Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 9.547
1.
J Biol Chem ; 299(7): 104900, 2023 07.
Article En | MEDLINE | ID: mdl-37301510

Nucleotide excision repair (NER) eliminates highly genotoxic solar UV-induced DNA photoproducts that otherwise stimulate malignant melanoma development. Here, a genome-wide loss-of-function screen, coupling CRISPR/Cas9 technology with a flow cytometry-based DNA repair assay, was used to identify novel genes required for efficient NER in primary human fibroblasts. Interestingly, the screen revealed multiple genes encoding proteins, with no previously known involvement in UV damage repair, that significantly modulate NER uniquely during S phase of the cell cycle. Among these, we further characterized Dyrk1A, a dual specificity kinase that phosphorylates the proto-oncoprotein cyclin D1 on threonine 286 (T286), thereby stimulating its timely cytoplasmic relocalization and proteasomal degradation, which is required for proper regulation of the G1-S phase transition and control of cellular proliferation. We demonstrate that in UV-irradiated HeLa cells, depletion of Dyrk1A leading to overexpression of cyclin D1 causes inhibition of NER uniquely during S phase and reduced cell survival. Consistently, expression/nuclear accumulation of nonphosphorylatable cyclin D1 (T286A) in melanoma cells strongly interferes with S phase NER and enhances cytotoxicity post-UV. Moreover, the negative impact of cyclin D1 (T286A) overexpression on repair is independent of cyclin-dependent kinase activity but requires cyclin D1-dependent upregulation of p21 expression. Our data indicate that inhibition of NER during S phase might represent a previously unappreciated noncanonical mechanism by which oncogenic cyclin D1 fosters melanomagenesis.


Cyclin D1 , Cyclin-Dependent Kinase Inhibitor p21 , DNA Repair , Protein Serine-Threonine Kinases , Protein-Tyrosine Kinases , Humans , Cyclin D1/genetics , Cyclin D1/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , DNA Damage/radiation effects , HeLa Cells , Protein-Tyrosine Kinases/metabolism , Protein Serine-Threonine Kinases/metabolism , Fibroblasts/enzymology , Fibroblasts/metabolism , Fibroblasts/pathology , Fibroblasts/radiation effects , S Phase , G1 Phase , Melanoma/genetics , Melanoma/pathology , Cells, Cultured , Ultraviolet Rays/adverse effects , Carcinogenesis/genetics , Carcinogenesis/pathology , Carcinogenesis/radiation effects , Dyrk Kinases
2.
J Biol Chem ; 299(6): 104792, 2023 06.
Article En | MEDLINE | ID: mdl-37150321

Necroptosis is a form of regulated cell death triggered by various host and pathogen-derived molecules during infection and inflammation. The essential step leading to necroptosis is phosphorylation of the mixed lineage kinase domain-like protein by receptor-interacting protein kinase 3. Caspase-8 cleaves receptor-interacting protein kinases to block necroptosis, so synthetic caspase inhibitors are required to study this process in experimental models. However, it is unclear how caspase-8 activity is regulated in a physiological setting. The active site cysteine of caspases is sensitive to oxidative inactivation, so we hypothesized that oxidants generated at sites of inflammation can inhibit caspase-8 and promote necroptosis. Here, we discovered that hypothiocyanous acid (HOSCN), an oxidant generated in vivo by heme peroxidases including myeloperoxidase and lactoperoxidase, is a potent caspase-8 inhibitor. We found HOSCN was able to promote necroptosis in mouse fibroblasts treated with tumor necrosis factor. We also demonstrate purified caspase-8 was inactivated by low concentrations of HOSCN, with the predominant product being a disulfide-linked dimer between Cys360 and Cys409 of the large and small catalytic subunits. We show oxidation still occurred in the presence of reducing agents, and reduction of the dimer was slow, consistent with HOSCN being a powerful physiological caspase inhibitor. While the initial oxidation product is a dimer, further modification also occurred in cells treated with HOSCN, leading to higher molecular weight caspase-8 species. Taken together, these findings indicate major disruption of caspase-8 function and suggest a novel mechanism for the promotion of necroptosis at sites of inflammation.


Caspase 8 , Necroptosis , Oxidants , Tumor Necrosis Factors , Animals , Mice , Caspase 8/chemistry , Caspase 8/metabolism , Inflammation/metabolism , Necroptosis/drug effects , Oxidants/metabolism , Oxidants/pharmacology , Oxidation-Reduction/drug effects , Tumor Necrosis Factors/metabolism , Fibroblasts/drug effects , Fibroblasts/enzymology , Fibroblasts/metabolism , Peroxidase , Lactoperoxidase , Catalytic Domain
3.
Biochem Pharmacol ; 197: 114950, 2022 03.
Article En | MEDLINE | ID: mdl-35143754

We previously reported that 2,5-dimethylcelecoxib (DM-C), a derivative of celecoxib, lacks cyclooxygenase-2 inhibitory effects and suppresses cardiac remodeling by activating glycogen synthase kinase-3 (GSK-3). However, it remains unclear whether DM-C attenuates fibroblast-to-myofibroblast transformation (FMT), which plays a key role in cardiac fibrosis. Therefore, we evaluated the effect of DM-C on FMT using a cryoinjury-induced myocardial infarction (CMI) mouse model. We found that DM-C attenuated the deterioration of left ventricular ejection fraction after CMI by decreasing cardiac fibrosis. Analysis of the expression level of α-smooth muscle actin (α-SMA), a marker for myofibroblasts, indicated that DM-C decreased FMT at the cardiac injury site. To investigate the mechanism by which DM-C attenuated FMT, fibroblasts obtained from the heart were stimulated with TGF-ß to induce FMT, and the effect of DM-C was analyzed. DM-C suppressed the expression of α-SMA and the phosphorylation levels of Smad 2/3 and GSK-3, indicating that DM-C suppressed α-SMA expression by inhibiting the transforming growth factor (TGF)-ß signaling pathway via activation of GSK-3. DM-C decreased the expression of collagen, connective tissue growth factor (CTGF) and Snail, which are also known to accelerate cardiac fibrosis. These results suggested that DM-C attenuated cardiac fibrosis by suppressing FMT at the injured site after CMI by inhibiting the TGF-ß signaling pathway via activation of GSK-3. Thus, DM-C has potential against cardiac disease as a novel anti-fibrotic agent.


Fibroblasts/drug effects , Freezing/adverse effects , Myocardial Infarction/drug therapy , Myofibroblasts/drug effects , Pyrazoles/therapeutic use , Signal Transduction/drug effects , Sulfonamides/therapeutic use , Animals , Cells, Cultured , Fibroblasts/enzymology , Fibroblasts/pathology , Fibrosis , Glycogen Synthase Kinase 3/metabolism , Male , Mice , Mice, Inbred C57BL , Myocardial Infarction/enzymology , Myocardial Infarction/etiology , Myocardial Infarction/pathology , Myofibroblasts/enzymology , Myofibroblasts/pathology , Nitrogen/toxicity , Pyrazoles/pharmacology , Rats , Rats, Inbred Lew , Signal Transduction/physiology , Sulfonamides/pharmacology
4.
Sci Rep ; 12(1): 1944, 2022 02 04.
Article En | MEDLINE | ID: mdl-35121765

CD26, also known as dipeptidyl peptidase IV (DPPIV), is a multifunctional transmembrane protein playing a significant role in the cutaneous wound healing processes in the mouse skin. However, only scarce data are available regarding the distribution and function of this protein in the human skin. Therefore, the aim of this study was to investigate the impact of CD26 deficiency in human primary fibroblasts on the regeneration of human tissue-engineered skin substitutes in vivo. Dermo-epidermal skin analogs, based on collagen type I hydrogels, were populated either with human CD26+ or CD26knockout fibroblasts and seeded with human epidermal keratinocytes. These skin substitutes were transplanted onto the back of immune-incompetent rodents. Three weeks post-transplantation, the grafts were excised and analyzed with respect to specific epidermal and dermal maturation markers. For the first time, we show here that the expression of CD26 protein in human dermis is age-dependent. Furthermore, we prove that CD26+ fibroblasts are more active in the production of extracellular matrix (ECM) both in vitro and in vivo and are necessary to achieve rapid epidermal and dermal homeostasis after transplantation.


Cell Communication , Cell Proliferation , Dipeptidyl Peptidase 4/metabolism , Fibroblasts/transplantation , Keratinocytes/transplantation , Regeneration , Skin Transplantation , Skin, Artificial , Adolescent , Animals , Cells, Cultured , Child , Child, Preschool , Coculture Techniques , Dipeptidyl Peptidase 4/deficiency , Dipeptidyl Peptidase 4/genetics , Extracellular Matrix/metabolism , Female , Fibroblasts/enzymology , Heterografts , Humans , Infant , Keratinocytes/metabolism , Male , Rats, Nude , Signal Transduction , Time Factors
5.
Biochem Biophys Res Commun ; 593: 46-51, 2022 02 19.
Article En | MEDLINE | ID: mdl-35051782

Cytotoxicity of amyloid fibrils has been shown to depend on their structure. However, specific features of toxic and non-toxic amyloids remain unclear. Here we focus on the relationship between structural characteristics of the fibrils and their cytotoxicity. Bovine carbonic anhydrase B (BCAB) serves as the object of this study because its amyloids reduce cell viability. Limited proteolysis and mass spectrometry were used to determine BCAB regions forming the core of amyloid fibrils. Four BCAB mutants with substitutions reducing hydrophobicity in the regions important for amyloid formation were obtained to study the kinetics of aggregation, structural features, and cytotoxicity of the amyloids. We demonstrate that fibrils of WT BCAB, L78A, L139A, and M239A variants display a pronounced toxic effect on eukaryotic cells, while I208A mutation significantly reduces the cell-damaging effect of amyloids. The data obtained conclude that cytotoxicity of BCAB fibrils does not depend on their length, secondary structure, and exposure of hydrophobic groups to the solvent. A distinctive feature of the low-toxic I208A fibrils is their specific morphology characterized by the lateral protofilaments association and formation of fibril-ribbons.


Amyloid/toxicity , Carbonic Anhydrases/metabolism , Fibroblasts/pathology , Mutation , Proteolysis , Amino Acid Substitution , Animals , Carbonic Anhydrases/chemistry , Carbonic Anhydrases/genetics , Cattle , Fibroblasts/enzymology , Mice , Toxicity Tests
6.
Biochem Biophys Res Commun ; 587: 146-152, 2022 01 08.
Article En | MEDLINE | ID: mdl-34875533

Lysyl hydroxylase 2 (LH2) regulates intermolecular cross-linking of collagen molecules. Accumulation of LH2-modified collagen, which is highly stable and resistant to collagenase cleavage, is one cause of fibrosis. We previously demonstrated that conventional LH2 knockout mice showed embryonic lethality. Here we established LH2 conditional knockout mice using a tamoxifen-inducible Cre system. Morphological analysis of LH2-deficient fibroblasts by microscopy showed a dramatic increase in the number of filopodia, the finger-like cell surface projections that enable cell movement. The tips and leading edges of these filopodia exhibited up-regulated expression of Myosin-X (Myo10), a regulator of filopodial integrity. Wound healing assays demonstrated that migration of LH2-deficient cells was significantly faster than that of control cells. Gene expression profiling data also supported this phenotype. Together these findings indicate that LH2 deficiency may prevent fibrosis through decreased accumulation of LH2-cross-linked collagen, and that fibroblasts with faster migration contribute to enhanced wound healing activity. In conclusion, our cellular models provide evidence that LH2 deficiency plays a critical role in cell migration mediated through filopodia formation. Understanding the precise role of this phenotype in LH2-deficient cells may be helpful to define the pathogenesis of fibrosis. As such, detailed analyses of fibrosis and wound healing using LH2-deficient mouse models are needed.


Fibroblasts/enzymology , Myosins/genetics , Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase/genetics , Pseudopodia/enzymology , Animals , Cell Movement , Collagen/genetics , Collagen/metabolism , Fibroblasts/cytology , Fibrosis , Gene Expression Regulation , Integrases/genetics , Integrases/metabolism , Mice , Mice, Knockout , Models, Biological , Myosins/metabolism , Phenotype , Primary Cell Culture , Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase/deficiency , Pseudopodia/ultrastructure , Wound Healing/genetics
7.
DNA Repair (Amst) ; 109: 103247, 2022 01.
Article En | MEDLINE | ID: mdl-34826736

Oxidative DNA damage as a result of normal cellular metabolism, inflammation, or exposure to exogenous DNA damaging agents if left unrepaired, can result in genomic instability, a precursor to cancer and other diseases. Nth-like DNA glycosylase 1 (NTHL1) is an evolutionarily conserved bifunctional DNA glycosylase that primarily removes oxidized pyrimidine lesions. NTHL1 D239Y is a germline variant identified in both heterozygous and homozygous state in the human population. Here, we have generated a knockin mouse model carrying Nthl1 D227Y (mouse homologue of D239Y) using CRISPR-cas9 genome editing technology and investigated the cellular effects of the variant in the heterozygous (Y/+) and homozygous (Y/Y) state using murine embryonic fibroblasts. We identified a significant increase in double stranded breaks, genomic instability, replication stress and impaired proliferation in both the Nthl1 D227Y heterozygous Y/+ and homozygous mutant Y/Y MEFs. Importantly, we identified that the presence of the D227Y variant interferes with repair by the WT protein, possibly by binding and shielding the lesions. The cellular phenotypes observed in D227Y mutant MEFs suggest that both the heterozygous and homozygous carriers of this NTHL1 germline mutation may be at increased risk for the development of DNA damage-associated diseases, including cancer.


DNA Repair , Deoxyribonuclease (Pyrimidine Dimer)/metabolism , Fibroblasts/enzymology , Genomic Instability , Mutation, Missense , Animals , DNA/drug effects , DNA/metabolism , DNA Damage , Deoxyribonuclease (Pyrimidine Dimer)/genetics , Fibroblasts/metabolism , Gene Knock-In Techniques , Mice , Mice, Mutant Strains , Mutagens/toxicity , Oxidative Stress , Vitamin K 3/toxicity
8.
Mol Cell ; 81(24): 4994-5006.e5, 2021 12 16.
Article En | MEDLINE | ID: mdl-34919819

PARP1 is a key player in the response to DNA damage and is the target of clinical inhibitors for the treatment of cancers. Binding of PARP1 to damaged DNA leads to activation wherein PARP1 uses NAD+ to add chains of poly(ADP-ribose) onto itself and other nuclear proteins. PARP1 also binds abundantly to intact DNA and chromatin, where it remains enzymatically inactive. We show that intact DNA makes contacts with the PARP1 BRCT domain, which was not previously recognized as a DNA-binding domain. This binding mode does not result in the concomitant reorganization and activation of the catalytic domain. We visualize the BRCT domain bound to nucleosomal DNA by cryogenic electron microscopy and identify a key motif conserved from ancestral BRCT domains for binding phosphates on DNA and phospho-peptides. Finally, we demonstrate that the DNA-binding properties of the BRCT domain contribute to the "monkey-bar mechanism" that mediates DNA transfer of PARP1.


DNA Damage , DNA/metabolism , Nucleosomes/metabolism , Poly (ADP-Ribose) Polymerase-1/metabolism , Animals , Cells, Cultured , DNA/genetics , DNA/ultrastructure , Fibroblasts/enzymology , Humans , Mice , Models, Molecular , Mutation , Nucleic Acid Conformation , Nucleosomes/genetics , Nucleosomes/ultrastructure , Poly (ADP-Ribose) Polymerase-1/genetics , Poly (ADP-Ribose) Polymerase-1/ultrastructure , Protein Binding , Protein Interaction Domains and Motifs
9.
Int J Mol Sci ; 22(23)2021 Nov 26.
Article En | MEDLINE | ID: mdl-34884593

Subepithelial fibrosis is a component of the remodeling observed in the bronchial wall of patients diagnosed with asthma. In this process, human bronchial fibroblasts (HBFs) drive the fibroblast-to-myofibroblast transition (FMT) in response to transforming growth factor-ß1 (TGF-ß1), which activates the canonical Smad-dependent signaling. However, the pleiotropic properties of TGF-ß1 also promote the activation of non-canonical signaling pathways which can affect the FMT. In this study we investigated the effect of p38 mitogen-activated protein kinase (MAPK) inhibition by SB203580 on the FMT potential of HBFs derived from asthmatic patients using immunocytofluorescence, real-time PCR and Western blotting methods. Our results demonstrate for the first time the strong effect of p38 MAPK inhibition on the TGF-ß1-induced FMT potential throughout the strong attenuation of myofibroblast-related markers: α-smooth muscle actin (α-SMA), collagen I, fibronectin and connexin 43 in HBFs. We suggest the pleiotropic mechanism of SB203580 on FMT impairment in HBF populations by the diminishing of TGF-ß/Smad signaling activation and disturbances in the actin cytoskeleton architecture along with the maturation of focal adhesion sites. These observations justify future research on the role of p38 kinase in FMT efficiency and bronchial wall remodeling in asthma.


Asthma/drug therapy , Bronchi/drug effects , Cell Differentiation , Enzyme Inhibitors/pharmacology , Fibroblasts/drug effects , Imidazoles/pharmacology , Pyridines/pharmacology , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , Adult , Asthma/enzymology , Asthma/pathology , Bronchi/enzymology , Cells, Cultured , Female , Fibroblasts/enzymology , Humans , Male , Middle Aged , Signal Transduction
10.
Front Immunol ; 12: 748519, 2021.
Article En | MEDLINE | ID: mdl-34777360

Inherited defects that abrogate the function of the adenosine deaminase (ADA) enzyme and consequently lead to the accumulation of toxic purine metabolites cause profound lymphopenia and severe combined immune deficiency. Additionally, neutropenia and impaired neutrophil function have been reported among ADA-deficient patients. However, due to the rarity of the disorder, the neutrophil developmental abnormalities and the mechanisms contributing to them have not been characterized. Induced pluripotent stem cells (iPSC) generated from two unrelated ADA-deficient patients and from healthy controls were differentiated through embryoid bodies into neutrophils. ADA deficiency led to a significant reduction in the number of all early multipotent hematopoietic progenitors. At later stages of differentiation, ADA deficiency impeded the formation of granulocyte colonies in methylcellulose cultures, leading to a significant decrease in the number of neutrophils generated from ADA-deficient iPSCs. The viability and apoptosis of ADA-deficient neutrophils isolated from methylcellulose cultures were unaffected, suggesting that the abnormal purine homeostasis in this condition interferes with differentiation or proliferation. Additionally, there was a significant increase in the percentage of hyperlobular ADA-deficient neutrophils, and these neutrophils demonstrated significantly reduced ability to phagocytize fluorescent microspheres. Supplementing iPSCs and methylcellulose cultures with exogenous ADA, which can correct adenosine metabolism, reversed all abnormalities, cementing the critical role of ADA in neutrophil development. Moreover, chemical inhibition of the ribonucleotide reductase (RNR) enzyme, using hydroxyurea or a combination of nicotinamide and trichostatin A in iPSCs from healthy controls, led to abnormal neutrophil differentiation similar to that observed in ADA deficiency, implicating RNR inhibition as a potential mechanism for the neutrophil abnormalities. In conclusion, the findings presented here demonstrate the important role of ADA in the development and function of neutrophils while clarifying the mechanisms responsible for the neutrophil abnormalities in ADA-deficient patients.


Adenosine Deaminase/physiology , Agammaglobulinemia/immunology , Induced Pluripotent Stem Cells/cytology , Neutrophils/cytology , Severe Combined Immunodeficiency/immunology , Adenosine Deaminase/genetics , Cells, Cultured , Embryoid Bodies/cytology , Fibroblasts/enzymology , Granulocytes/cytology , Humans , Hydroxamic Acids/pharmacology , Hydroxyurea/pharmacology , Infant , Male , Mutation, Missense , Myelopoiesis , Niacinamide/pharmacology , Point Mutation , Ribonucleotide Reductases/antagonists & inhibitors
11.
Int J Mol Sci ; 22(20)2021 Oct 18.
Article En | MEDLINE | ID: mdl-34681894

Regarding that the chronic use of commonly available non-steroidal and anti-inflammatory drugs (NSAIDs) is often restricted by their adverse effects, there is still a current need to search for and develop new, safe and effective anti-inflammatory agents. As a continuation of our previous work, we designed and synthesized a series of 18 novel N-substituted-1,2,4-triazole-based derivatives of pyrrolo[3,4-d]pyridazinone 4a-c-9a-c. The target compounds were afforded via a convenient way of synthesis, with good yields. The executed cell viability assay revealed that molecules 4a-7a, 9a, 4b-7b, 4c-7c do not exert a cytotoxic effect and were qualified for further investigations. According to the performed in vitro test, compounds 4a-7a, 9a, 4b, 7b, 4c show significant cyclooxygenase-2 (COX-2) inhibitory activity and a promising COX-2/COX-1 selectivity ratio. These findings are supported by a molecular docking study which demonstrates that new derivatives take position in the active site of COX-2 very similar to Meloxicam. Moreover, in the carried out in vitro evaluation within cells, the title molecules increase the viability of cells pre-incubated with the pro-inflammatory lipopolysaccharide and reduce the level of reactive oxygen and nitrogen species (RONS) in induced oxidative stress. The spectroscopic and molecular modeling study discloses that new compounds bind favorably to site II(m) of bovine serum albumin. Finally, we have also performed some in silico pharmacokinetic and drug-likeness predictions. Taking all of the results into consideration, the molecules belonging to series a (4a-7a, 9a) show the most promising biological profile.


Anti-Inflammatory Agents/pharmacology , Cyclooxygenase Inhibitors/pharmacology , Dermis/drug effects , Fibroblasts/drug effects , Pyridazines/chemistry , Pyrroles/chemistry , Triazoles/chemistry , Anti-Inflammatory Agents/chemistry , Cell Survival , Cyclooxygenase 1/chemistry , Cyclooxygenase 2/chemistry , Cyclooxygenase Inhibitors/chemistry , Dermis/cytology , Dermis/enzymology , Drug Design , Fibroblasts/cytology , Fibroblasts/enzymology , Humans , In Vitro Techniques , Models, Molecular , Molecular Structure , Structure-Activity Relationship
12.
J Am Heart Assoc ; 10(16): e020554, 2021 08 17.
Article En | MEDLINE | ID: mdl-34350769

Background Adventitial remodeling is a pathological hallmark of hypertension that results in target organ damage. Activated adventitial fibroblasts have emerged as critical regulators in this process, but the precise mechanism remains unclear. Methods and Results Interleukin 11 (IL-11) knockout and wild-type mice were subjected to angiotensin II (Ang II) infusion to establish models of hypertension-associated vascular remodeling. IL-11 mRNA and protein were increased especially in the adventitia in response to Ang II. Compared with wild-type mice, Ang II-treated IL-11 knockout mice showed amelioration of vascular hypertrophy, adventitial fibrosis, macrophage infiltration, and inflammatory factor expression. Recombination mouse IL-11 exacerbated adventitial fibrosis in Ang II-infused wild-type mice. Interestingly, IL-11 neutralizing antibody attenuated adventitial fibrosis, macrophage infiltration, and inflammatory factor expression after Ang II infusion for 7 days. Mechanistically, in primary cultured adventitial fibroblasts, Krüppel-like factor 15 negatively regulated Ang II-induced IL-11 expression. Ang II increased extracellular signal-regulated kinases 1 and 2 activation, especially in adventitia, and caused biphasic extracellular signal-regulated kinases 1 and 2 activation in adventitial fibroblasts. A rapid and early activation increased IL-11 production through decreasing Krüppel-like factor 15 expression, which, in turn, induced the second extracellular signal-regulated kinases 1 and 2 activation, resulting in posttranscriptional profibrotic gene expression. Conclusions These results demonstrate that extracellular signal-regulated kinases 1 and 2 activation is important for Krüppel-like factor 15-mediated IL-11 expression in adventitial fibroblasts to promote adventitial remodeling in Ang II-induced hypertension. Therefore, targeting the Krüppel-like factor 15/IL-11 axis might serve as a new therapeutic strategy for vascular diseases.


Adventitia/enzymology , Aorta, Thoracic/enzymology , Fibroblasts/enzymology , Hypertension/enzymology , Interleukin-11/metabolism , Kruppel-Like Transcription Factors/metabolism , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Vascular Remodeling , Adventitia/pathology , Angiotensin II , Animals , Aorta, Thoracic/pathology , Disease Models, Animal , Fibroblasts/pathology , Fibrosis , HEK293 Cells , Humans , Hypertension/chemically induced , Hypertension/genetics , Hypertension/pathology , Inflammation Mediators/metabolism , Interleukin-11/genetics , Kruppel-Like Transcription Factors/genetics , Macrophages/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , Rats, Sprague-Dawley , Signal Transduction
13.
J Biol Chem ; 297(3): 101037, 2021 09.
Article En | MEDLINE | ID: mdl-34343565

Besides contributing to anabolism, cellular metabolites serve as substrates or cofactors for enzymes and may also have signaling functions. Given these roles, multiple control mechanisms likely ensure fidelity of metabolite-generating enzymes. Acetate-dependent acetyl CoA synthetases (ACS) are de novo sources of acetyl CoA, a building block for fatty acids and a substrate for acetyltransferases. Eukaryotic acetate-dependent acetyl CoA synthetase 2 (Acss2) is predominantly cytosolic, but is also found in the nucleus following oxygen or glucose deprivation, or upon acetate exposure. Acss2-generated acetyl CoA is used in acetylation of Hypoxia-Inducible Factor 2 (HIF-2), a stress-responsive transcription factor. Mutation of a putative nuclear localization signal in endogenous Acss2 abrogates HIF-2 acetylation and signaling, but surprisingly also results in reduced Acss2 protein levels due to unmasking of two protein destabilization elements (PDE) in the Acss2 hinge region. In the current study, we identify up to four additional PDE in the Acss2 hinge region and determine that a previously identified PDE, the ABC domain, consists of two functional PDE. We show that the ABC domain and other PDE are likely masked by intramolecular interactions with other domains in the Acss2 hinge region. We also characterize mice with a prematurely truncated Acss2 that exposes a putative ABC domain PDE, which exhibits reduced Acss2 protein stability and impaired HIF-2 signaling. Finally, using primary mouse embryonic fibroblasts, we demonstrate that the reduced stability of select Acss2 mutant proteins is due to a shortened half-life, which is a result of enhanced degradation via a nonproteasome, nonautophagy pathway.


Acetate-CoA Ligase/chemistry , Acetate-CoA Ligase/metabolism , Acetates/metabolism , Acetate-CoA Ligase/genetics , Amino Acid Sequence , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Fibroblasts/chemistry , Fibroblasts/enzymology , Humans , Mice , Protein Binding , Protein Domains , Protein Stability , Sequence Alignment
14.
Cardiovasc Toxicol ; 21(12): 984-999, 2021 12.
Article En | MEDLINE | ID: mdl-34424481

Novel insights into epigenetic control of cardiac fibrosis are now emerging. Cardiac fibroblasts (CFs) activation into myofibroblasts and the production of extracellular matrix (ECM) is the key to cardiac fibrosis development, but the specific mechanism is not fully understood. In the present study, we found that DNMT1 hypermethylation reduces the expression of microRNA-152-3p (miR-152-3p) and promotes Wnt1/ß-catenin signaling pathway leading to CFs proliferation and activation. Cardiac fibrosis was produced by ISO, and the ISO was carried out according to the method described. CFs were harvested and cultured from SD neonatal rats and stimulated with TGF-ß1. Importantly, DNMT1 resulted in the inhibition of miR-152-3p in activated CFs and both DNMT1 and miR-152-3p altered Wnt/ß-catenin downstream protein levels. Over expression of DNMT1 and miR-152-3p inhibitors promotes proliferation of activating CFs. In addition, decreased methylation levels and over expression of miR-152-3p inhibited CFs proliferation. We determined that DNMT1 can methylate to miR-152-3p and demonstrated that expression of miR-152-3p inhibits CFs proliferation by inhibiting the Wnt1/ß-catenin pathway. Our results stand out together DNMT1 methylation regulates miR-152-3p to slow the progression of cardiac fibrosis by inhibiting the Wnt1/ß-catenin pathway.


Cardiomyopathies/enzymology , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , Fibroblasts/enzymology , MicroRNAs/metabolism , Myocardium/enzymology , Animals , Cardiomyopathies/genetics , Cardiomyopathies/pathology , Cell Proliferation , Cells, Cultured , DNA (Cytosine-5-)-Methyltransferase 1/genetics , DNA Methylation , Disease Models, Animal , Down-Regulation , Epigenesis, Genetic , Fibroblasts/pathology , Fibrosis , Male , MicroRNAs/genetics , Myocardium/pathology , Phenotype , Rats, Sprague-Dawley , Wnt Signaling Pathway
15.
Int J Mol Sci ; 22(11)2021 Jun 03.
Article En | MEDLINE | ID: mdl-34204949

Idiopathic pulmonary fibrosis (IPF) is one of the most symptomatic progressive fibrotic lung diseases, in which patients have an extremely poor prognosis. Therefore, understanding the precise molecular mechanisms underlying pulmonary fibrosis is necessary for the development of new therapeutic options. Stress-activated protein kinases (SAPKs), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38) are ubiquitously expressed in various types of cells and activated in response to cellular environmental stresses, including inflammatory and apoptotic stimuli. Type II alveolar epithelial cells, fibroblasts, and macrophages are known to participate in the progression of pulmonary fibrosis. SAPKs can control fibrogenesis by regulating the cellular processes and molecular functions in various types of lung cells (including cells of the epithelium, interstitial connective tissue, blood vessels, and hematopoietic and lymphoid tissue), all aspects of which remain to be elucidated. We recently reported that the stepwise elevation of intrinsic p38 signaling in the lungs is correlated with a worsening severity of bleomycin-induced fibrosis, indicating an importance of this pathway in the progression of pulmonary fibrosis. In addition, a transcriptome analysis of RNA-sequencing data from this unique model demonstrated that several lines of mechanisms are involved in the pathogenesis of pulmonary fibrosis, which provides a basis for further studies. Here, we review the accumulating evidence for the spatial and temporal roles of SAPKs in pulmonary fibrosis.


Idiopathic Pulmonary Fibrosis/genetics , JNK Mitogen-Activated Protein Kinases/genetics , MAP Kinase Kinase 4/genetics , p38 Mitogen-Activated Protein Kinases/genetics , Blood Vessels/enzymology , Blood Vessels/growth & development , Fibroblasts/enzymology , Humans , Idiopathic Pulmonary Fibrosis/enzymology , Idiopathic Pulmonary Fibrosis/pathology , Lung/embryology , Lung/pathology , MAP Kinase Signaling System/genetics , Macrophages/enzymology
16.
Cell Death Dis ; 12(7): 699, 2021 07 14.
Article En | MEDLINE | ID: mdl-34262020

Butylate hydroxyanisole (BHA) is a synthetic phenol that is widely utilized as a preservative by the food and cosmetic industries. The antioxidant properties of BHA are also frequently used by scientists to claim the implication of reactive oxygen species (ROS) in various cellular processes, including cell death. We report on the surprising finding that BHA functions as a direct inhibitor of RIPK1, a major signaling hub downstream of several immune receptors. Our in silico analysis predicts binding of 3-BHA, but not 2-BHA, to RIPK1 in an inactive DLG-out/Glu-out conformation, similar to the binding of the type III inhibitor Nec-1s to RIPK1. This predicted superior inhibitory capacity of 3-BHA over 2-BHA was confirmed in cells and using in vitro kinase assays. We demonstrate that the reported protective effect of BHA against tumor necrosis factor (TNF)-induced necroptotic death does not originate from ROS scavenging but instead from direct RIPK1 enzymatic inhibition, a finding that most probably extends to other reported effects of BHA. Accordingly, we show that BHA not only protects cells against RIPK1-mediated necroptosis but also against RIPK1 kinase-dependent apoptosis. We found that BHA treatment completely inhibits basal and induced RIPK1 enzymatic activity in cells, monitored at the level of TNFR1 complex I under apoptotic conditions or in the cytosol under necroptosis. Finally, we show that oral administration of BHA protects mice from RIPK1 kinase-dependent lethality caused by TNF injection, a model of systemic inflammatory response syndrome. In conclusion, our results demonstrate that BHA can no longer be used as a strict antioxidant and that new functions of RIPK1 may emerge from previously reported effects of BHA.


Apoptosis/drug effects , Butylated Hydroxyanisole/pharmacology , Fibroblasts/drug effects , Food Additives/pharmacology , Necroptosis/drug effects , Protein Kinase Inhibitors/pharmacology , Receptor-Interacting Protein Serine-Threonine Kinases/antagonists & inhibitors , Systemic Inflammatory Response Syndrome/prevention & control , Animals , Antioxidants/pharmacology , Disease Models, Animal , Female , Fibroblasts/enzymology , Fibroblasts/pathology , HT29 Cells , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Molecular Docking Simulation , Protein Binding , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Systemic Inflammatory Response Syndrome/chemically induced , Systemic Inflammatory Response Syndrome/enzymology , Systemic Inflammatory Response Syndrome/pathology , Tumor Necrosis Factor-alpha
17.
Nat Commun ; 12(1): 4359, 2021 07 16.
Article En | MEDLINE | ID: mdl-34272378

Histone H3 lysine 9 (H3K9) methylation is a central epigenetic modification that defines heterochromatin from unicellular to multicellular organisms. In mammalian cells, H3K9 methylation can be catalyzed by at least six distinct SET domain enzymes: Suv39h1/Suv39h2, Eset1/Eset2 and G9a/Glp. We used mouse embryonic fibroblasts (MEFs) with a conditional mutation for Eset1 and introduced progressive deletions for the other SET domain genes by CRISPR/Cas9 technology. Compound mutant MEFs for all six SET domain lysine methyltransferase (KMT) genes lack all H3K9 methylation states, derepress nearly all families of repeat elements and display genomic instabilities. Strikingly, the 6KO H3K9 KMT MEF cells no longer maintain heterochromatin organization and have lost electron-dense heterochromatin. This is a compelling analysis of H3K9 methylation-deficient mammalian chromatin and reveals a definitive function for H3K9 methylation in protecting heterochromatin organization and genome integrity.


Fibroblasts/metabolism , Heterochromatin/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Histones/metabolism , Lysine/metabolism , Animals , CRISPR-Cas Systems , Chromatin Immunoprecipitation Sequencing , Chromatography, Liquid , Demethylation , Epigenesis, Genetic , Fibroblasts/enzymology , Gene Deletion , Heterochromatin/enzymology , Heterochromatin/genetics , Heterochromatin/ultrastructure , Histone-Lysine N-Methyltransferase/genetics , In Situ Hybridization, Fluorescence , Mass Spectrometry , Methylation , Mice , Microscopy, Electron, Transmission , Mutation , Protein Processing, Post-Translational/genetics , RNA-Seq , Repetitive Sequences, Nucleic Acid/genetics , Retroelements/genetics , Signal Transduction/genetics
18.
Front Immunol ; 12: 672461, 2021.
Article En | MEDLINE | ID: mdl-34248953

Objectives: Psoriatic arthritis (PsA) is a chronic inflammatory disease associated with psoriasis. Janus Kinase inhibitors (JAKi) have emerged as an encouraging class of drugs for the treatment of PsA. Here, we compare the effect of four JAKi on primary PsA synovial fibroblasts (PsAFLS) activation, metabolic function, and invasive and migratory capacity. Methods: Primary PsAFLS were isolated and cultured with JAKi (Peficitinib, Filgotinib, Baricitinib and Upadacitinib) in the presence of Oncostatin M (OSM). pSTAT3 expression in response to OSM was quantified by Western Blot analysis. Pro-inflammatory cytokines/chemokines were quantified by ELISA and cell migration by wound-repair scratch assays. Invasive capacity was examined using Matrigel™ invasion chambers and MMP multiplex MSD assays. PsAFLS bioenergetics was assessed using the Seahorse XFe Extracellular Flux Analyzer, which simultaneously quantifies two energetic pathways- glycolysis (ECAR) and oxidative phosphorylation (OCR). In parallel, inflammatory, invasive, and migratory genes were quantified by RT-PCR. Results: OSM induces pSTAT3 expression in PsAFLS. OSM-induced secretion of MCP-1 and IL-6 was inhibited by all JAKi with Peficitinib, Baricitinib and Upadacitinib showing the greatest effect. In contrast, JAKi had no significant impact on IL-8 expression in response to OSM. PsAFLS cell invasion, migratory capacity and MMP1, 3, and 9 were suppressed following JAKi treatment, with Peficitinib showing the greatest effect. These functional effects were accompanied by a change in the cellular bioenergetic profile of PsAFLS, where JAKi significantly decreased glycolysis and the ECAR/OCR, resulting in a shift to a more quiescent phenotype, with Peficitinib demonstrating the most pronounced effect. Conclusion: This study demonstrates that JAK/STAT signalling mediates the complex interplay between inflammation and cellular metabolism in PsA pathogenesis. This inhibition shows effective suppression of inflammatory mechanisms that drive pathogenic functions of PsAFLS, further supporting the role of JAKi as a therapeutic target for the treatment of PsA.


Arthritis, Psoriatic , Fibroblasts/drug effects , Janus Kinase Inhibitors/pharmacology , Janus Kinases/antagonists & inhibitors , STAT Transcription Factors/antagonists & inhibitors , Adamantane/analogs & derivatives , Adamantane/pharmacology , Adult , Aged , Arthritis, Psoriatic/immunology , Arthritis, Psoriatic/metabolism , Azetidines/pharmacology , Cells, Cultured , Female , Fibroblasts/enzymology , Heterocyclic Compounds, 3-Ring/pharmacology , Humans , Inflammation/immunology , Inflammation/metabolism , Male , Middle Aged , Niacinamide/analogs & derivatives , Niacinamide/pharmacology , Purines/pharmacology , Pyrazoles/pharmacology , Pyridines/pharmacology , Signal Transduction/drug effects , Sulfonamides/pharmacology , Synovial Membrane/drug effects , Triazoles/pharmacology
19.
Inflammation ; 44(6): 2302-2308, 2021 Dec.
Article En | MEDLINE | ID: mdl-34160728

Our previous studies have identified miR-483-3p to be highly expressed in synoviocytes from patients with rheumatoid arhtirits (RA); however, its effects on inflammation of RA fibroblast-like synoviocytes (FLSs) have remained unclear. The expression of miR-483-3p and cytokines in RA FLSs was detected using quantitative real-time polymerase chain reaction. Enzyme-linked immunosorbent was conducted to determine interleukin (IL)-33 production from RA FLSs. Western blotting was employed to quantify the levels of p-ERK and total ERK. Overexpressed miR-483-3p significantly increased the mRNA and protein expression of IL-33, but not of IL-27 or IL-34, in RA FLSs, whereas miR-483-3p suppression showed the opposite effects. Furthermore, miR-483-3p upregulation activated the ERK signaling pathway. The ERK signaling inhibitor PD98059 partly reversed the elevation of IL-33 levels mediated by miR-483-3p overexpression. Our results reveal that miR-483-3p promotes IL-33 expression by regulating the ERK signaling pathway in RA FLSs. Thus, miR-483-3p may be a potential effective target for RA treatment.


Arthritis, Rheumatoid/enzymology , Extracellular Signal-Regulated MAP Kinases/metabolism , Fibroblasts/enzymology , Inflammation Mediators/metabolism , Interleukin-33/metabolism , MicroRNAs/metabolism , Synoviocytes/enzymology , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/pathology , Cell Line , Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors , Fibroblasts/drug effects , Fibroblasts/pathology , Flavonoids/pharmacology , Humans , Interleukin-33/genetics , MicroRNAs/genetics , Phosphorylation , Protein Kinase Inhibitors/pharmacology , Signal Transduction , Synoviocytes/drug effects , Synoviocytes/pathology , Up-Regulation
20.
Cells ; 10(5)2021 05 18.
Article En | MEDLINE | ID: mdl-34069977

Long-chain fatty acid oxidation disorders (lc-FAOD) are a group of diseases affecting the degradation of long-chain fatty acids. In order to investigate the disease specific alterations of the cellular lipidome, we performed undirected lipidomics in fibroblasts from patients with carnitine palmitoyltransferase II, very long-chain acyl-CoA dehydrogenase, and long-chain 3-hydroxyacyl-CoA dehydrogenase. We demonstrate a deep remodeling of mitochondrial cardiolipins. The aberrant phosphatidylcholine/phosphatidylethanolamine ratio and the increased content of plasmalogens and of lysophospholipids support the theory of an inflammatory phenotype in lc-FAOD. Moreover, we describe increased ratios of sphingomyelin/ceramide and sphingomyelin/hexosylceramide in LCHAD deficiency which may contribute to the neuropathic phenotype of LCHADD/mitochondrial trifunctional protein deficiency.


Fatty Acids/metabolism , Fibroblasts/enzymology , Lipid Metabolism, Inborn Errors/enzymology , Lipidomics , Metabolome , Skin/enzymology , Acyl-CoA Dehydrogenase, Long-Chain/deficiency , Acyl-CoA Dehydrogenase, Long-Chain/genetics , Cardiolipins/metabolism , Carnitine O-Palmitoyltransferase/deficiency , Carnitine O-Palmitoyltransferase/genetics , Case-Control Studies , Cells, Cultured , Ceramides/metabolism , Female , Humans , Lipid Metabolism, Inborn Errors/genetics , Long-Chain-3-Hydroxyacyl-CoA Dehydrogenase/deficiency , Long-Chain-3-Hydroxyacyl-CoA Dehydrogenase/genetics , Male , Metabolism, Inborn Errors/enzymology , Metabolism, Inborn Errors/genetics , Oxidation-Reduction , Sphingolipids/metabolism , Tandem Mass Spectrometry
...