Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 5.497
1.
Toxicol Ind Health ; 40(7): 387-397, 2024 Jul.
Article En | MEDLINE | ID: mdl-38729922

Tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) is a widely used organophosphorus flame retardant and has been detected in various environmental matrices including indoor dust. Inhalation of indoor dust is one of the most important pathways for human exposure to TDCIPP. However, its adverse effects on human lung cells and potential impacts on respiratory toxicity are largely unknown. In the current study, human non-small cell carcinoma (A549) cells were selected as a cell model, and the effects of TDCIPP on cell viability, cell cycle, cell apoptosis, and underlying molecular mechanisms were investigated. Our data indicated a concentration-dependent decrease in the cell viability of A549 cells after exposure to TDCIPP for 48 h, with half lethal concentration (LC50) being 82.6 µM. In addition, TDCIPP caused cell cycle arrest mainly in the G0/G1 phase by down-regulating the mRNA expression of cyclin D1, CDK4, and CDK6, while up-regulating the mRNA expression of p21 and p27. In addition, cell apoptosis was induced via altering the expression levels of Bcl-2, BAX, and BAK. Our study implies that TDCIPP may pose potential health risks to the human respiratory system and its toxicity should not be neglected.


Apoptosis , Cell Survival , Flame Retardants , Organophosphorus Compounds , Humans , A549 Cells , Apoptosis/drug effects , Flame Retardants/toxicity , Cell Survival/drug effects , Organophosphorus Compounds/toxicity , Cell Cycle/drug effects , Cell Cycle Checkpoints/drug effects
2.
Chemosphere ; 358: 142226, 2024 Jun.
Article En | MEDLINE | ID: mdl-38704039

Cellulosic substrates, including wood and thatch, have become icons for sustainable architecture and construction, however, they suffer from high flammability because of their inherent cellulosic composition. Current control measures for such hazards include applying intumescent fire-retardant (IFR) coatings that swell and form a char layer upon ignition, protecting the underlying substrate from burning. Typically, conventional IFR coatings are opaque and are made of halogenated compounds that release toxic fumes when ignited, compromising the roofing's aesthetic value and sustainability. In this work, phytic acid, a naturally occurring phosphorus source extracted from rice bran, was used to synthesize phytic acid-based fire-retardants (PFR) via esterification under reflux, along with powdered chicken eggshells (CES) as calcium carbonate (CaCO3) bio-filler. These components were incorporated into melamine formaldehyde resin to produce the transparent IFR coating. It was revealed that the developed IFR coatings achieved the highest fire protection rating based on UL94 flammability standards compared to the control. The coatings also yielded increased LOI values, indicative of self-extinguishing properties. A 17 °C elevation of the IFR coating's melting temperature and a significant ∼172% increase in enthalpy change from the control were observed, indicating enhanced fire-retardancy. The thermal stability of the coatings was improved, denoted by reduced mass losses, and increased residual masses after thermal degradation. As validated by microscopy and spectroscopy, the abundance of phosphorus and carbon groups in the coatings' condensed phase after combustion indicates enhanced char formation. In the gas phase, TG-FTIR showed the evolution of non-flammable CO2, and fire-retardant PO and P-O-C. Mechanical property testing confirmed no reduction in the adhesion strength of the IFR coating. With these results, the developed IFR coating exhibited enhanced fire-retardancy whilst remaining optically transparent, suggestive of a dual-phase IFR protective mechanism involving the release of gaseous combustion diluents and the formation of a thermally insulating char layer.


Egg Shell , Flame Retardants , Phytic Acid , Egg Shell/chemistry , Phytic Acid/chemistry , Animals , Fires , Cellulose/chemistry , Calcium Carbonate/chemistry , Chickens
3.
Chemosphere ; 358: 142165, 2024 Jun.
Article En | MEDLINE | ID: mdl-38704048

Expanded polystyrene (EPS) plastic is widely used because of its low density and lightweight properties, enabling it to float on water and increase its exposure to sunlight. In this study, we simulated the photoaging process of flame retardant-added EPS (FR-EPS) and common original EPS (OR-EPS) microplastic (MP) particles with and without methyl octabromoether flame retardant (MOBE) in the laboratory to explore the effect of MOBE on the photodegradation of EPS. Results showed that MOBE accelerated size reduction and surface hole formation on the particles, hastening the shedding and replacement of particle surfaces. FR-EPS particles exhibited a weight loss exceeding that of OR-EPS, reaching 40.85 ± 3.72% after 36 days of irradiation. Moreover, rapid physical peeling of the FR-EPS surface was accompanied by continuous chemical oxidation and fluctuations of the carbonyl index and O/C ratio. A diffusion model based on Fick's second law fitted well for the concentration of MOBE remaining in FR-EPS particles. MOBE's sensitivity to direct photochemical reactions inhibited the early-stage photoaging of EPS MP particles by competing for photons. However, MOBE as chromophores could absorb photons and produce •OH to promote the aging of EPS. Moreover, the capacity of EPS to absorb light energy also accelerated MOBE degradation. These findings suggested that the photoaging behavior of commercial EPS products containing flame retardants in the environment is quite different from that of pure EPS, indicating that additive-plastic interactions significantly alter MP fate and environmental risks.


Flame Retardants , Microplastics , Polystyrenes , Polystyrenes/chemistry , Microplastics/chemistry , Photolysis , Plastics/chemistry
4.
Folia Neuropathol ; 62(1): 1-12, 2024.
Article En | MEDLINE | ID: mdl-38741432

Polychlorinated biphenyls (PCBs) and brominated flame retardants (BFRs) are dominant environmental and food contaminants. Tetrabromobisphenol A (TBBPA) is the most widely used BFR in the world to improve the fire safety of laminates in electrical and electronic equipment. Aroclor 1254, one of the PCBs, is widely distributed in the environment due to its extensive use in industrial applications around the world. Both groups of substances are potent toxicants. There is also increasing evidence that they have neurotoxic effects. In this study we tested the pro-inflammatory effects of Aroclor 1254 and TBBPA based on markers of microglial reactivity and levels of pro-inflammatory factors in the brain of immature rats. Aroclor 1254 or TBBPA were administered to the rats by oral gavage for two weeks at a dose of 10 mg/kg b.w. Both light and electron microscopy studies revealed features indicative of microglia activation in brains of exposed rats. Morphological changes were associated with overexpression of pro-inflammatory enzymes such as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Analysis of cytokine/chemokine array revealed significant secretion of inflammatory mediators following exposure to both TBBPA and Aroclor 1254, which was stronger in the cerebellum than in the forebrain of exposed immature rats. The results indicate a pro-inflammatory profile of microglia activation as one of the neurotoxic mechanisms of both examined toxicants.


Microglia , Neurotoxicity Syndromes , Polybrominated Biphenyls , Animals , Microglia/drug effects , Microglia/metabolism , Microglia/pathology , Polybrominated Biphenyls/toxicity , Rats , Neurotoxicity Syndromes/pathology , Neurotoxicity Syndromes/etiology , Brain/drug effects , Brain/pathology , Brain/metabolism , Male , Flame Retardants/toxicity , Rats, Wistar
5.
Langmuir ; 40(20): 10600-10614, 2024 May 21.
Article En | MEDLINE | ID: mdl-38721840

Brominated flame retardants (BFRs) are small organic molecules containing several bromine substituents added to plastics to limit their flammability. BFRs can constitute up to 30% of the weight of some plastics, which is why they are produced in large quantities. Along with plastic waste and microplastic particles, BFRs end up in the soil and can easily leach causing contamination. As polyhalogenated molecules, multiple BFRs were classified as persistent organic pollutants (POPs), meaning that their biodegradation in the soils is especially challenging. However, some anaerobic bacteria as Dehaloccocoides can dehalogenate BFRs, which is important in the bioremediation of contaminated soils. BFRs are hydrophobic, can accumulate in plasma membranes, and disturb their function. On the other hand, limited membrane accumulation is necessary for BFR dehalogenation. To study the BFR-membrane interaction, we created membrane models of soil dehalogenating bacteria and tested their interactions with seven legacy and novel BFRs most common in soils. Phospholipid Langmuir monolayers with appropriate composition were used as membrane models. These membranes were doped in the selected BFRs, and the incorporation of BFR molecules into the phospholipid matrix and also the effects of BFR presence on membrane physical properties and morphology were studied. It turned out that the seven BFRs differed significantly in their membrane affinity. For some, the incorporation was very limited, and others incorporated effectively and could affect membrane properties, while one of the tested molecules induced the formation of bilayer domains in the membranes. Thus, Langmuir monolayers can be effectively used for pretesting BFR membrane activity.


Flame Retardants , X-Ray Diffraction , Flame Retardants/metabolism , Halogenation , Cell Membrane/metabolism , Cell Membrane/chemistry
6.
Environ Health Perspect ; 132(5): 54002, 2024 May.
Article En | MEDLINE | ID: mdl-38758118

Regulating chemicals by class based on chemical similarities may help reduce risk of regrettable substitutions while enhancing health protection. A new Commentary summarizes OFR toxicity and exposure research to inform this effort.


Flame Retardants , Flame Retardants/toxicity , Humans , United States , United States Environmental Protection Agency , Environmental Exposure , Hydrocarbons, Halogenated/toxicity
7.
Environ Sci Technol ; 58(19): 8417-8431, 2024 May 14.
Article En | MEDLINE | ID: mdl-38701378

This study evaluated workers' exposures to flame retardants, including polybrominated diphenyl ethers (PBDEs), organophosphate esters (OPEs), and other brominated flame retardants (BFRs), in various industries. The study aimed to characterize OPE metabolite urinary concentrations and PBDE serum concentrations among workers from different industries, compare these concentrations between industries and the general population, and evaluate the likely route of exposure (dermal or inhalation). The results showed that workers from chemical manufacturing had significantly higher (p <0.05) urinary concentrations of OPE metabolites compared to other industries. Spray polyurethane foam workers had significantly higher (p <0.05) urinary concentrations of bis(1-chloro-2-propyl) phosphate (BCPP) compared to other industries. Electronic scrap workers had higher serum concentrations of certain PBDE congeners compared to the general population. Correlations were observed between hand wipe samples and air samples containing specific flame-retardant parent chemicals and urinary metabolite concentrations for some industries, suggesting both dermal absorption and inhalation as primary routes of exposure for OPEs. Overall, this study provides insights into occupational exposure to flame retardants in different industries and highlights the need for further research on emerging flame retardants and exposure reduction interventions.


Biomarkers , Flame Retardants , Halogenated Diphenyl Ethers , Occupational Exposure , Organophosphates , Flame Retardants/metabolism , Humans , Inhalation Exposure , Adult , Male , Skin/metabolism , United States , Female
8.
Sci Total Environ ; 932: 173031, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38723961

The widespread extensive use of synthetic polymers has led to a substantial environmental crisis caused by plastic pollution, with microplastics detected in various environments and posing risks to both human health and ecosystems. The possibility of plastic fragments to be dispersed in the air as particles and inhaled by humans may cause damage to the respiratory and other body systems. Therefore, there is a particular need to study microplastics as air pollutants. In this study, we tested a combination of analytical pyrolysis, gas chromatography-mass spectrometry, and gas and liquid chromatography-mass spectrometry to identify and quantify both microplastics and their additives in airborne particulate matter and settled dust within a workplace environment: a WEEE treatment plant. Using this combined approach, we were able to accurately quantify ten synthetic polymers and eight classes of polymer additives. The identified additives include phthalates, adipates, citrates, sebacates, trimellitates, benzoates, organophosphates, and newly developed brominated flame retardants.


Air Pollutants , Environmental Monitoring , Microplastics , Particulate Matter , Plastics , Polymers , Microplastics/analysis , Polymers/analysis , Environmental Monitoring/methods , Particulate Matter/analysis , Air Pollutants/analysis , Plastics/analysis , Gas Chromatography-Mass Spectrometry , Humans , Flame Retardants/analysis , Dust/analysis
9.
Environ Sci Technol ; 58(19): 8251-8263, 2024 May 14.
Article En | MEDLINE | ID: mdl-38695612

The novel brominated flame retardant, 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), has increasingly been detected in environmental and biota samples. However, limited information is available regarding its toxicity, especially at environmentally relevant concentrations. In the present study, adult male zebrafish were exposed to varying concentrations of BTBPE (0, 0.01, 0.1, 1, and 10 µg/L) for 28 days. The results demonstrated underperformance in mating behavior and reproductive success of male zebrafish when paired with unexposed females. Additionally, a decline in sperm quality was confirmed in BTBPE-exposed male zebrafish, characterized by decreased total motility, decreased progressive motility, and increased morphological malformations. To elucidate the underlying mechanism, an integrated proteomic and phosphoproteomic analysis was performed, revealing a predominant impact on mitochondrial functions at the protein level and a universal response across different cellular compartments at the phosphorylation level. Ultrastructural damage, increased expression of apoptosis-inducing factor, and disordered respiratory chain confirmed the involvement of mitochondrial impairment in zebrafish testes. These findings not only provide valuable insights for future evaluations of the potential risks posed by BTBPE and similar chemicals but also underscore the need for further research into the impact of mitochondrial dysfunction on reproductive health.


Reproduction , Zebrafish , Animals , Male , Reproduction/drug effects , Spermatozoa/drug effects , Testis/drug effects , Testis/metabolism , Flame Retardants/toxicity , Mitochondria/drug effects , Mitochondria/metabolism , Female
10.
Environ Sci Technol ; 58(20): 8825-8834, 2024 May 21.
Article En | MEDLINE | ID: mdl-38712863

Flame retardants (FRs) are added to vehicles to meet flammability standards, such as US Federal Motor Vehicle Safety Standard FMVSS 302. However, an understanding of which FRs are being used, sources in the vehicle, and implications for human exposure is lacking. US participants (n = 101) owning a vehicle of model year 2015 or newer hung a silicone passive sampler on their rearview mirror for 7 days. Fifty-one of 101 participants collected a foam sample from a vehicle seat. Organophosphate esters (OPEs) were the most frequently detected FR class in the passive samplers. Among these, tris(1-chloro-isopropyl) phosphate (TCIPP) had a 99% detection frequency and was measured at levels ranging from 0.2 to 11,600 ng/g of sampler. TCIPP was also the dominant FR detected in the vehicle seat foam. Sampler FR concentrations were significantly correlated with average ambient temperature and were 2-5 times higher in the summer compared to winter. The presence of TCIPP in foam resulted in ∼4 times higher median air sampler concentrations in winter and ∼9 times higher in summer. These results suggest that FRs used in vehicle interiors, such as in seat foam, are a source of OPE exposure, which is increased in warmer temperatures.


Flame Retardants , Flame Retardants/analysis , Humans , Temperature , Environmental Exposure , Motor Vehicles
11.
Int J Biol Macromol ; 268(Pt 1): 131612, 2024 May.
Article En | MEDLINE | ID: mdl-38631572

Cotton fabric is extensively utilized due to its numerous applications, but the flammability associated with cotton fabric poses potential security risks to individuals. A halogen-free efficient flame retardant named poly [(tetramethylcyclosiloxyl spirocyclic pentaerythritol)-piperazin phosphate] (PCPNTSi) was developed to consolidate the fire retardance of cotton fabrics. After PCPNTSi treatment, the limiting oxygen index (LOI) of cotton fabric with 30 % weight gain (CP3) was raised to 32.8 %. In the vertical flammability test (VFT), CP3 has self-extinguished performance with a char length of 8.7 cm. The heat release rate (HRR) of cotton fabric with 20 % weight gain (CP2) is 78.8 % lower than that of pure cotton fabric (CP0). In addition, the total smoke release (TSP) of CP2 is 41.7 % lower than that of CP0, indicating PCPNTSi gives cotton fabric a good capability to inhibit smoke release. Finally, the possible flame retardant mechanism was discussed by the data of scanning electron microscope (SEM), energy dispersive spectrometer (EDS), X-ray photoelectron spectroscopy (XPS), Fourier Transform infrared spectroscopy (FT-IR) and thermogravimetric infrared spectroscopy (TG-IR). The results show that PCPNTSi is an intumescent flame retardant acting in both gas phase and solid phase.


Cotton Fiber , Flame Retardants , Flame Retardants/analysis , Cotton Fiber/analysis , Nitrogen/chemistry , Textiles/analysis
12.
Int J Biol Macromol ; 268(Pt 1): 131750, 2024 May.
Article En | MEDLINE | ID: mdl-38657923

Applications for cotton fabrics with multifunctional qualities, such as flame retardancy, hydrophobicity, and anti-ultraviolet properties, are increasingly common and growing daily. The primary objective of this study is to investigate the preparation of flame retardant, hydrophobic, and ultraviolet (UV) protection cotton fabrics through the utilization of Poly-dimethylsiloxane-co-diphenylsiloxane, dihydroxy terminated (HTDMS) and ammonia phytate (AP). The flame retardancy, thermal stability, mechanical properties, anti-UV properties, air permeability and the hydrophobicity properties of coated cotton fabrics were evaluated. The results indicated that the HTDMS/AP coating was successfully deposited on the surface of cotton fabrics. The damaged length of Cotton/HTDMS/AP was 4.7 cm, and the limiting oxygen index reached 31.5 %. The thermogravimetric analysis revealed that the char residues in the high-temperature range were increased. Furthermore, cone calorimetry results indicated that after the HTDMS/AP coating, the peak heat release rate, total heat release, and total smoke production values decreased by 88.7 %, 51.2 %, and 98.4 %, respectively. Moreover, the deposition of HTDMS/AP provided cotton fabrics with hydrophobicity with a water contact angle of over 130°, while Cotton/HTDMS/AP maintained their air permeability, and enhanced the breaking force compared with those of Cotton/AP. Such desirable qualities make HTDMS/AP a meaningful coating for producing multifunctional cotton fabrics.


Cotton Fiber , Dimethylpolysiloxanes , Flame Retardants , Hydrophobic and Hydrophilic Interactions , Dimethylpolysiloxanes/chemistry , Phytic Acid/chemistry , Ammonia/chemistry , Textiles , Permeability , Tensile Strength
13.
Chemosphere ; 358: 142095, 2024 Jun.
Article En | MEDLINE | ID: mdl-38663681

Exposure to indoor dust is of concern since dust may be contaminated by various toxic chemicals and people spend considerable time indoors. Factors impacting human exposure risks to contaminants in indoor dust may differ from those affecting the loadings of contaminants, but the dominant factors have not yet been well clarified. In this study, the occurrence, human exposure, and related influencing factors of several classes of legacy and emerging contaminants in residential dust across Beijing were investigated, including per- and polyfluoroalkyl substances (PFASs) and three types of flame retardants (FRs), i.e., organophosphate esters (OPEs), polybrominated diphenyl ethers (PBDEs), and novel halogenated FRs (NHFRs). OPEs (median: 3847 ng/g) were the most abundant group, followed by PBDEs (1046 ng/g) and NHFRs (520 ng/g). PFASs (14.3 ng/g) were one to two orders of magnitude lower than FRs. The estimated daily intakes of these contaminants were relatively higher for toddlers than other age groups, with oral ingestion being the main exposure pathway compared with dermal contact. Higher human exposure risks were found in new buildings or newly finished homes due to the elevated intake of emerging contaminants (such as OPEs). Furthermore, higher risks were also found in homes with wooden floors, which were mainly associated with higher levels of PFASs, chloroalkyl and alkyl OPEs, compared with tile floors. Citizens in the urban area also showed higher exposure risks than those in the suburban area. The quantity of household appliances and finishing styles (simple or luxurious) showed an insignificant impact on overall human exposure risks despite their significant effect on the levels of some of the dust contaminants. Results in this study are of importance in understanding human exposure to the co-existence of multiple contaminants in indoor dust.


Air Pollution, Indoor , Dust , Environmental Exposure , Environmental Monitoring , Flame Retardants , Halogenated Diphenyl Ethers , Housing , Dust/analysis , Humans , Air Pollution, Indoor/analysis , Air Pollution, Indoor/statistics & numerical data , Beijing , Flame Retardants/analysis , Environmental Exposure/statistics & numerical data , Environmental Exposure/analysis , Halogenated Diphenyl Ethers/analysis , Child , Adult , Child, Preschool , Air Pollutants/analysis , Organophosphates/analysis , Infant , China , Adolescent
14.
Chemosphere ; 358: 142172, 2024 Jun.
Article En | MEDLINE | ID: mdl-38685322

In excess of 13,000 chemicals are added to plastics ('additives') to improve performance, durability, and production of plastic products. They are categorized into numerous chemical classes including flame retardants, light stabilizers, antioxidants, and plasticizers. While research on plastic additives in the marine environment has increased over the past decade, there is a lack of methodological standardization. To direct future measurement of plastic additives, we compiled a first-of-its-kind dataset of literature assessing plastic additives in marine environments, delineated by sample type (plastic debris, seawater, sediment, biota). Using this dataset, we performed a meta-analysis to summarize the state of the science. Currently, our dataset includes 217 publications published between 1978 and May 2023. The majority of publications analyzed plastic additives in biota collected from Europe and Asia. Analyses concentrated on plasticizers, brominated flame retardants, and bisphenols. Common sample preparation techniques included Solvent - Agitation extraction for plastic, sediment, and biota samples, and Solid Phase Extraction for seawater samples with dichloromethane and solvent mixtures including dichloromethane as the organic extraction solvent. Finally, most analyses were performed utilizing gas chromatography/mass spectrometry. There are a variety of data gaps illuminated by this meta-analysis, most notably the small number of compounds that have been targeted for detection compared to the large number of additives used in plastic production. The provided dataset facilitates future investigation of trends in plastic additive concentration data in the marine environment (allowing for comparison to toxicity thresholds) and acts as a starting point for optimizing and harmonizing plastic additive analytical methods.


Environmental Monitoring , Flame Retardants , Plastics , Water Pollutants, Chemical , Plastics/analysis , Water Pollutants, Chemical/analysis , Flame Retardants/analysis , Environmental Monitoring/methods , Oceans and Seas , Seawater/chemistry , Plasticizers/analysis , Geologic Sediments/chemistry
15.
Sci Total Environ ; 927: 172187, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38582107

Plasticizers (PLs) and organophosphate flame retardants (OPFRs) are ubiquitous in the environment due to their widespread use and potential for leaching from consumer products. Environmental exposure is a critical aspect of the human exposome, revealing complex interactions between environmental contaminants and potential health effects. Silicone wristbands (SWBs) have emerged as a novel and non-invasive sampling device for assessing personal external exposure. In this study, SWBs were used as a proxy to estimate personal dermal adsorption (EDdermal) to PLs and OPFRs in Belgian participants for one week; four morning urine samples were also collected and analyzed for estimated daily intake (EDI). The results of the SWBs samples showed that all the participants were exposed to these chemicals, and the exposure was found to be highest for the legacy and alternative plasticizers (LP and AP), followed by the legacy and emerging OPFRs (LOPFR and EOPFR). In urine samples, the highest levels were observed for metabolites of diethyl phthalate (DEP), di-isobutyl phthalate (DiBP) and di-n-butyl phthalate (DnBP) among LPs and di(2-ethylhexyl) terephthalate (DEHT) for APs. Outliers among the participants indicated that there were other sources of exposure that were not identified. Results showed a significant correlation between EDdermal and EDI for DiBP, tris (2-butoxyethyl) phosphate (TBOEP) and triphenyl phosphate (TPhP). These correlations indicated their suitability for predicting exposure via SWB monitoring for total chemical exposure. The results of this pilot study advance our understanding of SWB sampling and its relevance for predicting aggregate environmental chemical exposures, while highlighting the potential of SWBs as low-cost, non-invasive personal samplers for future research. This innovative approach has the potential to advance the assessment of environmental exposures and their impact on public health.


Environmental Exposure , Environmental Monitoring , Flame Retardants , Organophosphates , Plasticizers , Silicones , Flame Retardants/analysis , Plasticizers/analysis , Humans , Environmental Exposure/statistics & numerical data , Environmental Exposure/analysis , Organophosphates/urine , Belgium , Adult , Environmental Pollutants/urine , Male , Female
16.
J Hazard Mater ; 470: 134217, 2024 May 15.
Article En | MEDLINE | ID: mdl-38583197

Tetrabromobisphenol A (TBBPA), a common brominated flame retardant and a notorious pollutant in anaerobic environments, resists aerobic degradation but can undergo reductive dehalogenation to produce bisphenol A (BPA), an endocrine disruptor. Conversely, BPA is resistant to anaerobic biodegradation but susceptible to aerobic degradation. Microbial degradation of TBBPA via anoxic/oxic processes is scarcely documented. We established an anaerobic microcosm for TBBPA dehalogenation to BPA facilitated by humin. Dehalobacter species increased with a growth yield of 1.5 × 108 cells per µmol Br- released, suggesting their role in TBBPA dehalogenation. We innovatively achieved complete and sustainable biodegradation of TBBPA in sand/soil columns columns, synergizing TBBPA reductive dehalogenation by anaerobic functional microbiota and BPA aerobic oxidation by Sphingomonas sp. strain TTNP3. Over 42 days, 95.11 % of the injected TBBPA in three batches was debrominated to BPA. Following injection of strain TTNP3 cells, 85.57 % of BPA was aerobically degraded. Aerobic BPA degradation column experiments also indicated that aeration and cell colonization significantly increased degradation rates. This treatment strategy provides valuable technical insights for complete TBBPA biodegradation and analogous contaminants.


Biodegradation, Environmental , Flame Retardants , Oxidation-Reduction , Phenols , Polybrominated Biphenyls , Polybrominated Biphenyls/metabolism , Polybrominated Biphenyls/chemistry , Anaerobiosis , Aerobiosis , Phenols/metabolism , Flame Retardants/metabolism , Benzhydryl Compounds/metabolism , Sphingomonas/metabolism , Halogenation , Soil Pollutants/metabolism
17.
Environ Int ; 186: 108647, 2024 Apr.
Article En | MEDLINE | ID: mdl-38615542

The St. Lawrence Estuary (SLE) beluga (Delphinapterus leucas) population is highly exposed to an array of contaminants that were identified as one of the causes to the non-recovery of this endangered and declining population. In the last decade, an increasing number of parturition-associated complications and calf mortality has been reported in this population. It was suggested that elevated exposure to organohalogens (e.g., the halogenated flame retardants polybrominated diphenyl ethers [PBDEs]) and stress could play a role in this phenomenon by perturbing thyroid hormones. The objective of this study was to investigate the impact of concentrations of organohalogen contaminants and stress (cortisol levels) on thyroid hormone variations in adult male and female SLE belugas. Because plasma could not be collected in SLE belugas for ethical reasons, skin biopsy (n = 40) was used as a less-invasive alternative matrix to determine organohalogens (PBDEs and other halogenated flame retardants, polychlorinated biphenyls, and organochlorine pesticides), cortisol, and thyroid hormones (triiodothyronine [T3] and thyroxine [T4]), and their metabolites reverse T3 and 3,5-diiodothyronine [3,5-T2]). Cortisol and thyroid hormones were analyzed by ultra-performance liquid chromatography-multiple reactions monitoring mass spectrometry (UPLC-MRM/MS). This method was compared using skin and plasma samples obtained from Arctic belugas. Comparisons of linear models showed that cortisol was a weak predictor for T4, rT3 and 3,5-T2. Specifically, there was a weak significant negative association between T4 and cortisol levels. Moreover, in male SLE belugas, a weak significant positive association was found between T3 and Σ34PBDE concentrations in skin. Our findings suggest that stress (i.e., elevated skin cortisol levels) along with organohalogen exposure (mainly PBDEs) may be associated with thyroid hormone level perturbations in skin of cetaceans.


Beluga Whale , Hydrocortisone , Thyroid Hormones , Water Pollutants, Chemical , Animals , Female , Male , Water Pollutants, Chemical/blood , Hydrocortisone/blood , Thyroid Hormones/blood , Estuaries , Halogenated Diphenyl Ethers/blood , Polychlorinated Biphenyls/blood , Environmental Monitoring , Flame Retardants/metabolism , Stress, Physiological , Endangered Species , Triiodothyronine/blood , Hydrocarbons, Halogenated/blood , Thyroxine/blood
18.
Environ Int ; 186: 108635, 2024 Apr.
Article En | MEDLINE | ID: mdl-38631261

To overcome ethical and technical challenges impeding the study of human dermal uptake of chemical additives present in microplastics (MPs), we employed 3D human skin equivalent (3D-HSE) models to provide first insights into the dermal bioavailability of polybrominated diphenyl ether (PBDEs) present in MPs; and evaluated different factors influencing human percutaneous absorption of PBDEs under real-life exposure scenario. PBDEs were bioavailable to varying degrees (up to 8 % of the exposure dose) and percutaneous permeation was evident, albeit at low levels (≤0.1 % of the exposure dose). While the polymer type influenced the release of PBDEs from the studied MPs to the skin, the polymer type was less important in driving the percutaneous absorption of PBDEs. The absorbed fraction of PBDEs was strongly correlated (r2 = 0.88) with their water solubility, while the dermal permeation coefficient Papp of PBDEs showed strong association with their molecular weight and logKOW. More sweaty skin resulted in higher bioavailability of PBDEs from dermal contact with MPs than dry skin. Overall, percutaneous absorption of PBDEs upon skin contact with MPs was evident, highlighting, for the first time, the potential significance of the dermal pathway as an important route of human exposure to toxic additive chemicals in MPs.


Flame Retardants , Halogenated Diphenyl Ethers , Microplastics , Polyethylene , Polypropylenes , Skin Absorption , Humans , Halogenated Diphenyl Ethers/pharmacokinetics , Skin/metabolism , Models, Biological
19.
J Affect Disord ; 355: 385-391, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38574866

BACKGROUND: Organophosphorus flame retardants (OPFRs) can damage the brain and may cause abnormal behaviors. There was no population-based study to reveal the relationship between OPFRs and the occurrence of depression. This study utilized a publicly available database to investigate the correlation between OPFRs exposure and the risk of depression, and the mediation effect of inflammation on the correlation. METHODS: Data in this study was from the database of the National Health and Nutrition Examination Survey. Multifactorial logistic regression was used to estimate the relationship between OPFRs exposure and the risk of depression, and a mediation effect model was constructed to explore the impact of inflammation on the correlation. RESULTS: Data of 1273 participants was included in the study. It was found that individuals with high urinary concentration of bis-(2-chloroethyl) phosphate had an increased risk of developing depression (OR = 1.217, 95 % CI: 1.032-1.435). Combined exposure to OPFRs was significantly associated with the increased risk of depression than single OPFRs exposure. Subgroup analyses based on inflammatory levels in the body revealed that inflammation might exert the mediation effect on the association between OPFRs exposure and the risk of depression, with the contribution proportion of 8.23 %. LIMITATIONS: Cross-sectional data and rapid metabolism of OPFRs lead to uncertainty in revealing long-term exposure in the body. CONCLUSIONS: There was a correlation between OPFRs exposure and the risk of depression, which may be mediated by inflammation in the body to some extent.


Flame Retardants , Organophosphorus Compounds , Humans , Organophosphorus Compounds/analysis , Flame Retardants/adverse effects , Flame Retardants/analysis , Nutrition Surveys , Cross-Sectional Studies , Depression/epidemiology , Inflammation
20.
Environ Pollut ; 349: 123877, 2024 May 15.
Article En | MEDLINE | ID: mdl-38574945

Silicone wristbands are a noninvasive personal exposure assessment tool. However, despite their utility, questions remain about the rate at which chemicals accumulate on wristbands when worn, as validation studies utilizing wristbands worn by human participants are limited. This study evaluated the chemical uptake rates of 113 organic pollutants from several chemical classes (i.e., polychlorinated biphenyls (PCB), organophosphate esters (OPEs), alkyl OPEs, polybrominated diphenyl ethers (PBDEs), brominated flame retardants (BFR), phthalates, pesticides, and polycyclic aromatic hydrocarbons (PAHs) over a five-day period. Adult participants (n = 10) were asked to wear five silicone wristbands and then remove one wristband each day. Several compounds were detected in all participants' wristbands after only one day. The number of chemicals detected frequently (i.e. in at least seven participants wristbands) increased from 20% of target compounds to 26% after three days and more substantially increased to 34% of target compounds after four days of wear. Chemicals detected in at least seven participants' day five wristbands (n = 24 chemicals) underwent further statistical analysis, including estimating the chemical uptake rates over time. Some chemicals, including pesticides and phthalates, had postive and significant correlations between concentrations on wristbands worn five days and concentrations of wristbands worn fewer days suggesting chronic exposure. For 23 of the 24 compounds evaluated there was a statistically significant and positive linear association between the length of time wristbands were worn and chemical concentrations in wristbands. Despite the differences that exist between laboratory studies using polydimethylsiloxane (PDMS) environmental samplers and worn wristbands, these results indicate that worn wristbands are primarily acting as first-order kinetic samplers. These results suggest that studies using different deployment lengths should be comparable when results are normalized to the length of the deployment period. In addition, a shorter deployment period could be utilized for compounds that were commonly detected in as little as one day.


Environmental Monitoring , Environmental Pollutants , Flame Retardants , Silicones , Humans , Adult , Flame Retardants/analysis , Environmental Pollutants/analysis , Environmental Monitoring/methods , Male , Female , Environmental Exposure/statistics & numerical data , Environmental Exposure/analysis , Halogenated Diphenyl Ethers/analysis , Polychlorinated Biphenyls/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Pesticides/analysis , Young Adult , Wrist , Phthalic Acids/analysis
...