ID: mdl-34673210

Stem cells from umbilical cord blood (UCB) are able to proliferate and differentiate into various somatic cell types. Thereby, they are considered as one of the attractive stem cell sources in tissue engineering and regenerative medicine. However, the limited number of hematopoietic CD 133+ stem cells in UCB restricted the clinical application of such stem cells. This study was aimed to expand CD 133+ stem cells derived from UCB on a 3D silk scaffold. UCB133+ stem cells were extracted using Magnetic cell sorting (MACS) and characterized by flow cytometry. Isolated cells were seeded on a fabricated electrospun silk scaffold and cultured for 7 days. The real-time PCR, cell counting, colony-forming assay, and MTT assay were performed to evaluate the expansion and homing of stem cells. The results showed a higher expression of CXCR4 gene, the number of cultured stem cells, and colony-forming units in the 3D silk scaffold group after 7 days when compared to the tissue culture plate. Moreover, higher viability and proliferation of stem cells were seen in cells cultured on silk scaffold. It seems electrospun silk scaffold could be used as a suitable substrate for UCB CD 133+ stem cell expansion.


AC133 Antigen/metabolism , Fetal Blood/cytology , Hematopoietic Stem Cells/cytology , Nanofibers , Cell Culture Techniques/methods , Cell Proliferation , Cell Separation/methods , Cells, Cultured , Colony-Forming Units Assay , Hematopoietic Stem Cells/metabolism , Humans , Microscopy, Electron, Scanning , Nanofibers/chemistry , Receptors, CXCR4/genetics , Receptors, CXCR4/metabolism , Silk/chemistry , Tissue Scaffolds/chemistry
13.
J Allergy Clin Immunol ; 149(1): 156-167.e7, 2022 01.
Article En | MEDLINE | ID: mdl-34051221

BACKGROUND: Binding IgE to a cognate allergen causes aggregation of Fcε receptor I (FcεRI) in mast cells, resulting in activation of receptor-associated Src family tyrosine kinases, including Lyn and Syk. Protein tyrosine phosphatase, receptor type C (PTPRC), also known as CD45, has emerged as a positive regulator of FcεRI signaling by dephosphorylation of the inhibitory tyrosine of Lyn. OBJECTIVE: Sirtuin 6 (Sirt6), a NAD+-dependent deacetylase, exhibits an anti-inflammatory property. It remains to be determined, however, whether Sirt6 attenuates mast cell-associated diseases, including anaphylaxis. METHODS: FcεRI signaling and mast cell degranulation were measured after IgE cross-linking in murine bone marrow-derived mast cells (BMMCs) and human cord blood-derived mast cells. To investigate the function of Sirt6 in mast cell activation in vivo, we used mast cell-dependent animal models of passive systemic anaphylaxis (PSA) and passive cutaneous anaphylaxis (PCA). RESULTS: Sirt6-deficient BMMCs augmented IgE-FcεRI-mediated signaling and degranulation compared to wild-type BMMCs. Reconstitution of mast cell-deficient KitW-sh/W-sh mice with BMMCs received from Sirt6 knockout mice developed more severe PSA and PCA compared to mice engrafted with wild-type BMMCs. Similarly, genetic overexpression or pharmacologic activation of Sirt6 suppressed mast cell degranulation and blunted responses to PCA. Mechanistically, Sirt6 deficiency increased PTPRC transcription via acetylating histone H3, leading to enhanced aggregation of FcεRI in BMMCs. Finally, we recapitulated the Sirt6 regulation of PTPRC and FcεRI signaling in human mast cells. CONCLUSIONS: Sirt6 acts as a negative regulator of FcεRI signaling cascade in mast cells by suppressing PTPRC transcription. Activation of Sirt6 may therefore represent a promising and novel therapeutic strategy for anaphylaxis.


Anaphylaxis/immunology , Mast Cells/immunology , Receptors, IgE/immunology , Sirtuins/immunology , Animals , Bone Marrow Cells/cytology , Fetal Blood/cytology , Humans , Mice, Inbred C57BL , Mice, Knockout , Signal Transduction , Sirtuins/genetics
14.
Front Immunol ; 12: 732135, 2021.
Article En | MEDLINE | ID: mdl-34925314

Natural killer cells (NK cells) are the first line of the innate immune defense system, primarily located in peripheral circulation and lymphoid tissues. They kill virally infected and malignant cells through a balancing play of inhibitory and stimulatory receptors. In pre-clinical investigational studies, NK cells show promising anti-tumor effects and are used in adoptive transfer of activated and expanded cells, ex-vivo. NK cells express co-stimulatory molecules that are attractive targets for the immunotherapy of cancers. Recent clinical trials are investigating the use of CAR-NK for different cancers to determine the efficiency. Herein, we review NK cell therapy approaches (NK cell preparation from tissue sources, ways of expansion ex-vivo for "off-the-shelf" allogeneic cell-doses for therapies, and how different vector delivery systems are used to engineer NK cells with CARs) for cancer immunotherapy.


Allogeneic Cells/immunology , Cell- and Tissue-Based Therapy/methods , Immunotherapy, Adoptive/methods , Killer Cells, Natural/immunology , Neoplasms/therapy , Receptors, Chimeric Antigen/immunology , Cell Engineering/methods , Fetal Blood/cytology , Humans , Induced Pluripotent Stem Cells/metabolism , Neoplasms/immunology , Receptors, Chimeric Antigen/genetics , Treatment Outcome
15.
Bull Cancer ; 108(10S): S81-S91, 2021 Oct.
Article Fr | MEDLINE | ID: mdl-34920811

Immunotherapy with chimeric antigen receptor engineered-T cells (CAR-T) has revolutionized the landscape of treatment of relapsed or refractory B-cell. However, the use of autologous T cells has limitations: variable quality of collected effector T cells, duration of the process sometimes incompatible with uncontrolled hemopathy, limited number of available CAR cells, sometimes fatal toxicities, extremely high cost. Natural Killer (NK) cells are an interesting alternative to T cells. NK cells are very powerful cytotoxic effectors that have demonstrated an anti-tumor effect after haploidentical hematopoietic stem cells transplantation or in adoptive cell therapy against a number of solid or hematological tumors. Mainly, they can be used in allogeneic situations without causing major toxic side effects. The sources of NK cells are multiple: cell line, cord blood, peripheral blood, induced pluripotent stem cells. Recent advances in manufacturing engineered CAR-NK cells make it possible to promote antibody-dependent cell-mediated cytotoxicity (ADCC), as well as the activation and persistence of these cells, notably via the cytokine Il-15. The majority of the reports on CAR-NK cells concern pre-clinical or early clinical trials. However, the many advantages of "off-the-shelf" allogeneic CAR-NK cells provide great potential in cancer treatments.


Allogeneic Cells , Immunotherapy, Adoptive/methods , Killer Cells, Natural/transplantation , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/transplantation , Allogeneic Cells/cytology , Allogeneic Cells/immunology , Antibody-Dependent Cell Cytotoxicity , Blood Cells , Cell Engineering , Cell Line , Fetal Blood/cytology , Hematologic Neoplasms/immunology , Hematologic Neoplasms/therapy , Hematopoietic Stem Cell Transplantation , Humans , Induced Pluripotent Stem Cells/cytology , Killer Cells, Natural/cytology , Killer Cells, Natural/immunology , Lymphocyte Activation , Neoplasms/immunology , Neoplasms/therapy , T-Lymphocytes/cytology , T-Lymphocytes/immunology
16.
Int J Mol Sci ; 22(23)2021 Nov 23.
Article En | MEDLINE | ID: mdl-34884454

Cord blood T cells (CBTC) from a proportion of newborns express low/deficient levels of some protein kinase C (PKC) isozymes, with low levels of PKCζ correlating with increased risk of developing allergy and associated decrease in interferon-gamma (IFN-γ) producing T cells. Interestingly, these lower levels of PKCζ were increased/normalized by supplementing women during pregnancy with n-3 polyunsaturated fatty acids. However, at present, we have little understanding of the transient nature of the deficiency in the neonate and how PKCζ relates to other PKC isozymes and whether their levels influence maturation into IFN-γ producing T cells. There is also no information on PKCζ isozyme levels in the T cell subpopulations, CD4+ and CD8+ cells. These issues were addressed in the present study using a classical culture model of neonatal T cell maturation, initiated with phytohaemagglutinin (PHA) and recombinant human interleukin-2 (rhIL-2). Of the isozymes evaluated, PKCζ, ß2, δ, µ, ε, θ and λ/ι were low in CBTCs. The PKC isozyme deficiencies were also found in the CD4+ and CD8+ T cell subset levels of the PKC isozymes correlated between the two subpopulations. Examination of changes in the PKC isozymes in these deficient cells following addition of maturation signals showed a significant increase in expression within the first few hours for PKCζ, ß2 and µ, and 1-2 days for PKCδ, ε, θ and λ/ι. Only CBTC PKCζ isozyme levels correlated with cytokine production, with a positive correlation with IFN-γ, interleukin (IL)-2 and tumour necrosis factor-alpha (TNF), and a negative association with IL-9 and IL-10. The findings reinforce the specificity in using CBTC PKCζ levels as a biomarker for risk of allergy development and identify a period in which this can be potentially 'corrected' after birth.


CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Fetal Blood/cytology , Protein Kinase C/genetics , Female , Fetal Blood/immunology , Gestational Age , Humans , Infant, Newborn , Interferon-gamma/metabolism , Interleukin-10/metabolism , Interleukin-2/metabolism , Interleukin-9/metabolism , Male , Phytohemagglutinins/pharmacology , Pregnancy , Tumor Necrosis Factor-alpha/metabolism
17.
Front Immunol ; 12: 777927, 2021.
Article En | MEDLINE | ID: mdl-34790206

Background: Preterm infants are highly vulnerable to infectious disease. While many factors are likely to contribute to this enhanced susceptibility, the immature nature of the preterm immune system is postulated as one key factor. Methods: In our study, we used high-dimensional flow cytometry and cytokine assays to characterise the immune profiles in 25 preterm (range: 30.4-34.1 weeks gestational age) and 25 term infant (range: 37-40 weeks gestational age) cord blood samples. Results: We found that preterm infants exhibit reduced frequencies of monocytes, CD56bright NK cells, CD8+ T-cells, γδ T-cells and an increased frequency of intermediate monocytes, CD4+ T-cells, central memory CD4+ and CD8+ T-cells, Tregs and transitional B-cells compared to term infants. Pro-inflammatory cytokines IL-1ß, IL-6 and IL-17A were lower in preterm infants in addition to chemokines IL-8, eotaxin, MIP-1α and MIP-1ß. However, IL-15 and MCP-1 were higher in preterm infants. Conclusion: Overall, we identify key differences in pro-inflammatory immune profiles between preterm and term infants. These findings may help to explain why preterm infants are more susceptible to infectious disease during early life and facilitate the development of targeted interventions to protect this highly vulnerable group.


Cytokines/blood , Fetal Blood/immunology , Infant, Premature/immunology , Inflammation Mediators/blood , Inflammation/immunology , Lymphocytes/immunology , Monocytes/immunology , Term Birth/immunology , Adaptive Immunity , Biomarkers/blood , Cordocentesis , Female , Fetal Blood/cytology , Gestational Age , Humans , Immunity, Innate , Infant, Newborn , Infant, Premature/blood , Inflammation/blood , Inflammation/diagnosis , Intercellular Signaling Peptides and Proteins/blood , Male , Term Birth/blood
19.
Cells ; 10(11)2021 11 01.
Article En | MEDLINE | ID: mdl-34831196

Limb wounds are common in horses and often develop complications. Intravenous multipotent mesenchymal stromal cell (MSC) therapy is promising but has risks associated with intravenous administration and unknown potential to improve cutaneous wound healing. The objectives were to determine the clinical safety of administering large numbers of allogeneic cord blood-derived MSCs intravenously, and if therapy causes clinically adverse reactions, accelerates wound closure, improves histologic healing, and alters mRNA expression of common wound cytokines. Wounds were created on the metacarpus of 12 horses. Treatment horses were administered 1.51-2.46 × 108 cells suspended in 50% HypoThermosol FRS, and control horses were administered 50% HypoThermosol FRS alone. Epithelialization, contraction, and wound closure rates were determined using planimetric analysis. Wounds were biopsied and evaluated for histologic healing characteristics and cytokine mRNA expression. Days until wound closure was also determined. The results indicate that 3/6 of treatment horses and 1/6 of control horses experienced minor transient reactions. Treatment did not accelerate wound closure or improve histologic healing. Treatment decreased wound size and decreased all measured cytokines except transforming growth factor-ß3. MSC intravenous therapy has the potential to decrease limb wound size; however, further work is needed to understand the clinical relevance of adverse reactions.


Extremities/pathology , Fetal Blood/cytology , Immunomodulation , Mesenchymal Stem Cell Transplantation/veterinary , Mesenchymal Stem Cells/cytology , Wounds and Injuries/immunology , Wounds and Injuries/pathology , Administration, Intravenous , Animals , Cytokines/genetics , Cytokines/metabolism , Epithelium/pathology , Female , Gene Expression Regulation , Horses , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transplantation, Homologous , Wound Healing
20.
Cell Mol Life Sci ; 78(23): 7851-7872, 2021 Dec.
Article En | MEDLINE | ID: mdl-34719737

Although the development of hematopoietic stem cells (HSC) has been studied in great detail, their heterogeneity and relationships to different cell lineages remain incompletely understood. Moreover, the role of Vascular Adhesion Protein-1 in bone marrow hematopoiesis has remained unknown. Here we show that VAP-1, an adhesin and a primary amine oxidase producing hydrogen peroxide, is expressed on a subset of human HSC and bone marrow vasculature forming a hematogenic niche. Bulk and single-cell RNAseq analyses reveal that VAP-1+ HSC represent a transcriptionally unique small subset of differentiated and proliferating HSC, while VAP-1- HSC are the most primitive HSC. VAP-1 generated hydrogen peroxide acts via the p53 signaling pathway to regulate HSC proliferation. HSC expansion and differentiation into colony-forming units are enhanced by inhibition of VAP-1. Contribution of VAP-1 to HSC proliferation was confirmed with mice deficient of VAP-1, mice expressing mutated VAP-1 and using an enzyme inhibitor. In conclusion, VAP-1 expression allows the characterization and prospective isolation of a new subset of human HSC. Since VAP-1 serves as a check point-like inhibitor in HSC differentiation, the use of VAP-1 inhibitors enables the expansion of HSC.


Cell Differentiation , Cell Lineage , Cell Proliferation , Fetal Blood/cytology , Hematopoiesis , Hematopoietic Stem Cells/cytology , Vascular Cell Adhesion Molecule-1/physiology , Animals , Bone Marrow Transplantation , Cell Movement , Female , Hematopoietic Stem Cells/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, Knockout , RNA-Seq , Stem Cell Niche
...