Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 730
1.
Int J Biol Sci ; 20(7): 2356-2369, 2024.
Article En | MEDLINE | ID: mdl-38725858

Dysregulation of cancer cell motility is a key driver of invasion and metastasis. High dysadherin expression in cancer cells is correlated with invasion and metastasis. Here, we found the molecular mechanism by which dysadherin regulates the migration and invasion of colon cancer (CC). Comprehensive analysis using single-cell RNA sequencing data from CC patients revealed that high dysadherin expression in cells is linked to cell migration-related gene signatures. We confirmed that the deletion of dysadherin in tumor cells hindered local invasion and distant migration using in vivo tumor models. In this context, by performing cell morphological analysis, we found that aberrant cell migration resulted from impaired actin dynamics, focal adhesion turnover and protrusive structure formation upon dysadherin expression. Mechanistically, the activation of focal adhesion kinase (FAK) was observed in dysadherin-enriched cells. The dysadherin/FAK axis enhanced cell migration and invasion by activating the FAK downstream cascade, which includes the Rho family of small GTPases. Overall, this study illuminates the role of dysadherin in modulating cancer cell migration by forcing actin dynamics and protrusive structure formation via FAK signaling, indicating that targeting dysadherin may be a potential therapeutic strategy for CC patients.


Cell Movement , Colonic Neoplasms , Humans , Cell Movement/genetics , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Colonic Neoplasms/genetics , Cell Line, Tumor , Animals , Mice , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Microfilament Proteins/metabolism , Microfilament Proteins/genetics , Focal Adhesion Kinase 1/metabolism , Focal Adhesion Kinase 1/genetics , Ion Channels/metabolism , Ion Channels/genetics , Signal Transduction
2.
FASEB J ; 38(10): e23698, 2024 May 31.
Article En | MEDLINE | ID: mdl-38780613

Prostate cancer (PCa) is a widespread global health concern characterized by elevated rates of occurrence, and there is a need for novel therapeutic targets to enhance patient outcomes. FOXS1 is closely linked to different cancers, but its function in PCa is still unknown. The expression of FOXS1, its prognostic role, clinical significance in PCa, and the potential mechanism by which FOXS1 affects PCa progression were investigated through bioinformatics analysis utilizing public data. The levels of FOXS1 and HILPDA were evaluated in clinical PCa samples using various methods, such as western blotting, immunohistochemistry, and qRT-PCR. To examine the function and molecular mechanisms of FOXS1 in PCa, a combination of experimental techniques including CCK-8 assay, flow cytometry, wound-healing assay, Transwell assay, and Co-IP assay were employed. The FOXS1 expression levels were significantly raised in PCa, correlating strongly with tumor aggressiveness and an unfavorable prognosis. Regulating FOXS1 expression, whether upregulating or downregulating it, correspondingly enhanced or inhibited the growth, migration, and invasion capabilities of PCa cells. Mechanistically, we detected a direct interaction between FOXS1 and HILPDA, resulting in the pathway activation of FAK/PI3K/AKT and facilitation EMT in PCa cells. FOXS1 collaborates with HILPDA to initiate EMT, thereby facilitating the PCa progression through the FAK/PI3K/AKT pathway activation.


Epithelial-Mesenchymal Transition , Forkhead Transcription Factors , Gene Expression Regulation, Neoplastic , Phosphatidylinositol 3-Kinases , Prostatic Neoplasms , Proto-Oncogene Proteins c-akt , Humans , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Prostatic Neoplasms/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Male , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , Phosphatidylinositol 3-Kinases/metabolism , Cell Line, Tumor , Focal Adhesion Kinase 1/metabolism , Focal Adhesion Kinase 1/genetics , Signal Transduction , Up-Regulation , Cell Movement , Cell Proliferation , Animals , Mice , Oncogenes , Prognosis , Mice, Nude
3.
Nat Commun ; 15(1): 3741, 2024 May 03.
Article En | MEDLINE | ID: mdl-38702301

Targeted therapy is effective in many tumor types including lung cancer, the leading cause of cancer mortality. Paradigm defining examples are targeted therapies directed against non-small cell lung cancer (NSCLC) subtypes with oncogenic alterations in EGFR, ALK and KRAS. The success of targeted therapy is limited by drug-tolerant persister cells (DTPs) which withstand and adapt to treatment and comprise the residual disease state that is typical during treatment with clinical targeted therapies. Here, we integrate studies in patient-derived and immunocompetent lung cancer models and clinical specimens obtained from patients on targeted therapy to uncover a focal adhesion kinase (FAK)-YAP signaling axis that promotes residual disease during oncogenic EGFR-, ALK-, and KRAS-targeted therapies. FAK-YAP signaling inhibition combined with the primary targeted therapy suppressed residual drug-tolerant cells and enhanced tumor responses. This study unveils a FAK-YAP signaling module that promotes residual disease in lung cancer and mechanism-based therapeutic strategies to improve tumor response.


Carcinoma, Non-Small-Cell Lung , Drug Resistance, Neoplasm , Lung Neoplasms , Signal Transduction , Transcription Factors , YAP-Signaling Proteins , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Signal Transduction/drug effects , Transcription Factors/metabolism , Transcription Factors/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , YAP-Signaling Proteins/metabolism , Cell Line, Tumor , Animals , Drug Resistance, Neoplasm/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Neoplasm, Residual , Mice , Focal Adhesion Kinase 1/metabolism , Focal Adhesion Kinase 1/genetics , ErbB Receptors/metabolism , ErbB Receptors/genetics , Anaplastic Lymphoma Kinase/metabolism , Anaplastic Lymphoma Kinase/genetics , Anaplastic Lymphoma Kinase/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Xenograft Model Antitumor Assays
4.
Cancer Lett ; 591: 216902, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38641310

Platelets have received growing attention for their roles in hematogenous tumor metastasis. However, the tumor-platelet interaction in osteosarcoma (OS) remains poorly understood. Here, using platelet-specific focal adhesion kinase (FAK)-deficient mice, we uncover a FAK-dependent F3/TGF-ß positive feedback loop in OS. Disruption of the feedback loop by inhibition of F3, TGF-ß, or FAK significantly suppresses OS progression. We demonstrate that OS F3 initiated the feedback loop by increasing platelet TGF-ß secretion, and platelet-derived TGF-ß promoted OS F3 expression in turn and modulated OS EMT process. Immunofluorescence results indicate platelet infiltration in OS niche and we verified it was mediated by platelet FAK. In addition, platelet FAK was proved to mediate platelet adhesion to OS cells, which was vital for the initiation of F3/TGF-ß feedback loop. Collectively, these findings provide a rationale for novel therapeutic strategies targeting tumor-platelet interplay in metastatic OS.


Blood Platelets , Bone Neoplasms , Epithelial-Mesenchymal Transition , Osteosarcoma , Transforming Growth Factor beta , Osteosarcoma/pathology , Osteosarcoma/metabolism , Osteosarcoma/genetics , Animals , Blood Platelets/metabolism , Blood Platelets/pathology , Transforming Growth Factor beta/metabolism , Bone Neoplasms/pathology , Bone Neoplasms/metabolism , Bone Neoplasms/genetics , Humans , Cell Line, Tumor , Focal Adhesion Kinase 1/metabolism , Focal Adhesion Kinase 1/genetics , Feedback, Physiological , Mice , Mice, Knockout , Disease Progression , Signal Transduction , Platelet Adhesiveness
5.
Cell Commun Signal ; 22(1): 247, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38689280

BACKGROUND: Renal fibrosis is a prevalent manifestation of chronic kidney disease (CKD), and effective treatments for this disease are currently lacking. Myofibroblasts, which originate from interstitial fibroblasts, aggregate in the renal interstitium, leading to significant accumulation of extracellular matrix and impairment of renal function. The nonreceptor tyrosine kinase c-Abl (encoded by the Abl1 gene) has been implicated in the development of renal fibrosis. However, the precise role of c-Abl in this process and its involvement in fibroblast-myofibroblast transition (FMT) remain poorly understood. METHODS: To investigate the effect of c-Abl in FMT during renal fibrosis, we investigated the expression of c-Abl in fibrotic renal tissues of patients with CKD and mouse models. We studied the phenotypic changes in fibroblast or myofibroblast-specific c-Abl conditional knockout mice. We explored the potential targets of c-Abl in NRK-49F fibroblasts. RESULTS: In this study, fibrotic mouse and cell models demonstrated that c-Abl deficiency in fibroblasts mitigated fibrosis by suppressing fibroblast activation, fibroblast-myofibroblast transition, and extracellular matrix deposition. Mechanistically, c-Abl maintains the stability of the RACK1 protein, which serves as a scaffold for proteins such as c-Abl and focal adhesion kinase at focal adhesions, driving fibroblast activation and differentiation during renal fibrosis. Moreover, specifically targeting c-Abl deletion in renal myofibroblasts could prove beneficial in established kidney fibrosis by reducing RACK1 expression and diminishing the extent of fibrosis. CONCLUSIONS: Our findings suggest that c-Abl plays a pathogenic role in interstitial fibrosis through the regulation of RACK1 protein stabilization and myofibroblast differentiation, suggesting a promising strategy for the treatment of CKD.


Fibroblasts , Fibrosis , Myofibroblasts , Proto-Oncogene Proteins c-abl , Receptors for Activated C Kinase , Signal Transduction , Animals , Proto-Oncogene Proteins c-abl/metabolism , Proto-Oncogene Proteins c-abl/genetics , Myofibroblasts/metabolism , Myofibroblasts/pathology , Humans , Mice , Fibroblasts/metabolism , Fibroblasts/pathology , Receptors for Activated C Kinase/genetics , Receptors for Activated C Kinase/metabolism , Focal Adhesion Kinase 1/metabolism , Focal Adhesion Kinase 1/genetics , Kidney/pathology , Kidney/metabolism , Male , Renal Insufficiency, Chronic/pathology , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/genetics , Mice, Knockout , Mice, Inbred C57BL
6.
Biochemistry (Mosc) ; 89(3): 474-486, 2024 Mar.
Article En | MEDLINE | ID: mdl-38648767

Focal adhesions (FAs) are mechanosensory structures that transform physical stimuli into chemical signals guiding cell migration. Comprehensive studies postulate correlation between the FA parameters and cell motility metrics for individual migrating cells. However, which properties of the FAs are critical for epithelial cell motility in a monolayer remains poorly elucidated. We used high-throughput microscopy to describe relationship between the FA parameters and cell migration in immortalized epithelial keratinocytes (HaCaT) and lung carcinoma cells (A549) with depleted or inhibited vinculin and focal adhesion kinase (FAK) FA proteins. To evaluate relationship between the FA morphology and cell migration, we used substrates with varying stiffness in the model of wound healing. Cells cultivated on fibronectin had the highest FA area values, migration rate, and upregulated expression of FAK and vinculin mRNAs, while the smallest FA area and slower migration rate to the wound were specific to cells cultivated on glass. Suppression of vinculin expression in both normal and tumor cells caused decrease of the FA size and fluorescence intensity but did not affect cell migration into the wound. In contrast, downregulation or inactivation of FAK did not affect the FA size but significantly slowed down the wound closure rate by both HaCaT and A549 cell lines. We also showed that the FAK knockdown results in the FA lifetime decrease for the cells cultivated both on glass and fibronectin. Our data indicate that the FA lifetime is the most important parameter defining migration of epithelial cells in a monolayer. The observed change in the cell migration rate in a monolayer caused by changes in expression/activation of FAK kinase makes FAK a promising target for anticancer therapy of lung carcinoma.


Cell Movement , Vinculin , Humans , Vinculin/metabolism , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Epithelial Cells/metabolism , Epithelial Cells/pathology , A549 Cells , Focal Adhesion Kinase 1/metabolism , Focal Adhesion Kinase 1/genetics , Focal Adhesions/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/metabolism
7.
Medicine (Baltimore) ; 103(12): e37362, 2024 Mar 22.
Article En | MEDLINE | ID: mdl-38518034

The immune environment in tumors is the key factor affecting the survival and immunotherapeutic response of patients. This research aimed to explore the underlying association between focal adhesion tyrosine kinase (FAK/PTK2) and cancer immunotherapy in 33 human cancers. Gene expression data and clinical features of 33 cancers were retrieved from the Cancer Genome Atlas Database. The immunotherapy cohorts included GSE67501, GSE78220, and IMVIGOR210, which were derived from the comprehensive gene expression database or from previous studies. Clinical parameters including patient age, gender, survival rate, and tumor stage were analyzed to evaluate the prognostic value of FAK/PTK2. FAK/PTK2 activity was detected by single-sample gene set enrichment analysis and used to compare the difference between FAK/PTK2 transcriptome and protein expression levels. To better understand the role of FAK/PTK2 in cancer immunotherapy, we analyzed its correlations with tumor microenvironment and with immune processes/elements (e.g., immune cell infiltration, immunosuppressants, and stimulants) and major histocompatible complexes. Potential pathways associated with FAK/PTK2 signaling in cancers were also explored. Correlations between FAK/PTK2 and 2 immunotherapeutic biomarkers (tumor mutation load and microsatellite instability) were studied. Finally, the 3 independent immunotherapy cohorts were used to study the relationship between FAK/PTK2 and immunotherapeutic response. Although FAK/PTK2 is not closely associated with age (13/33), gender (5/33), or tumor stage (5/33) in any of the studied human cancers, it has potential prognostic value for predicting patient survival. Consistency between FAK/PTK2 activity and expression exists in some cancers (3/33). Generally, FAK/PTK2 is robustly correlated with immune cell infiltration, immune modulators, and immunotherapeutic markers. Moreover, high FAK/PTK2 expression is significantly related to immune-relevant pathways. However, FAK/PTK2 is not significantly correlated with the immunotherapeutic response. Research on the immunotherapeutic value of FAK/PTK2 in 33 human cancers provides evidence regarding the function of FAK/PTK2 and its role in clinical treatment. However, given the use of a bioinformatics approach, our results are preliminary and require further validation.


Focal Adhesions , Neoplasms , Humans , Focal Adhesion Kinase 1/genetics , Focal Adhesion Kinase 1/metabolism , Neoplasms/genetics , Neoplasms/therapy , Prognosis , Immunotherapy , Tumor Microenvironment
8.
Cell Rep ; 43(4): 113989, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38536816

Attachment of circulating tumor cells to the endothelial cells (ECs) lining blood vessels is a critical step in cancer metastatic colonization, which leads to metastatic outgrowth. Breast and prostate cancers are common malignancies in women and men, respectively. Here, we observe that ß1-integrin is required for human prostate and breast cancer cell adhesion to ECs under shear-stress conditions in vitro and to lung blood vessel ECs in vivo. We identify IQGAP1 and neural Wiskott-Aldrich syndrome protein (NWASP) as regulators of ß1-integrin transcription and protein expression in prostate and breast cancer cells. IQGAP1 and NWASP depletion in cancer cells decreases adhesion to ECs in vitro and retention in the lung vasculature and metastatic lung nodule formation in vivo. Mechanistically, NWASP and IQGAP1 act downstream of Cdc42 to increase ß1-integrin expression both via extracellular signal-regulated kinase (ERK)/focal adhesion kinase signaling at the protein level and by myocardin-related transcription factor/serum response factor (SRF) transcriptionally. Our results identify IQGAP1 and NWASP as potential therapeutic targets to reduce early metastatic dissemination.


Integrin beta1 , Neoplasm Metastasis , Serum Response Factor , ras GTPase-Activating Proteins , Humans , Integrin beta1/metabolism , Integrin beta1/genetics , ras GTPase-Activating Proteins/metabolism , ras GTPase-Activating Proteins/genetics , Cell Line, Tumor , Serum Response Factor/metabolism , Male , Female , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/genetics , Animals , Trans-Activators/metabolism , Cell Adhesion , Wiskott-Aldrich Syndrome Protein, Neuronal/metabolism , Wiskott-Aldrich Syndrome Protein, Neuronal/genetics , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Mice , Focal Adhesion Kinase 1/metabolism , Focal Adhesion Kinase 1/genetics , Gene Expression Regulation, Neoplastic , cdc42 GTP-Binding Protein/metabolism
9.
Respir Res ; 24(1): 304, 2023 Dec 06.
Article En | MEDLINE | ID: mdl-38053045

Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal lung disease with a poor prognosis. Current/available clinical prediction tools have limited sensitivity and accuracy when evaluating clinical outcomes of IPF. Research has shown that focal adhesion kinase (FAK), produced by the protein tyrosine kinase 2 (PTK2) gene, is crucial in IPF development. FAK activation is a characteristic of lesional fibroblasts; Thus, FAK may be a valuable therapeutic target or prognostic biomarker for IPF. This study aimed to create a gene signature based on PTK2-associated genes and microarray data from blood cells to predict disease prognosis in patients with IPF. PTK2 levels were found to be higher in lung tissues of IPF patients compared to healthy controls, and PTK2 inhibitor Defactinib was found to reduce TGFß-induced FAK activation and increase α-smooth muscle actin. Although the blood PTK2 levels were higher in IPF patients, blood PTK level alone could not predict IPF prognosis. From 196 PTK2-associated genes, 11 genes were prioritized to create a gene signature (PTK2 molecular signature) and a risk score system using univariate and multivariate Cox regression analysis. Patients were divided into high-risk and low-risk groups using PTK2 molecular signature. Patients in the high-risk group experienced decreased survival rates compared to patients in the low-risk group across all discovery and validation cohorts. Further functional enrichment and immune cell proportion analyses revealed that the PTK2 molecular signature strongly reflected the activation levels of immune pathways and immune cells. These findings suggested that PTK2 is a molecular target of IPF and the PTK2 molecular signature is an effective IPF prognostic biomarker.


Idiopathic Pulmonary Fibrosis , Humans , Focal Adhesion Kinase 1/genetics , Focal Adhesion Kinase 1/metabolism , Idiopathic Pulmonary Fibrosis/diagnosis , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/metabolism , Lung/metabolism , Prognosis , Biomarkers/metabolism
10.
Cell Death Dis ; 14(10): 684, 2023 10 16.
Article En | MEDLINE | ID: mdl-37845206

Leukocyte-associated immunoglobulin-like receptor-1 (LAIR1), an immune receptor containing immunoreceptor tyrosine-based inhibiory motifs (ITIMs), has emerged as an attractive target for cancer therapy. However, the intrinsic function of LAIR1 in gliomas remains unclear. In this study, the poor prognosis of glioma patients and the malignant proliferation of glioma cells in vitro and in vivo were found to be closely correlated with LAIR1. LAIR1 facilitates focal adhesion kinase (FAK) nuclear localization, resulting in increased transcription of cyclin D1 and chemokines/cytokines (CCL5, TGFß2, and IL33). LAIR1 specifically supports in the immunosuppressive glioma microenvironment via CCL5-mediated microglia/macrophage polarization. SHP2Q510E (PTP domain mutant) or FAKNLM (non-nuclear localizing mutant) significantly reversed the LAIR1-induced growth enhancement in glioma cells. In addition, LAIR1Y251/281F (ITIMs mutant) and SHP2Q510E mutants significantly reduced FAK nuclear localization, as well as CCL5 and cyclin D1 expression. Further experiments revealed that the ITIMs of LAIR1 recruited SH2-containing phosphatase 2 (SHP2), which then interacted with FAK and induced FAK nuclear localization. This study uncovered a critical role for intrinsic LAIR1 in facilitating glioma malignant progression and demonstrated a requirement for LAIR1 and SHP2 to enhance FAK nuclear localization.


Cytokines , Glioma , Humans , Chemokines , Cyclin D1/genetics , Cyclin D1/metabolism , Focal Adhesion Kinase 1/genetics , Focal Adhesion Kinase 1/metabolism , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Glioma/genetics , Tumor Microenvironment
11.
Nat Commun ; 14(1): 6270, 2023 10 07.
Article En | MEDLINE | ID: mdl-37805579

We previously found that T-cell acute lymphoblastic leukemia (T-ALL) requires support from tumor-associated myeloid cells, which activate Insulin Like Growth Factor 1 Receptor (IGF1R) signaling in leukemic blasts. However, IGF1 is not sufficient to sustain T-ALL in vitro, implicating additional myeloid-mediated signals in leukemia progression. Here, we find that T-ALL cells require close contact with myeloid cells to survive. Transcriptional profiling and in vitro assays demonstrate that integrin-mediated cell adhesion activates downstream focal adhesion kinase (FAK)/ proline-rich tyrosine kinase 2 (PYK2), which are required for myeloid-mediated T-ALL support, partly through activation of IGF1R. Blocking integrin ligands or inhibiting FAK/PYK2 signaling diminishes leukemia burden in multiple organs and confers a survival advantage in a mouse model of T-ALL. Inhibiting integrin-mediated adhesion or FAK/PYK2 also reduces survival of primary patient T-ALL cells co-cultured with myeloid cells. Furthermore, elevated integrin pathway gene signatures correlate with higher FAK signaling and myeloid gene signatures and are associated with an inferior prognosis in pediatric T-ALL patients. Together, these findings demonstrate that integrin activation and downstream FAK/PYK2 signaling are important mechanisms underlying myeloid-mediated support of T-ALL progression.


Focal Adhesion Kinase 2 , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Mice , Animals , Humans , Child , Focal Adhesion Kinase 2/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Signal Transduction/genetics , Focal Adhesion Kinase 1/genetics , Focal Adhesion Kinase 1/metabolism , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Integrins/metabolism , T-Lymphocytes/metabolism , Phosphorylation
12.
Eur J Pharmacol ; 956: 175935, 2023 Oct 05.
Article En | MEDLINE | ID: mdl-37541366

The highly conserved RNA-binding protein LIN28B and focal adhesion kinase (FAK) are significantly upregulated in ovarian cancer (OC), serving as markers for disease progression and prognosis. Nonetheless, the correlation between LIN28B and FAK, as well as the pharmacological effects of the LIN28 inhibitor C1632, in OC cells have not been elucidated. The present study demonstrates that C1632 significantly reduced the rate of DNA replication, arrested the cell cycle at the G0/G1 phase, consequently reducing cell viability, and impeding clone formation. Moreover, treatment with C1632 decreased cell-matrix adhesion, as well as inhibited cell migration and invasion. Further mechanistic studies revealed that C1632 inhibited the OC cell proliferation and migration by concurrently inhibiting LIN28 B/let-7/FAK signaling pathway and FAK phosphorylation. Furthermore, C1632 exhibited an obvious inhibitory effect on OC cell xenograft tumors in mice. Altogether, these findings identified that LIN28 B/let-7/FAK is a valuable target in OC and C1632 is a promising onco-therapeutic agent for OC treatment.


Ovarian Neoplasms , Signal Transduction , Female , Humans , Animals , Mice , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Phosphorylation , Focal Adhesion Kinase 1/genetics , Ovarian Neoplasms/metabolism , Cell Proliferation , Cell Movement , Cell Line, Tumor
13.
Nature ; 619(7971): 868-875, 2023 Jul.
Article En | MEDLINE | ID: mdl-37438529

Enhancers determine spatiotemporal gene expression programs by engaging with long-range promoters1-4. However, it remains unknown how enhancers find their cognate promoters. We recently developed a RNA in situ conformation sequencing technology to identify enhancer-promoter connectivity using pairwise interacting enhancer RNAs and promoter-derived noncoding RNAs5,6. Here we apply this technology to generate high-confidence enhancer-promoter RNA interaction maps in six additional cell lines. Using these maps, we discover that 37.9% of the enhancer-promoter RNA interaction sites are overlapped with Alu sequences. These pairwise interacting Alu and non-Alu RNA sequences tend to be complementary and potentially form duplexes. Knockout of Alu elements compromises enhancer-promoter looping, whereas Alu insertion or CRISPR-dCasRx-mediated Alu tethering to unregulated promoter RNAs can create new loops to homologous enhancers. Mapping 535,404 noncoding risk variants back to the enhancer-promoter RNA interaction maps enabled us to construct variant-to-function maps for interpreting their molecular functions, including 15,318 deletions or insertions in 11,677 Alu elements that affect 6,497 protein-coding genes. We further demonstrate that polymorphic Alu insertion at the PTK2 enhancer can promote tumorigenesis. Our study uncovers a principle for determining enhancer-promoter pairing specificity and provides a framework to link noncoding risk variants to their molecular functions.


Alu Elements , Enhancer Elements, Genetic , Promoter Regions, Genetic , RNA , Alu Elements/genetics , Cell Line , Enhancer Elements, Genetic/genetics , Focal Adhesion Kinase 1/genetics , Gene Expression Regulation , Nucleic Acid Conformation , Nucleic Acid Heteroduplexes , Promoter Regions, Genetic/genetics , RNA/chemistry , RNA/genetics , RNA/metabolism , Sequence Deletion
14.
Nat Chem Biol ; 19(12): 1458-1468, 2023 Dec.
Article En | MEDLINE | ID: mdl-37349581

Focal adhesion kinase (FAK) relays integrin signaling from outside to inside cells and contributes to cell adhesion and motility. However, the spatiotemporal dynamics of FAK activity in single FAs is unclear due to the lack of a robust FAK reporter, which limits our understanding of these essential biological processes. Here we have engineered a genetically encoded FAK activity sensor, dubbed FAK-separation of phases-based activity reporter of kinase (SPARK), which visualizes endogenous FAK activity in living cells and vertebrates. Our work reveals temporal dynamics of FAK activity during FA turnover. Most importantly, our study unveils polarized FAK activity at the distal tip of newly formed single FAs in the leading edge of a migrating cell. By combining FAK-SPARK with DNA tension probes, we show that tensions applied to FAs precede FAK activation and that FAK activity is proportional to the strength of tension. These results suggest tension-induced polarized FAK activity in single FAs, advancing the mechanistic understanding of cell migration.


Focal Adhesions , Animals , Focal Adhesions/metabolism , Focal Adhesion Kinase 1/genetics , Focal Adhesion Kinase 1/metabolism , Phosphorylation , Focal Adhesion Protein-Tyrosine Kinases/genetics , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Cell Movement/physiology , Cell Adhesion/physiology
15.
Cell Death Dis ; 14(4): 256, 2023 04 08.
Article En | MEDLINE | ID: mdl-37031228

Numerous studies have investigated the various cellular responses against genotoxic stress, including those mediated by focal adhesions. We here identified a novel type of focal adhesion remodelling that occurs under genotoxic stress conditions, which involves the replacement of active focal adhesion kinase (FAK) with FAK-related non-kinase (FRNK). FRNK stabilized focal adhesions, leading to strong cell-matrix adhesion, and FRNK-depleted cells were easily detached from extracellular matrix upon genotoxic stress. This remodelling occurred in a wide variety of cells. In vivo, the stomachs of Frnk-knockout mice were severely damaged by genotoxic stress, highlighting the protective role of FRNK against genotoxic stress. FRNK was also found to play a vital role in cancer progression, because FRNK depletion significantly inhibited cancer dissemination and progression in a mouse cancer model. Furthermore, in human cancers, FRNK was predominantly expressed in metastatic tissues and not in primary tissues. We hence conclude that this novel type of focal adhesion remodelling reinforces cell adhesion and acts against genotoxic stress, which results in the protection of normal tissues, but in turn facilitates cancer progression.


Focal Adhesions , Neoplasms , Mice , Animals , Humans , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Focal Adhesions/metabolism , Focal Adhesion Kinase 1/genetics , Focal Adhesion Kinase 1/metabolism , Cell Adhesion , Neoplasms/genetics , Neoplasms/metabolism , Cell Movement/physiology , Phosphorylation , Cells, Cultured
16.
PLoS One ; 18(4): e0284871, 2023.
Article En | MEDLINE | ID: mdl-37083591

Focal adhesion kinase (FAK) is a cytoplasmic protein tyrosine kinase, which is overexpressed in colorectal cancer cells. FAK could be activated by phosphorylation to participate in the transduction of multiple signaling pathways and self-renewal of cancer stem cells. Whether the downregulation of FAK inhibits the metastasis in colorectal cancer through the weakening of stem cell-like properties and its mechanisms has yet to be established. CD44, CD133, c-Myc, Nanog, and OCT4 were known to mark colorectal cancer stem cell properties. In this study, AKT inhibitor (MK-2206 2HCl) or FAK inhibitor (PF-562271) decreased the expression of stem cell markers (Nanog, OCT4, CD133, CD44, c-Myc) and spheroid formation in colorectal cancer. Moreover, FAK and AKT protein was shown to interact verified by co-immunoprecipitation. Furthermore, downregulation of FAK, transfected Lenti-FAK-EGFP-miR to colorectal cancer cells, reduced p-AKT but not AKT and decreased the expression of stem cell markers and spheroid formation in colorectal cancer. In conclusion, we demonstrated that downregulation of FAK inhibited stem cell-like properties and migration of colorectal cancer cells partly due to altered modulation of AKT phosphorylation by FAK.


Colorectal Neoplasms , Signal Transduction , Humans , Cell Line, Tumor , Cell Movement , Colorectal Neoplasms/pathology , Down-Regulation , Focal Adhesion Kinase 1/genetics , Focal Adhesion Kinase 1/metabolism , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Phosphorylation , Protein Kinase Inhibitors , Proto-Oncogene Proteins c-akt/metabolism
17.
Cell Mol Life Sci ; 80(4): 111, 2023 Mar 31.
Article En | MEDLINE | ID: mdl-37002363

Transmembrane semaphorins are signaling molecules, controlling axonal wiring and embryo development, which are increasingly implicated in human diseases. Semaphorin 6C (Sema6C) is a poorly understood family member and its functional role is still unclear. Upon targeting Sema6C expression in a range of cancer cells, we observed dramatic growth suppression, decreased ERK phosphorylation, upregulation of cell cycle inhibitor proteins p21, p27 and p53, and the onset of cell senescence, associated with activation of autophagy. These data are consistent with a fundamental requirement for Sema6C to support viability and growth in cancer cells. Mechanistically, we unveiled a novel signaling pathway elicited by Sema6C, and dependent on its intracellular domain, mediated by tyrosine kinases c-Abl and Focal Adhesion Kinase (FAK). Sema6C was found in complex with c-Abl, and induced its phosphorylation, which in turn led to FAK activation, independent of cell-matrix adhesion. Sema6C-induced FAK activity was furthermore responsible for increased nuclear localization of YAP transcriptional regulator. Moreover, Sema6C conferred YAP signaling-dependent long-term cancer cell survival upon nutrient deprivation. In conclusion, our findings demonstrate that Sema6C elicits a cancer promoting-signaling pathway sustaining cell viability and self-renewal, independent of growth factors and nutrients availability.


Neoplasms , Signal Transduction , Humans , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Cell Survival , Focal Adhesion Kinase 1/genetics , Focal Adhesion Kinase 1/metabolism , Phosphorylation , Cell Cycle Proteins/metabolism , Neoplasms/genetics
18.
Cell Rep ; 42(1): 111997, 2023 01 31.
Article En | MEDLINE | ID: mdl-36656716

Nitric oxide (NO) production in the tumor microenvironment is a common element in cancer. S-nitrosylation, the post-translational modification of cysteines by NO, is emerging as a key transduction mechanism sustaining tumorigenesis. However, most oncoproteins that are regulated by S-nitrosylation are still unknown. Here we show that S-nitrosoglutathione reductase (GSNOR), the enzyme that deactivates S-nitrosylation, is hypo-expressed in several human malignancies. Using multiple tumor models, we demonstrate that GSNOR deficiency induces S-nitrosylation of focal adhesion kinase 1 (FAK1) at C658. This event enhances FAK1 autophosphorylation and sustains tumorigenicity by providing cancer cells with the ability to survive in suspension (evade anoikis). In line with these results, GSNOR-deficient tumor models are highly susceptible to treatment with FAK1 inhibitors. Altogether, our findings advance our understanding of the oncogenic role of S-nitrosylation, define GSNOR as a tumor suppressor, and point to GSNOR hypo-expression as a therapeutically exploitable vulnerability in cancer.


Alcohol Dehydrogenase , Focal Adhesion Kinase 1 , Neoplasms , Humans , Aldehyde Oxidoreductases/metabolism , Focal Adhesion Kinase 1/genetics , Neoplasms/genetics , Nitric Oxide/metabolism , Phosphorylation , Protein Processing, Post-Translational , Tumor Microenvironment , Alcohol Dehydrogenase/metabolism
19.
Gene ; 854: 147096, 2023 Feb 20.
Article En | MEDLINE | ID: mdl-36470481

Polymorphisms in the PTK2B-CLU locus have been associated with various neurodegenerative disorders including pseudoexfoliation glaucoma, Alzheimer's and Parkinson's. Many of these genomic variants are within enhancer elements and modulate genes associated with the disease pathogenesis. However, mechanisms by which they control the gene expression is unknown. Previously, we have shown that clusterin enhancer element surrounding rs2279590 intronic variant, a risk factor in the pathogenesis of pseudoexfoliation glaucoma modulates gene expression of clusterin (CLU), protein tyrosine kinase 2 beta (PTK2B) and epoxide hydrolase 2 (EPHX2). Here, we explored the mechanism by which rs2279590 enhancer regulates their gene expression through chromosome conformation capture assays. 3C assays revealed a strong enhancer-promoter chromatin interaction between rs2279590 enhancer and promoters of genes CLU, PTK2B and EPHX2 in the HEK293 wild type cells. Moreover, genomic knockout of rs2279590 element significantly decreases the chromatin-chromatin cross-linking frequency suggesting gene regulation at transcriptional level through formation of chromatin loop. In addition, molecular assays showed a significantly decreased expression of EPHX2 but not PTK2B at both mRNA and protein level in the lens capsule of pseudoexfoliation affected patients in comparison to control subjects implying a role of EPHX2 in the pathogenesis of pseudoexfoliation.


Epoxide Hydrolases , Exfoliation Syndrome , Focal Adhesion Kinase 1 , Humans , Chromatin/genetics , Clusterin/genetics , Enhancer Elements, Genetic , Epoxide Hydrolases/genetics , Exfoliation Syndrome/genetics , Focal Adhesion Kinase 1/genetics , Gene Expression , Gene Frequency , HEK293 Cells , Polymorphism, Single Nucleotide
20.
Cell Death Dis ; 13(10): 896, 2022 10 25.
Article En | MEDLINE | ID: mdl-36280663

Pancreatic cancer (PC) is prone to distant metastasis in the early stage, which is attributed to the strong migration ability of tumor cells. Focal adhesion turnover is essential for cancer cell metastasis, and the integrin recycling process is a key activation pathway for focal adhesion depolymerization. To identify the key motor protein involving in the integrin ß1 recycling, we screened kinesin proteins involved in integrin ß1 recycling using a kinesin family siRNA library and identified kinesin family 15 (KIF15) as a key regulator. KIF15 was upregulated in metastasis PC tissues and promoted PC cell migration and invasion. We identified KIF15 as a key component mediating integrin ß1/FAK signaling that accelerated FA disassembly in a FAK-Y397-dependent manner. KIF15 recruited PI3K-C2α to promote integrin ß1/FAK signaling and FA disassembly in a RAB11A-dependent manner. The C-terminal tail of KIF15 is required for the PI3K-C2α interaction and RAB11A activation. In addition, we also found that SIRT1-mediated acetylation of KIF15 is essential for KIF15 phosphorylation, which is the key activation event in motor protein function. Together, these findings indicate that KIF15 interacts with PI3K-C2α to promote FA turnover in PC cells by controlling the endosome recycling of integrin ß1 in a SIRT1 acetylation modification-dependent manner, eventually promoting focal adhesions turnover and distant metastasis in PC.


Focal Adhesions , Pancreatic Neoplasms , Humans , Phosphorylation , Focal Adhesions/metabolism , Integrin beta1/metabolism , Kinesins/genetics , Acetylation , RNA, Small Interfering/metabolism , Sirtuin 1/metabolism , Cell Line, Tumor , Pancreatic Neoplasms/pathology , Cell Movement , Integrins/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Focal Adhesion Protein-Tyrosine Kinases/genetics , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Focal Adhesion Kinase 1/genetics , Focal Adhesion Kinase 1/metabolism , Pancreatic Neoplasms
...