Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 4.096
1.
BMC Plant Biol ; 24(1): 370, 2024 May 07.
Article En | MEDLINE | ID: mdl-38714932

BACKGROUND: Nymphaea (waterlily) is known for its rich colors and role as an important aquatic ornamental plant globally. Nymphaea atrans and some hybrids, including N. 'Feitian 2,' are more appealing due to the gradual color change of their petals at different flower developmental stages. The petals of N. 'Feitian 2' gradually change color from light blue-purple to deep rose-red throughout flowering. The mechanism of the phenomenon remains unclear. RESULTS: In this work, flavonoids in the petals of N. 'Feitian 2' at six flowering stages were examined to identify the influence of flavonoid components on flower color changes. Additionally, six cDNA libraries of N. 'Feitian 2' over two blooming stages were developed, and the transcriptome was sequenced to identify the molecular mechanism governing petal color changes. As a result, 18 flavonoid metabolites were identified, including five anthocyanins and 13 flavonols. Anthocyanin accumulation during flower development is the primary driver of petal color change. A total of 12 differentially expressed genes (DEGs) in the flavonoid biosynthesis pathway were uncovered, and these DEGs were significantly positively correlated with anthocyanin accumulation. Six structural genes were ultimately focused on, as their expression levels varied significantly across different flowering stages. Moreover, 104 differentially expressed transcription factors (TFs) were uncovered, and three MYBs associated with flavonoid biosynthesis were screened. The RT-qPCR results were generally aligned with high-throughput sequencing results. CONCLUSIONS: This research offers a foundation to clarify the mechanisms underlying changes in the petal color of waterlilies.


Flavonoids , Flowers , Gene Expression Regulation, Plant , Nymphaea , Transcriptome , Flowers/genetics , Flowers/growth & development , Flowers/metabolism , Flavonoids/biosynthesis , Flavonoids/metabolism , Nymphaea/genetics , Nymphaea/metabolism , Pigmentation/genetics , Anthocyanins/biosynthesis , Anthocyanins/metabolism , Gene Expression Profiling , Color
2.
Food Res Int ; 186: 114347, 2024 Jun.
Article En | MEDLINE | ID: mdl-38729697

Although Z. mioga flower buds are popular among consumers for its unique spicy flavor, high nutritional and medicinal value, there are few reports on the formation and changes of the flavor during its growth and maturation process. The understanding of the profile of volatile compounds would help to unravel the flavor formation for Z. mioga flower buds during growth. The volatile changes in Z. mioga flower buds were analyzed by GC-MS and a total of 182 volatile compounds identified, and the terpenoids accounted for the most abundant volatile substances. Almost all the identified volatiles presented an intuitive upward trend throughout the growth period and reached the maximum at the later stage of development (DS3 or DS4). Regarding the PCA and HCA results, there were significant differences found among the four stages, and the DS3 was the critical node. The top 50 differential volatiles screened by OPLS-DA and PLS-DA were all up-regulated, and the correlation analysis indicated that terpenoids might synergize with other chemical types of volatiles to jointly affect the flavor formation of Z. mioga flower buds during growth. The association network for flavor omics revealed that the most important sensory flavor for Z. mioga flower buds were woody and sweet, and the main contribution compounds for the unique flavor contained ß-guaiene, ß-farnesene, δ-cadinene and citronellyl isobutanoate. Taken together, the results of this study provided a reference for flavor quality evaluation of flower buds and determination of the best harvest period.


Flowers , Gas Chromatography-Mass Spectrometry , Volatile Organic Compounds , Flowers/growth & development , Flowers/metabolism , Volatile Organic Compounds/analysis , Volatile Organic Compounds/metabolism , Taste , Terpenes/metabolism , Terpenes/analysis
3.
Proc Natl Acad Sci U S A ; 121(19): e2316371121, 2024 May 07.
Article En | MEDLINE | ID: mdl-38701118

Strigolactones are a class of phytohormones with various functions in plant development, stress responses, and in the interaction with (micro)organisms in the rhizosphere. While their effects on vegetative development are well studied, little is known about their role in reproduction. We investigated the effects of genetic and chemical modification of strigolactone levels on the timing and intensity of flowering in tomato (Solanum lycopersicum L.) and the molecular mechanisms underlying such effects. Results showed that strigolactone levels in the shoot, whether endogenous or exogenous, correlate inversely with the time of anthesis and directly with the number of flowers and the transcript levels of the florigen-encoding gene SINGLE FLOWER TRUSS (SFT) in the leaves. Transcript quantifications coupled with metabolite analyses demonstrated that strigolactones promote flowering in tomato by inducing the activation of the microRNA319-LANCEOLATE module in leaves. This, in turn, decreases gibberellin content and increases the transcription of SFT. Several other floral markers and morpho-anatomical features of developmental progression are induced in the apical meristems upon treatment with strigolactones, affecting floral transition and, more markedly, flower development. Thus, strigolactones promote meristem maturation and flower development via the induction of SFT both before and after floral transition, and their effects are blocked in plants expressing a miR319-resistant version of LANCEOLATE. Our study positions strigolactones in the context of the flowering regulation network in a model crop species.


Flowers , Gene Expression Regulation, Plant , Lactones , MicroRNAs , Solanum lycopersicum , Solanum lycopersicum/genetics , Solanum lycopersicum/growth & development , Solanum lycopersicum/metabolism , Solanum lycopersicum/drug effects , Lactones/metabolism , Lactones/pharmacology , MicroRNAs/genetics , MicroRNAs/metabolism , Flowers/drug effects , Flowers/growth & development , Flowers/metabolism , Flowers/genetics , Gene Expression Regulation, Plant/drug effects , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Plant Proteins/metabolism , Plant Proteins/genetics , Plant Leaves/metabolism , Plant Leaves/drug effects , Gibberellins/metabolism , Gibberellins/pharmacology
4.
Sci Rep ; 14(1): 10682, 2024 05 09.
Article En | MEDLINE | ID: mdl-38724517

Choy Sum, a stalk vegetable highly valued in East and Southeast Asia, is characterized by its rich flavor and nutritional profile. Metabolite accumulation is a key factor in Choy Sum stalk development; however, no research has focused on metabolic changes during the development of Choy Sum, especially in shoot tip metabolites, and their effects on growth and flowering. Therefore, in the present study, we used a widely targeted metabolomic approach to analyze metabolites in Choy Sum stalks at the seedling (S1), bolting (S3), and flowering (S5) stages. In total, we identified 493 metabolites in 31 chemical categories across all three developmental stages. We found that the levels of most carbohydrates and amino acids increased during stalk development and peaked at S5. Moreover, the accumulation of amino acids and their metabolites was closely related to G6P, whereas the expression of flowering genes was closely related to the content of T6P, which may promote flowering by upregulating the expressions of BcSOC1, BcAP1, and BcSPL5. The results of this study contribute to our understanding of the relationship between the accumulation of stem tip substances during development and flowering and of the regulatory mechanisms of stalk development in Choy Sum and other related species.


Flowers , Gene Expression Regulation, Plant , Metabolomics , Flowers/genetics , Flowers/metabolism , Flowers/growth & development , Metabolomics/methods , Gene Expression Profiling , Transcriptome , Hemerocallis/metabolism , Hemerocallis/genetics , Metabolome , Plant Proteins/genetics , Plant Proteins/metabolism , Amino Acids/metabolism , Seedlings/metabolism , Seedlings/growth & development , Seedlings/genetics
5.
BMC Plant Biol ; 24(1): 431, 2024 May 21.
Article En | MEDLINE | ID: mdl-38773421

BACKGROUND: The flower colour of H. syriacus 'Qiansiban' transitions from fuchsia to pink-purple and finally to pale purple, thereby enhancing the ornamental value of the cultivars. However, the molecular mechanism underlying this change in flower colour in H. syriacus has not been elucidated. In this study, the transcriptomic data of H. syriacus 'Qiansiban' at five developmental stages were analysed to investigate the impact of flavonoid components on flower colour variation. Additionally, five cDNA libraries were constructed from H. syriacus 'Qiansiban' during critical blooming stages, and the transcriptomes were sequenced to investigate the molecular mechanisms underlying changes in flower colouration. RESULTS: High-performance liquid chromatography‒mass spectrometry detected five anthocyanins in H. syriacus 'Qiansiban', with malvaccin-3-O-glucoside being the predominant compound in the flowers of H. syriacus at different stages, followed by petunigenin-3-O-glucoside. The levels of these five anthocyanins exhibited gradual declines throughout the flowering process. In terms of the composition and profile of flavonoids and flavonols, a total of seven flavonoids were identified: quercetin-3-glucoside, luteolin-7-O-glucoside, Santianol-7-O-glucoside, kaempferol-O-hexosyl-C-hexarbonoside, apigenin-C-diglucoside, luteolin-3,7-diglucoside, and apigenin-7-O-rutinoside. A total of 2,702 DEGs were identified based on the selected reference genome. Based on the enrichment analysis of differentially expressed genes, we identified 9 structural genes (PAL, CHS, FLS, DRF, ANS, CHI, F3H, F3'5'H, and UFGT) and 7 transcription factors (3 MYB, 4 bHLH) associated with flavonoid biosynthesis. The qRT‒PCR results were in good agreement with the high-throughput sequencing data. CONCLUSION: This study will establish a fundamental basis for elucidating the mechanisms underlying alterations in the flower pigmentation of H. syriacus.


Anthocyanins , Flavonoids , Flowers , Hibiscus , Metabolome , Transcriptome , Flowers/genetics , Flowers/growth & development , Flowers/metabolism , Hibiscus/genetics , Hibiscus/metabolism , Hibiscus/growth & development , Flavonoids/metabolism , Anthocyanins/metabolism , Pigmentation/genetics , Gene Expression Regulation, Plant , Gene Expression Profiling , Color
6.
Mol Biol Rep ; 51(1): 605, 2024 May 03.
Article En | MEDLINE | ID: mdl-38700570

BACKGROUND: Cultivation of Crocus sativus (saffron) faces challenges due to inconsistent flowering patterns and variations in yield. Flowering takes place in a graded way with smaller corms unable to produce flowers. Enhancing the productivity requires a comprehensive understanding of the underlying genetic mechanisms that govern this size-based flowering initiation and commitment. Therefore, samples enriched with non-flowering and flowering apical buds from small (< 6 g) and large (> 14 g) corms were sequenced. METHODS AND RESULTS: Apical bud enriched samples from small and large corms were collected immediately after dormancy break in July. RNA sequencing was performed using Illumina Novaseq 6000 to access the gene expression profiles associated with size dependent flowering. De novo transcriptome assembly and analysis using flowering committed buds from large corms at post-dormancy and their comparison with vegetative shoot primordia from small corms pointed out the major role of starch and sucrose metabolism, Auxin and ABA hormonal regulation. Many genes with known dual responses in flowering development and circadian rhythm like Flowering locus T and Cryptochrome 1 along with a transcript showing homology with small auxin upregulated RNA (SAUR) exhibited induced expression in flowering buds. Thorough prediction of Crocus sativus non-coding RNA repertoire has been carried out for the first time. Enolase was found to be acting as a major hub with protein-protein interaction analysis using Arabidopsis counterparts. CONCLUSION: Transcripts belong to key pathways including phenylpropanoid biosynthesis, hormone signaling and carbon metabolism were found significantly modulated. KEGG assessment and protein-protein interaction analysis confirm the expression data. Findings unravel the genetic determinants driving the size dependent flowering in Crocus sativus.


Crocus , Flowers , Gene Expression Profiling , Gene Expression Regulation, Plant , Indoleacetic Acids , Meristem , Signal Transduction , Flowers/genetics , Flowers/growth & development , Flowers/metabolism , Crocus/genetics , Crocus/growth & development , Crocus/metabolism , Gene Expression Regulation, Plant/genetics , Indoleacetic Acids/metabolism , Gene Expression Profiling/methods , Meristem/genetics , Meristem/growth & development , Meristem/metabolism , Signal Transduction/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Transcriptome/genetics , Sugars/metabolism , Plant Growth Regulators/metabolism
7.
BMC Plant Biol ; 24(1): 369, 2024 May 07.
Article En | MEDLINE | ID: mdl-38711012

BACKGROUND: The increasing demand for saffron metabolites in various commercial industries, including medicine, food, cosmetics, and dyeing, is driven by the discovery of their diverse applications. Saffron, derived from Crocus sativus stigmas, is the most expensive spice, and there is a need to explore additional sources to meet global consumption demands. In this study, we focused on yellow-flowering crocuses and examined their tepals to identify saffron-like compounds. RESULTS: Through metabolomic and transcriptomic approaches, our investigation provides valuable insights into the biosynthesis of compounds in yellow-tepal crocuses that are similar to those found in saffron. The results of our study support the potential use of yellow-tepal crocuses as a source of various crocins (crocetin glycosylated derivatives) and flavonoids. CONCLUSIONS: Our findings suggest that yellow-tepal crocuses have the potential to serve as a viable excessive source of some saffron metabolites. The identification of crocins and flavonoids in these crocuses highlights their suitability for meeting the demands of various industries that utilize saffron compounds. Further exploration and utilization of yellow-tepal crocuses could contribute to addressing the growing global demand for saffron-related products.


Carotenoids , Crocus , Flowers , Metabolomics , Crocus/genetics , Crocus/metabolism , Carotenoids/metabolism , Flowers/genetics , Flowers/metabolism , Flavonoids/metabolism , Gene Expression Profiling , Transcriptome , Metabolome
8.
Int J Mol Sci ; 25(9)2024 Apr 27.
Article En | MEDLINE | ID: mdl-38732009

The interaction between light and phytohormones is crucial for plant growth and development. The practice of supplementing light at night during winter to promote pitaya flowering and thereby enhance yield has been shown to be crucial and widely used. However, it remains unclear how supplemental winter light regulates phytohormone levels to promote flowering in pitaya. In this study, through analyzing the transcriptome data of pitaya at four different stages (NL, L0, L1, L2), we observed that differentially expressed genes (DEGs) were mainly enriched in the phytohormone biosynthesis pathway. We further analyzed the data and found that cytokinin (CK) content first increased at the L0 stage and then decreased at the L1 and L2 stages after supplemental light treatment compared to the control (NL). Gibberellin (GA), auxin (IAA), salicylic acid (SA), and jasmonic acid (JA) content increased during the formation of flower buds (L1, L2 stages). In addition, the levels of GA, ethylene (ETH), IAA, and abscisic acid (ABA) increased in flower buds after one week of development (L2f). Our results suggest that winter nighttime supplemental light can interact with endogenous hormone signaling in pitaya, particularly CK, to regulate flower bud formation. These results contribute to a better understanding of the mechanism of phytohormone interactions during the induction of flowering in pitaya under supplemental light in winter.


Flowers , Gene Expression Regulation, Plant , Light , Plant Growth Regulators , Seasons , Plant Growth Regulators/metabolism , Flowers/metabolism , Flowers/growth & development , Indoleacetic Acids/metabolism , Cytokinins/metabolism , Gibberellins/metabolism , Ipomoea nil/metabolism , Ipomoea nil/genetics , Transcriptome , Gene Expression Profiling , Cyclopentanes , Oxylipins
9.
Int J Mol Sci ; 25(9)2024 Apr 28.
Article En | MEDLINE | ID: mdl-38732032

Fruit shape is an important external feature when consumers choose their preferred fruit varieties. Studying persimmon (Diospyros kaki Thunb.) fruit shape is beneficial to increasing its commodity value. However, research on persimmon fruit shape is still in the initial stage. In this study, the mechanism of fruit shape formation was studied by cytological observations, phytohormone assays, and transcriptome analysis using the long fruit and flat fruit produced by 'Yaoxianwuhua' hermaphroditic flowers. The results showed that stage 2-3 (June 11-June 25) was the critical period for persimmon fruit shape formation. Persimmon fruit shape is determined by cell number in the transverse direction and cell length in the longitudinal direction. High IAA, GA4, ZT, and BR levels may promote long fruit formation by promoting cell elongation in the longitudinal direction, and high GA3 and ABA levels may be more conducive to flat fruit formation by increasing the cell number in the transverse direction and inhibiting cell elongation in the longitudinal direction, respectively. Thirty-two DEGs related to phytohormone biosynthesis and signaling pathways and nine DEGs related to cell division and cell expansion may be involved in the persimmon fruit shape formation process. These results provide valuable information for regulatory mechanism research on persimmon fruit formation.


Diospyros , Fruit , Gene Expression Profiling , Gene Expression Regulation, Plant , Plant Growth Regulators , Diospyros/genetics , Diospyros/metabolism , Diospyros/growth & development , Fruit/genetics , Fruit/metabolism , Fruit/growth & development , Plant Growth Regulators/metabolism , Gene Expression Profiling/methods , Transcriptome , Plant Proteins/metabolism , Plant Proteins/genetics , Flowers/genetics , Flowers/metabolism , Flowers/growth & development
10.
Sci Rep ; 14(1): 8102, 2024 04 06.
Article En | MEDLINE | ID: mdl-38582921

Lung cancer is a major public health issue and heavy burden in China and worldwide due to its high incidence and mortality without effective treatment. It's imperative to develop new treatments to overcome drug resistance. Natural products from food source, given their wide-ranging and long-term benefits, have been increasingly used in tumor prevention and treatment. This study revealed that Hibiscus manihot L. flower extract (HML) suppressed the proliferation and migration of A549 cells in a dose and time dependent manner and disrupting cell cycle progression. HML markedly enhanced the accumulation of ROS, stimulated the dissipation of mitochondrial membrane potential (MMP) and that facilitated mitophagy through the loss of mitochondrial function. In addition, HML induced apoptosis by activation of the PTEN-P53 pathway and inhibition of ATG5/7-dependent autophagy induced by PINK1-mediated mitophagy in A549 cells. Moreover, HML exert anticancer effects together with 5-FU through synergistic effect. Taken together, HML may serve as a potential tumor prevention and adjuvant treatment for its functional attributes.


Hibiscus , Lung Neoplasms , Manihot , Humans , A549 Cells , Hibiscus/metabolism , Manihot/metabolism , Autophagy , Lung Neoplasms/pathology , Flowers/metabolism , Apoptosis , Reactive Oxygen Species/metabolism
11.
Proc Natl Acad Sci U S A ; 121(15): e2321975121, 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38557190

Monocarpic plants have a single reproductive phase in their life. Therefore, flower and fruit production are restricted to the length of this period. This reproductive strategy involves the regulation of flowering cessation by a coordinated arrest of the growth of the inflorescence meristems, optimizing resource allocation to ensure seed filling. Flowering cessation appears to be a regulated phenomenon in all monocarpic plants. Early studies in several species identified seed production as a major factor triggering inflorescence proliferative arrest. Recently, genetic factors controlling inflorescence arrest, in parallel to the putative signals elicited by seed production, have started to be uncovered in Arabidopsis, with the MADS-box gene FRUITFULL (FUL) playing a central role in the process. However, whether the genetic network regulating arrest is also at play in other species is completely unknown. Here, we show that this role of FUL is not restricted to Arabidopsis but is conserved in another monocarpic species with a different inflorescence structure, field pea, strongly suggesting that the network controlling the end of flowering is common to other plants. Moreover, field trials with lines carrying mutations in pea FUL genes show that they could be used to boost crop yield.


Flowers , MADS Domain Proteins , Pisum sativum , Arabidopsis/genetics , Arabidopsis/metabolism , Flowers/genetics , Flowers/metabolism , Gene Expression Regulation, Plant , Gene Regulatory Networks , Pisum sativum/genetics , Pisum sativum/metabolism , MADS Domain Proteins/genetics , MADS Domain Proteins/metabolism , Pea Proteins/genetics
12.
Genes (Basel) ; 15(4)2024 Apr 18.
Article En | MEDLINE | ID: mdl-38674445

The loss of anthocyanin pigments is one of the most common evolutionary transitions in petal color, yet the genetic basis for these changes in flax remains largely unknown. In this study, we used crossing studies, a bulk segregant analysis, genome-wide association studies, a phylogenetic analysis, and transgenic testing to identify genes responsible for the transition from blue to white petals in flax. This study found no correspondence between the petal color and seed color, refuting the conclusion that a locus controlling the seed coat color is associated with the petal color, as reported in previous studies. The locus controlling the petal color was mapped using a BSA-seq analysis based on the F2 population. However, no significantly associated genomic regions were detected. Our genome-wide association study identified a highly significant QTL (BP4.1) on chromosome 4 associated with flax petal color in the natural population. The combination of a local Manhattan plot and an LD heat map identified LuMYB314, an R2R3-MYB transcription factor, as a potential gene responsible for the natural variations in petal color in flax. The overexpression of LuMYB314 in both Arabidopsis thaliana and Nicotiana tabacum resulted in anthocyanin deposition, indicating that LuMYB314 is a credible candidate gene for controlling the petal color in flax. Additionally, our study highlights the limitations of the BSA-seq method in low-linkage genomic regions, while also demonstrating the powerful detection capabilities of GWAS based on high-density genomic variation mapping. This study enhances our genetic insight into petal color variations and has potential breeding value for engineering LuMYB314 to develop colored petals, bast fibers, and seeds for multifunctional use in flax.


Flax , Flowers , Pigmentation , Transcription Factors , Anthocyanins/genetics , Anthocyanins/metabolism , Chromosome Mapping , Flax/genetics , Flax/metabolism , Flowers/genetics , Flowers/metabolism , Gene Expression Regulation, Plant , Genome-Wide Association Study , Phylogeny , Pigmentation/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Quantitative Trait Loci , Transcription Factors/genetics , Transcription Factors/metabolism
13.
Plant Physiol Biochem ; 210: 108629, 2024 May.
Article En | MEDLINE | ID: mdl-38626657

The timing of floral transition is essential for reproductive success in flowering plants. In sugarcane, flowering time affects the production of sugar and biomass. Although the function of the crucial floral pathway integrators, FLOWERING LOCUS T (FT), in sugarcane, has been uncovered, the proteins responsible for FT export and the underlying mechanism remain unexplored. In this study, we identified a member of the multiple C2 domain and transmembrane region proteins (MCTPs) family in sugarcane, FT-interacting protein 1 (ScFTIP1), which was localized to the endoplasmic reticulum. Ectopic expression of ScFTIP1 in the Arabidopsis mutant ftip1-1 rescued the late-flowering phenotype. ScFTIP1 interacted with AtFT in vitro and in vivo assays. Additionally, ScFTIP1 interacted with ScFT1 and the floral inducer ScFT3. Furthermore, we found that the NAC member, ScNAC23, could directly bind to the ScFTIP1 promoter and negatively regulate its transcription. Overall, our findings revealed the function of ScFTIP1 and proposed a potential mechanism underlying flowering regulation in sugarcane.


Arabidopsis , Flowers , Gene Expression Regulation, Plant , Plant Proteins , Saccharum , Arabidopsis/genetics , Arabidopsis/metabolism , Flowers/genetics , Flowers/growth & development , Flowers/metabolism , Saccharum/genetics , Saccharum/metabolism , Saccharum/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Plants, Genetically Modified
14.
Plant Physiol Biochem ; 210: 108630, 2024 May.
Article En | MEDLINE | ID: mdl-38657548

WRKY transcription factors (TFs), originating in green algae, regulate flowering time and responses to environmental changes in plants. However, the molecular mechanisms underlying the role of WRKY TFs in the correlation between flowering time and environmental changes remain unclear. Therefore, this review summarizes the association of WRKY TFs with flowering pathways to accelerate or delay flowering. WRKY TFs are implicated in phytohormone pathways, such as ethylene, auxin, and abscisic acid pathways, to modulate flowering time. WRKY TFs can modulate salt tolerance by regulating flowering time. WRKY TFs exhibit functional divergence in modulating environmental changes and flowering time. In summary, WRKY TFs are involved in complex pathways and modulate response to environmental changes, thus regulating flowering time.


Flowers , Plant Proteins , Transcription Factors , Flowers/genetics , Flowers/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Gene Expression Regulation, Plant , Plant Growth Regulators/metabolism
15.
Plant Sci ; 344: 112100, 2024 Jul.
Article En | MEDLINE | ID: mdl-38679393

Jatropha curcas (J. curcas) is a perennial oil-seed plant with vigorous vegetative growth but relatively poor reproductive growth and low seed yield. Gibberellins (GAs) promotes flowering in most annual plants but inhibits flowering in many woody plants, including J. curcas. However, the underlying mechanisms of GA inhibits flowering in perennial woody plants remain unclear. Here, we found that overexpression of the GA biosynthesis gene JcGA20ox1 inhibits flowering in J. curcas and in J. curcas × J. integerrima hybrids. Consistent with this finding, overexpression of the GA catabolic gene JcGA2ox6 promotes flowering in J. curcas. qRTPCR revealed that inhibits floral transition by overexpressing JcGA20ox1 resulted from a decrease in the expression of JcFT and other flowering-related genes, which was restored by overexpressing JcFT in J. curcas. Overexpression of JcGA20ox1 or JcGA2ox6 reduced seed yield, but overexpression of JcFT significantly increased seed yield. Furthermore, hybridization experiments showed that the reduction in seed yield caused by overexpression of JcGA20ox1 or JcGA2ox6 was partially restored by the overexpression of JcFT. In addition, JcGA20ox1, JcGA2ox6 and JcFT were also found to be involved in the regulation of seed oil content and endosperm development. In conclusion, our study revealed that the inhibitory effect of GA on flowering is mediated through JcFT and demonstrated the effects of JcGA20ox1, JcGA2ox6 and JcFT on agronomic traits in J. curcas. This study also indicates the potential value of GA metabolism genes and JcFT in the breeding of new varieties of woody oil-seed plants.


Flowers , Gibberellins , Jatropha , Plant Proteins , Gibberellins/metabolism , Flowers/genetics , Flowers/growth & development , Flowers/metabolism , Jatropha/genetics , Jatropha/metabolism , Jatropha/growth & development , Jatropha/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Plants, Genetically Modified/genetics , Seeds/genetics , Seeds/growth & development , Seeds/metabolism
16.
Molecules ; 29(8)2024 Apr 17.
Article En | MEDLINE | ID: mdl-38675642

Flower color is an important ornamental feature that is often modulated by the contents of flavonoids. Chalcone synthase is the first key enzyme in the biosynthesis of flavonoids, but little is known about the role of R. delavayi CHS in flavonoid biosynthesis. In this paper, three CHS genes (RdCHS1-3) were successfully cloned from R. delavayi flowers. According to multiple sequence alignment and a phylogenetic analysis, only RdCHS1 contained all the highly conserved and important residues, which was classified into the cluster of bona fide CHSs. RdCHS1 was then subjected to further functional analysis. Real-time PCR analysis revealed that the transcripts of RdCHS1 were the highest in the leaves and lowest in the roots; this did not match the anthocyanin accumulation patterns during flower development. Biochemical characterization displayed that RdCHS1 could catalyze p-coumaroyl-CoA and malonyl-CoA molecules to produce naringenin chalcone. The physiological function of RdCHS1 was checked in Arabidopsis mutants and tobacco, and the results showed that RdCHS1 transgenes could recover the color phenotypes of the tt4 mutant and caused the tobacco flower color to change from pink to dark pink through modulating the expressions of endogenous structural and regulatory genes in the tobacco. All these results demonstrate that RdCHS1 fulfills the function of a bona fide CHS and contributes to flavonoid biosynthesis in R. delavayi.


Acyltransferases , Chalcones , Flavonoids , Flowers , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins , Rhododendron , Acyltransferases/genetics , Acyltransferases/metabolism , Flavonoids/biosynthesis , Flavonoids/metabolism , Rhododendron/genetics , Rhododendron/metabolism , Flowers/genetics , Flowers/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Nicotiana/genetics , Nicotiana/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Plants, Genetically Modified/genetics , Anthocyanins/biosynthesis , Anthocyanins/metabolism , Cloning, Molecular , Mutation
17.
J Plant Physiol ; 297: 154256, 2024 Jun.
Article En | MEDLINE | ID: mdl-38657393

Basic helix-loop-helix (bHLH) transcription factors play various important roles in plant growth and development. In this study, a AabHLH48 was identified in the floral organ of Adonis amurensis, a perennial herb that can naturally complete flowering at extreme low temperatures. AabHLH48 was widely expressed in various tissues or organs of A. amurensis and was localized in the nucleus. Overexpression of AabHLH48 promotes early flowering in Arabidopsis under both photoperiod (12 h light/12 h dark and 16 h light/8 h dark) and temperature (22 and 18 °C) conditions. Transcriptome sequencing combined with quantitative real-time PCR analysis showed that overexpression of AabHLH48 caused a general upregulation of genes involved in floral development in Arabidopsis, especially for AtAGAMOUS-LIKE 8/FRUITFULL (AtAGL8/FUL). The yeast one-hybrid assay revealed that AabHLH48 has transcriptional activating activity and can directly bind to the promoter region of AtAGL8/FUL. These results suggest that the overexpression of AabHLH48 promoting early flowering in Arabidopsis is associated with the upregulated expression of AtAGL8/FUL activated by AabHLH48. This indicates that AabHLH48 can serve as an important genetic resource for improving flowering-time control in other ornamental plants or crops.


Adonis , Arabidopsis , Basic Helix-Loop-Helix Transcription Factors , Flowers , Gene Expression Regulation, Plant , Plant Proteins , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/growth & development , Arabidopsis/physiology , Flowers/genetics , Flowers/growth & development , Flowers/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Adonis/genetics , Adonis/metabolism , Photoperiod , MADS Domain Proteins/genetics , MADS Domain Proteins/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Plants, Genetically Modified/genetics
18.
BMC Plant Biol ; 24(1): 294, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38632532

BACKGROUND: Floral scents play a crucial role in attracting insect pollinators. Among the compounds attractive to pollinators is 1,4-dimethoxybenzene (1,4-DMB). It is a significant contributor to the scent profile of plants from various genera, including economically important Cucurbita species. Despite its importance, the biosynthetic pathway for the formation of 1,4-DMB was not elucidated so far. RESULTS: In this study we showed the catalysis of 1,4-DMB in the presence of 4-methoxyphenol (4-MP) by protein extract from Styrian oil pumpkin (Cucurbita pepo) flowers. Based on this finding, we identified a novel O-methyltransferase gene, Cp4MP-OMT, whose expression is highly upregulated in the volatile-producing tissue of pumpkin flowers when compared to vegetative tissues. OMT activity was verified by purified recombinant Cp4MP-OMT, illustrating its ability to catalyse the methylation of 4-MP to 1,4-DMB in the presence of cofactor SAM (S-(5'-adenosyl)-L-methionine). CONCLUSIONS: Cp4MP-OMT is a novel O-methyltransferase from C. pepo, responsible for the final step in the biosynthesis of the floral scent compound 1,4-DMB. Considering the significance of 1,4-DMB in attracting insects for pollination and in the further course fruit formation, enhanced understanding of its biosynthetic pathways holds great promise for both ecological insights and advancements in plant breeding initiatives.


Anisoles , Cucurbita , Methyltransferases , Methyltransferases/genetics , Plant Breeding , Pollination , Plants/metabolism , Flowers/metabolism , Catalysis
19.
Sheng Wu Gong Cheng Xue Bao ; 40(4): 1017-1028, 2024 Apr 25.
Article Zh | MEDLINE | ID: mdl-38658145

Brassica juncea (mustard) is a vegetable crop of Brassica, which is widely planted in China. The yield and quality of stem mustard are greatly influenced by the transition from vegetative growth to reproductive growth, i.e., flowering. The WRKY transcription factor family is ubiquitous in higher plants, and its members are involved in the regulation of many growth and development processes, including biological/abiotic stress responses and flowering regulation. WRKY71 is an important member of the WRKY family. However, its function and mechanism in mustard have not been reported. In this study, the BjuWRKY71-1 gene was cloned from B. juncea. Bioinformatics analysis and phylogenetic tree analysis showed that the protein encoded by BjuWRKY71-1 has a conserved WRKY domain, belonging to class Ⅱ WRKY protein, which is closely related to BraWRKY71-1 in Brassica rapa. The expression abundance of BjuWRKY71-1 in leaves and flowers was significantly higher than that in roots and stems, and the expression level increased gradually along with plant development. The result of subcellular localization showed that BjuWRKY71-1 protein was located in nucleus. The flowering time of overexpressing BjuWRKY71-1 Arabidopsis plants was significantly earlier than that of the wild type. Yeast two-hybrid assay and dual-luciferase reporter assay showed that BjuWRKY71-1 interacted with the promoter of the flowering integrator BjuSOC1 and promoted the expression of its downstream genes. In conclusion, BjuWRKY71-1 protein can directly target BjuSOC1 to promote plant flowering. This discovery may facilitate further clarifying the molecular mechanism of BjuWRKY71-1 in flowering time control, and creating new germplasm with bolting and flowering tolerance in mustard.


Flowers , Gene Expression Regulation, Plant , Mustard Plant , Plant Proteins , Transcription Factors , Mustard Plant/genetics , Mustard Plant/metabolism , Mustard Plant/growth & development , Flowers/genetics , Flowers/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Phylogeny , MADS Domain Proteins/genetics , MADS Domain Proteins/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arabidopsis/genetics
20.
Nat Commun ; 15(1): 2912, 2024 Apr 04.
Article En | MEDLINE | ID: mdl-38575617

Morphogenesis requires the coordination of cellular behaviors along developmental axes. In plants, gradients of growth and differentiation are typically established along a single longitudinal primordium axis to control global organ shape. Yet, it remains unclear how these gradients are locally adjusted to regulate the formation of complex organs that consist of diverse tissue types. Here we combine quantitative live imaging at cellular resolution with genetics, and chemical treatments to understand the formation of Arabidopsis thaliana female reproductive organ (gynoecium). We show that, contrary to other aerial organs, gynoecium shape is determined by two orthogonal, time-shifted differentiation gradients. An early mediolateral gradient controls valve morphogenesis while a late, longitudinal gradient regulates style differentiation. Local, tissue-dependent action of these gradients serves to fine-tune the common developmental program governing organ morphogenesis to ensure the specialized function of the gynoecium.


Arabidopsis Proteins , Arabidopsis , Fruit/metabolism , Flowers/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Morphogenesis , Gene Expression Regulation, Plant
...