Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 943
1.
Environ Sci Technol ; 58(19): 8264-8277, 2024 May 14.
Article En | MEDLINE | ID: mdl-38691655

Prenatal per- and poly-fluoroalkyl substances (PFAS) exposure may influence gestational outcomes through bioactive lipids─metabolic and inflammation pathway indicators. We estimated associations between prenatal PFAS exposure and bioactive lipids, measuring 12 serum PFAS and 50 plasma bioactive lipids in 414 pregnant women (median 17.4 weeks' gestation) from three Environmental influences on Child Health Outcomes Program cohorts. Pairwise association estimates across cohorts were obtained through linear mixed models and meta-analysis, adjusting the former for false discovery rates. Associations between the PFAS mixture and bioactive lipids were estimated using quantile g-computation. Pairwise analyses revealed bioactive lipid levels associated with PFDeA, PFNA, PFOA, and PFUdA (p < 0.05) across three enzymatic pathways (cyclooxygenase, cytochrome p450, lipoxygenase) in at least one combined cohort analysis, and PFOA and PFUdA (q < 0.2) in one linear mixed model. The strongest signature revealed doubling in PFOA corresponding with PGD2 (cyclooxygenase pathway; +24.3%, 95% CI: 7.3-43.9%) in the combined cohort. Mixture analysis revealed nine positive associations across all pathways with the PFAS mixture, the strongest signature indicating a quartile increase in the PFAS mixture associated with PGD2 (+34%, 95% CI: 8-66%), primarily driven by PFOS. Bioactive lipids emerged as prenatal PFAS exposure biomarkers, deepening insights into PFAS' influence on pregnancy outcomes.


Fluorocarbons , Lipids , Humans , Female , Pregnancy , Lipids/blood , Fluorocarbons/blood , Child Health , Cohort Studies , Cross-Sectional Studies , Adult , Environmental Pollutants/blood , Environmental Exposure , Maternal Exposure , Child
2.
Environ Int ; 187: 108720, 2024 May.
Article En | MEDLINE | ID: mdl-38718676

BACKGROUND: Prenatal exposure to per- and polyfluoroalkyl substances (PFASs) influences neurodevelopment. Thyroid homeostasis disruption is thought to be a possible underlying mechanism. However, current epidemiological evidence remains inconclusive. OBJECTIVES: This study aimed to explore the effects of prenatal PFAS exposure on the intelligence quotient (IQ) of school-aged children and assess the potential mediating role of fetal thyroid function. METHODS: The study included 327 7-year-old children from the Sheyang Mini Birth Cohort Study (SMBCS). Cord serum samples were analyzed for 12 PFAS concentrations and 5 thyroid hormone (TH) levels. IQ was assessed using the Wechsler Intelligence Scale for Children-Chinese Revised (WISC-CR). Generalized linear models (GLM) and Bayesian Kernel Machine Regression (BKMR) were used to evaluate the individual and combined effects of prenatal PFAS exposure on IQ. Additionally, the impact on fetal thyroid function was examined using a GLM, and a mediation analysis was conducted to explore the potential mediating roles of this function. RESULTS: The molar sum concentration of perfluorinated carboxylic acids (ΣPFCA) in cord serum was significantly negatively associated with the performance IQ (PIQ) of 7-year-old children (ß = -6.21, 95 % confidence interval [CI]: -12.21, -0.21), with more pronounced associations observed among girls (ß = -9.57, 95 % CI: -18.33, -0.81) than in boys. Negative, albeit non-significant, cumulative effects were noted when considering PFAS mixture exposure. Prenatal exposure to perfluorooctanoic acid, perfluorononanoic acid, and perfluorooctanesulfonic acid was positively associated with the total thyroxine/triiodothyronine ratio. However, no evidence supported the mediating role of thyroid function in the link between PFAS exposure and IQ. CONCLUSIONS: Increased prenatal exposure to PFASs negatively affected the IQ of school-aged children, whereas fetal thyroid function did not serve as a mediator in this relationship.


Environmental Pollutants , Fluorocarbons , Intelligence , Prenatal Exposure Delayed Effects , Thyroid Gland , Humans , Female , Prenatal Exposure Delayed Effects/chemically induced , Child , Pregnancy , Fluorocarbons/toxicity , Fluorocarbons/blood , Male , Intelligence/drug effects , Thyroid Gland/drug effects , Environmental Pollutants/blood , Environmental Pollutants/toxicity , Birth Cohort , Cohort Studies , Thyroid Hormones/blood , Intelligence Tests , China , Maternal Exposure/adverse effects , Fetal Blood/chemistry , Alkanesulfonic Acids/blood , Alkanesulfonic Acids/toxicity
3.
Environ Int ; 187: 108719, 2024 May.
Article En | MEDLINE | ID: mdl-38718677

Per- and polyfluoroalkyl substances (PFAS) have been shown to penetrate the blood-brain barrier (BBB) and accumulate in human brain. The BBB transmission and accumulation efficiency of PFAS, as well as the potential health risks from human co-exposure to legacy and emerging PFAS due to differences in transport efficiency, need to be further elucidated. In the present pilot study, 23 plasma samples from glioma patients were analyzed for 17 PFAS. The concentrations of PFAS in six paired brain tissue and plasma samples were used to calculate the BBB transmission efficiency of PFAS (RPFAS). This RPFAS analysis was conducted with utmost care and consideration amid the limited availability of valuable paired samples. The results indicated that low molecular weight PFAS, including short-chain and emerging PFAS, may have a greater potential for accumulation in brain tissue than long-chain PFAS. As an alternative to perfluorooctane sulfonic acid (PFOS), 6:2 chlorinated polyfluorinated ether sulfonate (6:2 Cl-PFESA) exhibited brain accumulation potential similar to that of PFOS, suggesting it may not be a suitable substitute concerning health risk in brain. The BBB transmission efficiencies of perfluorooctanoic acid, PFOS, and 6:2 Cl-PFESA showed similar trends with age, which may be an important factor influencing the entry of exogenous compounds into the brain. A favorable link between perfluorooctane sulfonamide (FOSA) and the development and/or progression of glioma may be implicated by a strong positive correlation (r2 = 0.94; p < 0.01) between RFOSA and Ki-67 (a molecular marker of glioma). However, a causal relationship between RFOSA and glioma incidence were not established in the present study. The present pilot study conducted the first examination of BBB transmission efficiency of PFAS from plasma to brain tissue and highlighted the importance of reducing and/or controlling exposure to PFAS.


Blood-Brain Barrier , Fluorocarbons , Humans , Blood-Brain Barrier/metabolism , Pilot Projects , Fluorocarbons/blood , Middle Aged , Female , Adult , Male , Glioma , Aged , Environmental Pollutants/blood , Environmental Exposure , Alkanesulfonic Acids/blood , Brain/metabolism
4.
Sci Total Environ ; 932: 173085, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38729377

The presence of perfluoroalkyl and polyfluoroalkyl substances (PFAS) in various everyday products has raised concerns about their potential impact on prostate health. This study aimed to investigate the effects of different types of PFAS on prostate health, including PFDeA, PFOA, PFOS, PFHxS, and PFNA. To assess the relationship between PFAS exposure and prostate injury, machine learning algorithms were employed to analyze prostate-specific antigen (PSA) metrics. The analysis revealed a linear and positive dose-dependent association between PFOS and the ratio of free PSA to total PSA (f/tPSA). Non-linear dose-response relationships were observed between the other four types of PFAS and the f/tPSA ratio. Additionally, the analysis showed a positive association between the mixture of PFAS and prostate hyperplasia, with PFNA having the highest impact followed by PFOS. These findings suggest that elevated serum levels of PFDeA, PFOA, PFOS, and PFNA are linked to prostate hyperplasia. Therefore, this study utilized advanced machine learning techniques to uncover potential hazardous effects of PFAS exposure on prostate health, specifically the positive association between PFAS and prostate hyperplasia.


Fluorocarbons , Prostatic Hyperplasia , Male , Fluorocarbons/blood , Humans , Environmental Exposure/statistics & numerical data , Environmental Pollutants/blood , Machine Learning , Alkanesulfonic Acids/blood , Prostate-Specific Antigen/blood
5.
Environ Int ; 187: 108727, 2024 May.
Article En | MEDLINE | ID: mdl-38735074

BACKGROUND: There is inconclusive evidence for an association between per- and polyfluoroalkyl substances (PFAS) and fetal growth. OBJECTIVES: We conducted a nation-wide register-based cohort study to assess the associations of the estimated maternal exposure to the sum (PFAS4) of perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA) and perfluorohexane sulfonic acid (PFHxS) with birthweight as well as risk of small- (SGA) and large-for-gestational-age (LGA). MATERIALS AND METHODS: We included all births in Sweden during 2012-2018 of mothers residing ≥ four years prior to partus in localities served by municipal drinking water where PFAS were measured in raw and drinking water. Using a one-compartment toxicokinetic model we estimated cumulative maternal blood levels of PFAS4 during pregnancy by linking residential history, municipal PFAS water concentration and year-specific background serum PFAS concentrations in Sweden. Individual birth outcomes and covariates were obtained via register linkage. Mean values and 95 % confidence intervals (CI) of ß coefficients and odds ratios (OR) were estimated by linear and logistic regressions, respectively. Quantile g-computation regression was conducted to assess the impact of PFAS4 mixture. RESULTS: Among the 248,804 singleton newborns included, no overall association was observed for PFAS4 and birthweight or SGA. However, an association was seen for LGA, multivariable-adjusted OR 1.08 (95% CI: 1.01-1.16) when comparing the highest PFAS4 quartile to the lowest. These associations remained for mixture effect approach where all PFAS, except for PFOA, contributed with a positive weight. DISCUSSIONS: We observed an association of the sum of PFAS4 - especially PFOS - with increased risk of LGA, but not with SGA or birthweight. The limitations linked to the exposure assessment still require caution in the interpretation.


Alkanesulfonic Acids , Birth Weight , Caprylates , Drinking Water , Fetal Development , Fluorocarbons , Maternal Exposure , Water Pollutants, Chemical , Fluorocarbons/blood , Fluorocarbons/analysis , Humans , Drinking Water/chemistry , Female , Sweden , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/blood , Pregnancy , Adult , Alkanesulfonic Acids/blood , Maternal Exposure/statistics & numerical data , Fetal Development/drug effects , Birth Weight/drug effects , Caprylates/blood , Infant, Newborn , Cohort Studies , Sulfonic Acids/blood , Registries , Male , Infant, Small for Gestational Age , Young Adult
6.
Sci Total Environ ; 930: 172840, 2024 Jun 20.
Article En | MEDLINE | ID: mdl-38685432

Exposure to per- and poly-fluoroalkyl substances (PFAS) is ubiquitous due to their persistence in the environment and in humans. Extreme weight loss has been shown to influence concentrations of circulating persistent organic pollutants (POPs). Using data from the multi-center perspective Teen-Longitudinal Assessment of Bariatric Surgery (Teen-LABS) cohort, we investigated changes in plasma-PFAS in adolescents after bariatric surgery. Adolescents (Mean age = 17.1 years, SD = 1.5 years) undergoing bariatric surgery were enrolled in the Teen-LABS study. Plasma-PFAS were measured at the time of surgery and then 6-, 12-, and 36 months post-surgery. Linear mixed effect models were used to evaluate longitudinal changes in plasma-PFAS after the time of bariatric surgery. This study included 214 adolescents with severe obesity who had available longitudinal measures of plasma-PFAS and underwent bariatric surgery between 2007 and 2012. Underlying effects related to undergoing bariatric surgery were found to be associated with an initial increase or plateau in concentrations of circulating PFAS up to 6 months after surgery followed by a persistent decline in concentrations of 36 months (p < 0.001 for all plasma-PFAS). Bariatric surgery in adolescents was associated with a decline in circulating PFAS concentrations. Initially following bariatric surgery (0-6 months) concentrations were static followed by decline from 6 to 36 months following surgery. This may have large public health implications as PFAS are known to be associated with numerous metabolic related diseases and the significant reduction in circulating PFAS in individuals who have undergone bariatric surgery may be related to the improvement of such metabolic related diseases following bariatric surgery.


Bariatric Surgery , Environmental Pollutants , Humans , Adolescent , Male , Female , Longitudinal Studies , Environmental Pollutants/blood , Environmental Exposure/statistics & numerical data , Fluorocarbons/blood , Obesity, Morbid/surgery , Obesity, Morbid/blood
7.
Environ Pollut ; 350: 123937, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38631453

Per- and poly-fluoroalkyl substances (PFAS) have been reported to have hepatotoxic effects. However, it is unclear whether they are linked to non-alcoholic fatty liver disease (NAFLD). This nested case-control study focused on the epidemiological links between PFAS and the prevalence of NAFLD. We selected 476 new cases of NAFLD and 952 age- and sex-matched controls from the Jinchang cohort population between 2014 and 2019. Serum concentrations of PFAS were measured using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Only PFAS with a detection rate of ≥90 % were included for analysis, which included PFPeA, PFOA, PFNA, PFHxS, PFOS, and 9Cl-PF3ONS. The relationship between single and co-exposure to PFAS and the occurrence of NAFLD was evaluated using conditional logistic regression, Quantile g-computation (QgC), and Bayesian kernel machine regression (BKMR) model. Logistic regression indicated that PFPeA, PFOA, and 9Cl-PF3ONS were positive correlation with the incidence of NAFLD after adjusting for confounders, with odds ratios (OR) and 95 % confidence interval (CI) of 3.13 (95 % CI: 2.53, 3.86), 1.39 (95 % CI: 1.12, 1.73), and 1.41 (95 % CI: 1.20, 1.66), respectively. PFNA, PFHxS, and PFOS were nonlinearly and negatively associated with the incidence of NAFLD, with OR (95 % CI) of 0.53 (0.46, 0.62), 0.83 (0.73, 0.95), and 0.52 (0.44, 0.61), respectively. QgC showed a significant joint effect of PFAS mixture on NAFLD onset (OR: 1.52, 95 % CI: 1.24, 1.88). BKMR showed a weak positive trend between PFAS mixtures and NAFLD incidence. Positive correlations were primarily driven by PFPeA and 9Cl-PF3ONS, while negative correlations were mainly influenced by PFNA and PFOS. The BKMR model also suggested that there was an interaction between PFOS and PFNA and other four PFAS compounds. In conclusion, our findings suggest that individual and co-exposure to PFAS is associated with a risk of NAFLD onset.


Environmental Pollutants , Fluorocarbons , Non-alcoholic Fatty Liver Disease , Non-alcoholic Fatty Liver Disease/epidemiology , Non-alcoholic Fatty Liver Disease/chemically induced , Case-Control Studies , Humans , Fluorocarbons/blood , China/epidemiology , Male , Female , Middle Aged , Environmental Pollutants/blood , Adult , Environmental Exposure/statistics & numerical data
8.
Environ Pollut ; 350: 123995, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38636840

Per- and polyfluoroalkyl substances (PFASs) have potential carcinogenicity, immunotoxicity, and hepatotoxicity. Research has been conducted on PFAS exposure in people to discuss their potential health effects, excluding lung cancer. In this study, we recruited participants (n = 282) with lung cancer from Heilongjiang Province, northeast China. The PFAS concentrations were measured in their serum to fill the data gap of exposure, and relationships were explored in levels between PFASs and clinical indicators of tumor, immune and liver function. Ten PFASs were found in over 80 % of samples and their total concentrations were 5.27-152 ng/mL, with the highest level for perfluorooctanesulfonate (median: 12.4 ng/mL). Long-chain PFASs were the main congeners and their median concentration (20.5 ng/mL) was nearly three times to that of short-chain PFASs (7.61 ng/mL). Significantly higher concentrations of perfluorobutanoic acid, perfluorononanoic acid and perfluorohexanesulfonate were found in males than in females (p < 0.05). Serum levels of neuro-specific enolase were positively associated with perfluoropentanoic acid in all participants and were negatively associated with perfluorononanesulfonate in females (p < 0.05, multiple linear regression models). Exposure to PFAS mixture was significantly positively associated with the lymphocytic absolute value (difference: 0.224, 95% CI: 0.018, 0.470; p < 0.05, quantile g-computation models) and serum total bilirubin (difference: 2.177, 95% CI: 0.0335, 4.33; p < 0.05). Moreover, PFAS exposure can affect γ-glutamyl transpeptidase through several immune markers (p < 0.05, mediating test). Our results suggest that exposure to certain PFASs could interfere with clinical indicators in lung cancer patients. To our knowledge, this is the first study to detect serum PFAS occurrence and check their associations with clinical indicators in lung cancer patients.


Alkanesulfonic Acids , Environmental Exposure , Environmental Pollutants , Fluorocarbons , Lung Neoplasms , Humans , Fluorocarbons/blood , Female , Male , Middle Aged , China , Alkanesulfonic Acids/blood , Aged , Environmental Exposure/statistics & numerical data , Environmental Pollutants/blood , Adult , Sulfonic Acids
9.
Environ Int ; 186: 108565, 2024 Apr.
Article En | MEDLINE | ID: mdl-38574403

BACKGROUND: Endocrine disruptors (EDs) have emerged as potential contributors to the development of type-2 diabetes. Perfluorooctane sulfonate (PFOS), is one of these EDs linked with chronic diseases and gathered attention due to its widespread in food. OBJECTIVE: To assess at baseline and after 1-year of follow-up associations between estimated dietary intake (DI) of PFOS, and glucose homeostasis parameters and body-mass-index (BMI) in a senior population of 4600 non-diabetic participants from the PREDIMED-plus study. METHODS: Multivariable linear regression models were conducted to assess associations between baseline PFOS-DI at lower bound (LB) and upper bound (UB) established by the EFSA, glucose homeostasis parameters and BMI. RESULTS: Compared to those in the lowest tertile, participants in the highest tertile of baseline PFOS-DI in LB and UB showed higher levels of HbA1c [ß-coefficient(CI)] [0.01 %(0.002 to 0.026), and [0.06 mg/dL(0.026 to 0.087), both p-trend ≤ 0.001], and fasting plasma glucose in the LB PFOS-DI [1.05 mg/dL(0.050 to 2.046),p-trend = 0.022]. Prospectively, a positive association between LB of PFOS-DI and BMI [0.06 kg/m2(0.014 to 0.106) per 1-SD increment of energy-adjusted PFOS-DI was shown. Participants in the top tertile showed an increase in HOMA-IR [0.06(0.016 to 0.097), p-trend = 0.005] compared to participants in the reference tertile after 1-year of follow-up. DISCUSSION: This is the first study to explore the association between DI of PFOS and glucose homeostasis. In this study, a high baseline DI of PFOS was associated with a higher levels of fasting plasma glucose and HbA1c and with an increase in HOMA-IR and BMI after 1-year of follow-up.


Alkanesulfonic Acids , Blood Glucose , Fluorocarbons , Homeostasis , Alkanesulfonic Acids/blood , Humans , Fluorocarbons/blood , Male , Female , Aged , Blood Glucose/analysis , Middle Aged , Body Mass Index , Diabetes Mellitus, Type 2 , Endocrine Disruptors , Diet/statistics & numerical data , Aged, 80 and over , Prospective Studies , Environmental Pollutants/blood
10.
Environ Int ; 186: 108628, 2024 Apr.
Article En | MEDLINE | ID: mdl-38583297

BACKGROUND: Evidence suggests that exposure to per- and polyfluoroalkyl substances (PFAS) increases risk of high blood pressure (BP) during pregnancy. Prior studies did not examine associations with BP trajectory parameters (i.e., overall magnitude and velocity) during pregnancy, which is linked to adverse pregnancy outcomes. OBJECTIVES: To estimate associations of multiple plasma PFAS in early pregnancy with BP trajectory parameters across the second and third trimesters. To assess potential effect modification by maternal age and parity. METHODS: In 1297 individuals, we quantified six PFAS in plasma collected during early pregnancy (median gestational age: 9.4 weeks). We abstracted from medical records systolic BP (SBP) and diastolic BP (DBP) measurements, recorded from 12 weeks gestation until delivery. BP trajectory parameters were estimated via Super Imposition by Translation and Rotation modeling. Subsequently, Bayesian Kernel Machine Regression (BKMR) was employed to estimate individual and joint associations of PFAS concentrations with trajectory parameters - adjusting for maternal age, race/ethnicity, pre-pregnancy body mass index, income, parity, smoking status, and seafood intake. We evaluated effect modification by age at enrollment and parity. RESULTS: We collected a median of 13 BP measurements per participant. In BKMR, higher concentration of perfluorooctane sulfonate (PFOS) was independently associated with higher magnitude of overall SBP and DBP trajectories (i.e., upward shift of trajectories) and faster SBP trajectory velocity, holding all other PFAS at their medians. In stratified BKMR analyses, participants with ≥ 1 live birth had more pronounced positive associations between PFOS and SBP velocity, DBP magnitude, and DBP velocity - compared to nulliparous participants. We did not observe significant associations between concentrations of the overall PFAS mixture and either magnitude or velocity of the BP trajectories. CONCLUSION: Early pregnancy plasma PFOS concentrations were associated with altered BP trajectory in pregnancy, which may impact future cardiovascular health of the mother.


Blood Pressure , Environmental Pollutants , Fluorocarbons , Humans , Female , Pregnancy , Adult , Fluorocarbons/blood , Environmental Pollutants/blood , Pregnancy Trimester, Third/blood , Pregnancy Trimester, First/blood , Pregnancy Trimester, Second/blood , Young Adult , Maternal Exposure/statistics & numerical data , Alkanesulfonic Acids/blood
11.
Environ Int ; 186: 108621, 2024 Apr.
Article En | MEDLINE | ID: mdl-38593693

In utero and children's exposure to per- and polyfluoroalkyl substances (PFAS) is a major concern in health risk assessment as early life exposures are suspected to induce adverse health effects. Our work aims to estimate children's exposure (from birth to 12 years old) to PFOA and PFOS, using a Physiologically-Based Pharmacokinetic (PBPK) modelling approach. A model for PFAS was updated to simulate the internal PFAS exposures during the in utero life and childhood, and including individual characteristics and exposure scenarios (e.g., duration of breastfeeding, weight at birth, etc.). Our approach was applied to the HELIX cohort, involving 1,239 mother-child pairs with measured PFOA and PFOS plasma concentrations at two sampling times: maternal and child plasma concentrations (6 to 12 y.o). Our model predicted an increase in plasma concentrations during fetal development and childhood until 2 y.o when the maximum concentrations were reached. Higher plasma concentrations of PFOA than PFOS were predicted until 2 y.o, and then PFOS concentrations gradually became higher than PFOA concentrations. From 2 to 8 y.o, mean concentrations decreased from 3.1 to 1.88 µg/L or ng/mL (PFOA) and from 4.77 to 3.56 µg/L (PFOS). The concentration-time profiles vary with the age and were mostly influenced by in utero exposure (on the first 4 months after birth), breastfeeding (from 5 months to 2 (PFOA) or 5 (PFOS) y.o of the children), and food intake (after 3 (PFOA) or 6 (PFOS) y.o of the children). Similar measured biomarker levels can correspond to large differences in the simulated internal exposures, highlighting the importance to investigate the children's exposure over the early life to improve exposure classification. Our approach demonstrates the possibility to simulate individual internal exposures using PBPK models when measured biomarkers are scarce, helping risk assessors in gaining insight into internal exposure during critical windows, such as early life.


Alkanesulfonic Acids , Breast Feeding , Caprylates , Environmental Pollutants , Fluorocarbons , Maternal Exposure , Humans , Fluorocarbons/blood , Alkanesulfonic Acids/blood , Female , Caprylates/blood , Pregnancy , Child , Child, Preschool , Infant , Environmental Pollutants/blood , Maternal Exposure/statistics & numerical data , Infant, Newborn , Male , Environmental Exposure/analysis , Diet , Prenatal Exposure Delayed Effects , Adult
12.
Sci Total Environ ; 928: 172316, 2024 Jun 10.
Article En | MEDLINE | ID: mdl-38593875

Per- and polyfluoroalkyl substances (PFAS) are fluorinated organic compounds used in a variety of consumer products and industrial applications that persist in the environment, bioaccumulate in biological tissues, and can have adverse effects on human health, especially in vulnerable populations. In this study, we focused on PFAS exposures in residents of senior care facilities. To investigate relationships between indoor, personal, and internal PFAS exposures, we analyzed 19 PFAS in matched samples of dust collected from the residents' bedrooms, and wristbands and serum collected from the residents. The median ∑PFAS concentrations (the sum of all PFAS detected in the samples) measured in dust, wristbands, and serum were 120 ng/g, 0.05 ng/g, and 4.0 ng/mL, respectively. The most abundant compounds in serum were linear- and branched-perfluorooctane sulfonic acid (L-PFOS and B-PFOS, respectively) at medians of 1.7 ng/mL and 0.83 ng/mL, respectively, followed by the linear perfluorooctanoic acid (L-PFOA) found at a median concentration of 0.59 ng/mL. Overall, these three PFAS comprised 80 % of the serum ∑PFAS concentrations. A similar pattern was observed in dust with L-PFOS and L-PFOA found as the most abundant PFAS (median concentrations of 13 and 7.8 ng/g, respectively), with the overall contribution of 50 % to the ∑PFAS concentration. Only L-PFOA was found in wristbands at a median concentration of 0.02 ng/g. Significant correlations were found between the concentrations of several PFAS in dust and serum, and in dust and wristbands, suggesting that the indoor environment could be a significant contributor to the personal and internal PFAS exposures in seniors. Our findings demonstrate that residents of assisted living facilities are widely exposed to PFAS, with several PFAS found in blood of each study participant and in the assisted living environment.


Environmental Exposure , Fluorocarbons , Fluorocarbons/analysis , Fluorocarbons/blood , Humans , Aged , Environmental Exposure/statistics & numerical data , Environmental Exposure/analysis , Dust/analysis , Environmental Pollutants/blood , Environmental Pollutants/analysis , Environmental Monitoring , Female , Male , Alkanesulfonic Acids/blood , Alkanesulfonic Acids/analysis , Aged, 80 and over , Caprylates/blood , Caprylates/analysis , Homes for the Aged/statistics & numerical data
13.
Front Public Health ; 12: 1351786, 2024.
Article En | MEDLINE | ID: mdl-38665245

Recent evidence has revealed associations between endocrine-disrupting chemicals (EDCs) and placental insufficiency due to altered placental growth, syncytialization, and trophoblast invasion. However, no epidemiologic study has reported associations between exposure to EDCs and asymmetric fetal growth restriction (FGR) caused by placenta insufficiency. The aim of this study was to evaluate the association between EDC exposure and asymmetric FGR. This was a prospective cohort study including women admitted for delivery to the Maternal Fetal Center at Seoul St. Mary's Hospital between October 2021 and October 2022. Maternal urine and cord blood samples were collected, and the levels of bisphenol-A (BPA), monoethyl phthalates, and perfluorooctanoic acid in each specimen were analyzed. We investigated linear and non-linear associations between the levels of EDCs and fetal growth parameters, including the head circumference (HC)/abdominal circumference (AC) ratio as an asymmetric parameter. The levels of EDCs were compared between fetuses with and without asymmetric FGR. Of the EDCs, only the fetal levels of BPA showed a linear association with the HC/AC ratio after adjusting for confounding variables (ß = 0.003, p < 0.05). When comparing the normal growth and asymmetric FGR groups, the asymmetric FGR group showed significantly higher maternal and fetal BPA levels compared to the normal growth group (maternal urine BPA, 3.99 µg/g creatinine vs. 1.71 µg/g creatinine [p < 0.05]; cord blood BPA, 1.96 µg/L vs. -0.86 µg/L [p < 0.05]). In conclusion, fetal exposure levels of BPA show linear associations with asymmetric fetal growth patterns. High maternal and fetal exposure to BPA might be associated with asymmetric FGR.


Benzhydryl Compounds , Endocrine Disruptors , Fetal Blood , Fetal Growth Retardation , Maternal Exposure , Phenols , Humans , Female , Endocrine Disruptors/adverse effects , Endocrine Disruptors/blood , Endocrine Disruptors/urine , Prospective Studies , Pregnancy , Fetal Growth Retardation/chemically induced , Adult , Benzhydryl Compounds/adverse effects , Benzhydryl Compounds/urine , Benzhydryl Compounds/blood , Phenols/urine , Phenols/adverse effects , Phenols/blood , Maternal Exposure/adverse effects , Fetal Blood/chemistry , Fluorocarbons/blood , Fluorocarbons/adverse effects , Phthalic Acids/urine , Phthalic Acids/adverse effects , Caprylates/blood , Caprylates/adverse effects , Placental Insufficiency , Republic of Korea/epidemiology , Seoul/epidemiology
14.
Chemosphere ; 357: 142052, 2024 Jun.
Article En | MEDLINE | ID: mdl-38631500

BACKGROUND: Per- and polyfluoroalkyl substances (PFAS) are man-made chemicals that are slow to break down in the environment and widely detected in humans. Epidemiological evidence suggests that prenatal exposure to perfluorooctanoic acid (PFOA), a legacy PFAS, is linked to gestational hypertension and preeclampsia. However, the relationship between other PFAS, which are structurally similar, and these outcomes remains largely understudied, despite biologic plausibility. Here, we examined associations between serum PFAS mixtures in relation to hypertensive disorders of pregnancy within a birth cohort of African Americans. METHODS: Participants in the present study were enrolled in the Atlanta African American Maternal-Child cohort between 2014 and 2020 (n = 513). Serum samples collected between 8 and 14 weeks gestation were analyzed for four PFAS. Logistic regression was used to assess associations between individual natural log transformed PFAS and specific hypertensive disorders of pregnancy (preeclampsia, gestational hypertension), while quantile g-computation was used to estimate mixture effects. Preeclampsia and gestational hypertension were treated as separate outcomes in individual models. All models were adjusted for maternal education, maternal age, early pregnancy body mass index, parity, and any alcohol, tobacco, or marijuana use. RESULTS: The geometric mean of PFOS and PFHxS was slightly lower among those with preeclampsia relative to those without a hypertensive disorder (e.g., geometric mean for PFOS was 1.89 and 1.94, respectively). Serum concentrations of PFAS were not strongly associated with gestational hypertension or preeclampsia in single pollutant or mixture models. For example, using quantile g-computation, a simultaneous one quartile increase in all PFAS was not associated with odds of gestational hypertension (odds ratio = 0.86, 95% CI = 0.60, 1.23), relative to those without a hypertensive disorder of pregnancy. CONCLUSIONS: In this birth cohort of African Americans, there was no association between serum PFAS measured in early pregnancy and hypertensive disorders of pregnancy, which may be reflective of the fairly low PFAS levels in our study population.


Black or African American , Environmental Pollutants , Fluorocarbons , Hypertension, Pregnancy-Induced , Maternal Exposure , Humans , Female , Fluorocarbons/blood , Pregnancy , Black or African American/statistics & numerical data , Adult , Hypertension, Pregnancy-Induced/epidemiology , Hypertension, Pregnancy-Induced/blood , Maternal Exposure/statistics & numerical data , Environmental Pollutants/blood , Cohort Studies , Caprylates/blood , Georgia/epidemiology , Young Adult , Prenatal Exposure Delayed Effects , Pre-Eclampsia/blood , Pre-Eclampsia/epidemiology , Alkanesulfonic Acids/blood
15.
J Hazard Mater ; 471: 134312, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38640681

Previous studies indicated per- and poly-fluoroalkyl substances (PFAS) were related to uric acid and hyperuricemia risk, but evidence for the exposure-response (E-R) curves and combined effect of PFAS mixture is limited. Moreover, the potential mediation effect of kidney function was not assessed. Hence, we conducted a national cross-sectional study involving 13,979 US adults in NHANES 2003-2018 to examine the associations of serum PFAS with uric acid and hyperuricemia risk, and the mediation effects of kidney function. Generalized linear models and E-R curves showed positive associations of individual PFAS with uric acid and hyperuricemia risk, and nearly linear E-R curves indicated no safe threshold for PFAS. Weighted quantile sum regression found positive associations of PFAS mixture with uric acid and hyperuricemia risk, and PFOA was the dominant contributor to the adverse effect of PFAS on uric acid and hyperuricemia risk. Causal mediation analysis indicated significant mediation effects of kidney function decline in the associations of PFAS with uric acid and hyperuricemia risk, with the mediated proportion ranging from 19 % to 57 %. Our findings suggested that PFAS, especially PFOA, may cause increased uric acid and hyperuricemia risk increase even at low levels, and kidney function decline plays a crucial mediation effect.


Fluorocarbons , Hyperuricemia , Kidney , Uric Acid , Humans , Uric Acid/blood , Hyperuricemia/chemically induced , Hyperuricemia/blood , Male , Middle Aged , Female , Adult , Fluorocarbons/toxicity , Fluorocarbons/blood , Cross-Sectional Studies , Kidney/drug effects , Kidney/physiopathology , Environmental Pollutants/toxicity , Environmental Pollutants/blood , Environmental Exposure/adverse effects , Nutrition Surveys , Aged
16.
Sci Total Environ ; 929: 172483, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38631629

Per- and polyfluoroalkyl substances (PFAS) remain controversial due to their high persistency and potential human toxicity. Although occupational exposure to PFAS has been widely investigated, the implications of PFAS occurrence in the general population remain to be unraveled. Considering that serum from most people contains PFAS, the aim of this study was to characterize the lipidomic profile in human serum from a general cohort (n = 40) with residual PFAS levels. The geometric means of ∑PFAS (11.8 and 4.4 ng/mL) showed significant differences (p < 0.05) for the samples with the highest (n = 20) and lowest (n = 20) concentrations from the general population respectively. Reverse-phase liquid chromatography coupled to drift tube ion mobility and high-resolution mass spectrometry using dual polarity ionization was used to characterize the lipid profile in both groups. The structural elucidation involved the integration of various parameters, such as retention time, mass-to-charge ratio, tandem mass spectra and collision cross section values. This approach yielded a total of 20 potential biomarkers linked to the perturbed glycerophospholipid metabolism, energy metabolism and sphingolipid metabolism. Among these alterations, most lipids were down-regulated and some specific lipids (PC 36:5, PC 37:4 and PI O-34:2) exhibited a relatively strong Spearman correlation and predictive capacity for PFAS contamination. This study could support further toxicological assessments and mechanistic investigations into the effects of PFAS exposure on the lipidome.


Environmental Pollutants , Fluorocarbons , Lipidomics , Humans , Fluorocarbons/blood , Environmental Pollutants/blood , Chromatography, Liquid , China , Mass Spectrometry , Cohort Studies , Adult , Male , Environmental Exposure/statistics & numerical data , Female , Middle Aged , Ion Mobility Spectrometry/methods , Lipids/blood , Environmental Monitoring/methods , East Asian People
17.
Eur Thyroid J ; 13(3)2024 Jun 01.
Article En | MEDLINE | ID: mdl-38657654

Objective: The aim was to evaluate the possible association between some endocrine disruptive chemicals and thyroid cancer (TC) in an Italian case-control cohort. Methods: We enrolled 112 TC patients and 112 sex- and age-matched controls without known thyroid diseases. Per- and poly-fluoroalkyl substances (PFAS), poly-chlorinated biphenyls (PCBs), and dichlorodiphenyltrichloroethane (4,4'-DDT and 4,4'-DDE) were measured in the serum by liquid or gas chromatography-mass spectrometry. Unconditional logistic regression, Bayesan kernel machine regression and weighted quantile sum models were used to estimate the association between TC and pollutants' levels, considered individually or as mixture. BRAFV600E mutation was assessed by standard methods. Results: The detection of perfluorodecanoic acid (PFDA) was positively correlated to TC (OR = 2.03, 95% CI: 1.10-3.75, P = 0.02), while a negative association was found with perfluorohexanesulfonic acid (PFHxS) levels (OR = 0.63, 95% CI: 0.41-0.98, P = 0.04). Moreover, perfluorononanoic acid (PFNA) was positively associated with the presence of thyroiditis, while PFHxS and perfluorooctane sulfonic acid (PFOS) with higher levels of presurgical thyroid-stimulating hormone (TSH). PFHxS, PFOS, PFNA, and PFDA were correlated with less aggressive TC, while poly-chlorinated biphenyls (PCB-105 and PCB-118) with larger and more aggressive tumors. Statistical models showed a negative association between pollutants' mixture and TC. BRAF V600E mutations were associated with PCB-153, PCB-138, and PCB-180. Conclusion: Our study suggests, for the first time in a case-control population, that exposure to some PFAS and PCBs associates with TC and some clinical and molecular features. On the contrary, an inverse correlation was found with both PFHxS and pollutants' mixture, likely due to a potential reverse causality.


Alkanesulfonic Acids , Endocrine Disruptors , Fluorocarbons , Persistent Organic Pollutants , Polychlorinated Biphenyls , Thyroid Neoplasms , Humans , Case-Control Studies , Fluorocarbons/blood , Fluorocarbons/adverse effects , Female , Male , Middle Aged , Endocrine Disruptors/blood , Endocrine Disruptors/adverse effects , Thyroid Neoplasms/epidemiology , Thyroid Neoplasms/blood , Thyroid Neoplasms/chemically induced , Thyroid Neoplasms/genetics , Polychlorinated Biphenyls/blood , Polychlorinated Biphenyls/adverse effects , Alkanesulfonic Acids/blood , Adult , Persistent Organic Pollutants/adverse effects , Persistent Organic Pollutants/blood , Aged , Dichlorodiphenyl Dichloroethylene/blood , Decanoic Acids/blood , Decanoic Acids/adverse effects , DDT/blood , DDT/adverse effects , Italy/epidemiology , Caprylates/blood , Caprylates/adverse effects , Proto-Oncogene Proteins B-raf/genetics , Fatty Acids/blood , Sulfonic Acids/blood , Mutation , Environmental Exposure/adverse effects
18.
Sci Total Environ ; 929: 172445, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38642767

BACKGROUND: Per- and polyfluoroalkyl substances (PFAS) are endocrine-disrupting chemicals with neurotoxic properties. PFAS have been associated with depressive symptoms among women in some studies, but little research has evaluated the effects of PFAS mixtures. Further, no study has investigated interactions of PFAS-depression associations by perceived stress, which has been shown to modify the effects of PFAS on other health outcomes. OBJECTIVE: In a prospective cohort study of reproductive-aged Black women, we investigated associations between PFAS and depressive symptoms and the extent to which perceived stress modified these associations. METHODS: We analyzed data from 1499 participants (23-35 years) in the Study of Environment, Lifestyle, and Fibroids. We quantified concentrations of nine PFAS in baseline plasma samples using online solid-phase extraction-liquid chromatography-isotope dilution tandem mass spectrometry. Participants reported perceived stress via the Perceived Stress Scale (PSS-4; range = 0-16) at baseline and depressive symptoms via the Center for Epidemiologic Studies Depression Scale (CESD; range = 0-44) at the 20-month follow-up visit. We used Bayesian Kernel Machine Regression to estimate associations between PFAS concentrations, individually and as a mixture, and depressive symptoms, and to assess effect modification by PSS-4 scores, adjusting for confounders. RESULTS: Baseline perfluorodecanoic acid concentrations were associated with greater depressive symptoms at the 20-month follow-up, but associations for other PFAS were null. The PFAS were not associated with depressive symptoms when evaluated as a mixture. The association between the 90th percentile (vs. 50th percentile) of the PFAS mixture with CES-D scores was null at the 10th (ß = 0.03; 95 % CrI = 0.20, 0.25), 50th (ß = 0.02; 95 % CrI = -0.16, 0.19), and 90th (ß = 0.01; 95 % CrI = 0.18, 0.20) percentiles of PSS-4 scores, suggesting perceived stress did not modify the PFAS mixture. CONCLUSION: In this prospective cohort study, PFAS concentrations-assessed individually or as a mixture-were not appreciably associated with depressive symptoms, and there was no evidence of effect modification by perceived stress.


Depression , Environmental Pollutants , Fluorocarbons , Stress, Psychological , Humans , Female , Fluorocarbons/blood , Adult , Prospective Studies , Depression/epidemiology , Environmental Pollutants/blood , Young Adult , Environmental Exposure/statistics & numerical data , Black or African American/statistics & numerical data , Endocrine Disruptors
19.
Environ Health Perspect ; 132(4): 47014, 2024 Apr.
Article En | MEDLINE | ID: mdl-38683744

BACKGROUND: Previous studies have identified the consumption of country foods (hunted/harvested foods from the land) as the primary exposure source of perfluoroalkyl acids (PFAA) in Arctic communities. However, identifying the specific foods associated with PFAA exposures is complicated due to correlation between country foods that are commonly consumed together. METHODS: We used venous blood sample data and food frequency questionnaire data from the Qanuilirpitaa? ("How are we now?") 2017 (Q2017) survey of Inuit individuals ≥16 y of age residing in Nunavik (n=1,193). Adaptive elastic net, a machine learning technique, identified the most important food items for predicting PFAA biomarker levels while accounting for the correlation among the food items. We used generalized linear regression models to quantify the association between the most predictive food items and six plasma PFAA biomarker levels. The estimates were converted to percent changes in a specific PFAA biomarker level per standard deviation increase in the consumption of a food item. Models were also stratified by food type (market or country foods). RESULTS: Perfluorooctanesulfonic acid (PFOS), perfluorodecanoic acid (PFDA), and perfluoroundecanoic acid (PFUnDA) were associated with frequent consumption of beluga misirak (rendered fat) [14.6%; 95% confidence interval (CI): 10.3%, 18.9%; 14.6% (95% CI: 10.1%, 19.0%)], seal liver [9.3% (95% CI: 5.0%, 13.7%); 8.1% (95% CI: 3.5%, 12.6%)], and suuvalik (fish roe mixed with berries and fat) [6.0% (95% CI: 1.3%, 10.7%); 7.5% (95% CI: 2.7%, 12.3%)]. Beluga misirak was also associated with higher concentrations of perfluorohexanesulphonic acid (PFHxS) and perfluorononanoic acid (PFNA), albeit with lower percentage changes. PFHxS, perfluorooctanoic acid (PFOA), and PFNA followed some similar patterns, with higher levels associated with frequent consumption of ptarmigan [6.1% (95% CI: 3.2%, 9.0%); 5.1% (95% CI: 1.1%, 9.1%); 5.4% (95% CI: 1.8%, 9.0%)]. Among market foods, frequent consumption of processed meat and popcorn was consistently associated with lower PFAA exposure. CONCLUSIONS: Our study identifies specific food items contributing to environmental contaminant exposure in Indigenous or small communities relying on local subsistence foods using adaptive elastic net to prioritize responses from a complex food frequency questionnaire. In Nunavik, higher PFAA biomarker levels were primarily related to increased consumption of country foods, particularly beluga misirak, seal liver, suuvalik, and ptarmigan. Our results support policies regulating PFAA production and use to limit the contamination of Arctic species through long-range transport. https://doi.org/10.1289/EHP13556.


Dietary Exposure , Environmental Pollutants , Fluorocarbons , Inuit , Humans , Fluorocarbons/blood , Inuit/statistics & numerical data , Adult , Dietary Exposure/statistics & numerical data , Dietary Exposure/analysis , Female , Male , Environmental Pollutants/blood , Adolescent , Young Adult , Alkanesulfonic Acids/blood , Food Contamination/analysis , Middle Aged , Decanoic Acids/blood , Environmental Exposure/statistics & numerical data , Biomarkers/blood , Diet/statistics & numerical data , Arctic Regions
20.
Environ Int ; 186: 108601, 2024 Apr.
Article En | MEDLINE | ID: mdl-38537583

BACKGROUND: Strong epidemiological evidence shows positive associations between exposure to per- and polyfluoroalkyl substances (PFAS) and adverse cardiometabolic outcomes (e.g., diabetes, hypertension, and dyslipidemia). However, the underlying cardiometabolic-relevant biological activities of PFAS in humans remain largely unclear. AIM: We evaluated the associations of PFAS exposure with high-throughput proteomics in Hispanic youth. MATERIAL AND METHODS: We included 312 overweight/obese adolescents from the Study of Latino Adolescents at Risk (SOLAR) between 2001 and 2012, along with 137 young adults from the Metabolic and Asthma Incidence Research (Meta-AIR) between 2014 and 2018. Plasma PFAS (i.e., PFOS, PFOA, PFHxS, PFHpS, PFNA) were quantified using liquid-chromatography high-resolution mass spectrometry. Plasma proteins (n = 334) were measured utilizing the proximity extension assay using an Olink Explore Cardiometabolic Panel I. We conducted linear regression with covariate adjustment to identify PFAS-associated proteins. Ingenuity Pathway Analysis, protein-protein interaction network analysis, and protein annotation were used to investigate alterations in biological functions and protein clusters. RESULTS: Results after adjusting for multiple comparisons showed 13 significant PFAS-associated proteins in SOLAR and six in Meta-AIR, sharing similar functions in inflammation, immunity, and oxidative stress. In SOLAR, PFNA demonstrated significant positive associations with the largest number of proteins, including ACP5, CLEC1A, HMOX1, LRP11, MCAM, SPARCL1, and SSC5D. After considering the mixture effect of PFAS, only SSC5D remained significant. In Meta-AIR, PFAS mixtures showed positive associations with GDF15 and IL6. Exploratory analysis showed similar findings. Specifically, pathway analysis in SOLAR showed PFOA- and PFNA-associated activation of immune-related pathways, and PFNA-associated activation of inflammatory response. In Meta-AIR, PFHxS-associated activation of dendric cell maturation was found. Moreover, PFAS was associated with common protein clusters of immunoregulatory interactions and JAK-STAT signaling in both cohorts. CONCLUSION: PFAS was associated with broad alterations of the proteomic profiles linked to pro-inflammation and immunoregulation. The biological functions of these proteins provide insight into potential molecular mechanisms of PFAS toxicity.


Environmental Exposure , Environmental Pollutants , Fluorocarbons , Hispanic or Latino , Proteomics , Humans , Adolescent , Fluorocarbons/blood , Female , Male , Environmental Pollutants/blood , Young Adult
...