Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.520
1.
J Pak Med Assoc ; 74(4): 741-751, 2024 Apr.
Article En | MEDLINE | ID: mdl-38751272

Objective: To evaluate the effect of subcutaneous teriparatide therapy on fracture healing rate and change in bone mass density in osteoporotic hip fractures. METHODS: The meta-analysis was done from September to December 2022, and comprised literature search on Wanfang, CNKI, VIP, PubMed, Embase, Cochrane Library, and Web of Science databases from the establishment of the respective database till December 2022. The relevant journals of the library of Macao University of Science and Technology, China, were manually searched for randomised controlled trials of teriparatide in the treatment of osteoporotic hip fractures. The shortlisted studies were subjectd to Cochrane Risk of Bias tool and the Jadad Rating Scale. Meta-analysis was done using the RevMan 5.4 software provided by the Cochrane Collaboration Network. Fracture healing rate and bone mineral density were the primary outcome measures, while mortality, adverse events, malformations, complications, subsequent fractures, timed-up-and-go test, visual analogue scale score, and procollagen type I N-terminal propeptide were the secondary outcome measures. RESULTS: Of the 1,094 articles retrieved, 8(0.7%) randomised controlled trials were analysed. There were 744 patients; 372(50%) in the teriparatide group and 372(50%) in the control group. Fracture healing rate was not significantly different (p=0.82), while bone mineral density was significantly different between the groups (p<0.001). Mortality, adverse events, deformity, and complications were not significantly different (p>0.05), while subsequent fractures, timed-up-and-go score, visual analogue scale score and procollagen type I N-terminal propeptide were significantly different between the groups (p<0.05). Conclusion: The literature did not support teriparatide's ability to improve the healing rate of osteoporotic hip fractures, or to reduce mortality, adverse events, malformations, and complications. In addition, teriparatide could increase bone mineral density of osteoporotic hip fractures and the procollagen type I N-terminal propeptide value, alleviate hip pain, and reduce subsequent fracture rates. This trial is registered with PROSPERO with registration number CRD42022379832.


Bone Density Conservation Agents , Bone Density , Fracture Healing , Hip Fractures , Osteoporotic Fractures , Teriparatide , Humans , Teriparatide/therapeutic use , Osteoporotic Fractures/prevention & control , Bone Density Conservation Agents/therapeutic use , Bone Density/drug effects , Fracture Healing/drug effects , Bone Remodeling/drug effects , Randomized Controlled Trials as Topic , Peptide Fragments , Procollagen/blood
2.
J Physiol Pharmacol ; 75(2): 173-183, 2024 Apr.
Article En | MEDLINE | ID: mdl-38736264

Quercetin is widely distributed in plants as a flavonol compound with multiple biological activities. It has been found that quercetin can regulate bone homeostasis through multiple pathways and targets. This study investigated the role and specific molecular mechanisms of quercetin in regulating osteoblast viability, proliferation, migration and osteogenic differentiation. A mouse model of traumatic fracture was established and then 100 mg/kg quercetin corn oil suspension was gavaged at the same time every day for 28 days. miR-6089 and E2F transcription factor 2 (E2F2) expression levels in mice were measured. Fracture healing in mice was observed. MC3T3-E1 cells were transfected with plasmids targeting miR-6089 and E2F2, and cell viability, proliferation, migration, apoptosis, and osteogenic differentiation were determined. The targeting relationship between miR-6089 and E2F2 was verified. In vivo experiments showed that quercetin significantly increased osteocalcin (OCN) expression (P<0.05) and promoted fracture healing in traumatic fracture (TF) mice. miR-6089 expression was down-regulated (P<0.05) and E2F2 expression was up-regulated (P<0.05) in TF mice. Quercetin promoted miR-6089 expression and inhibited E2F2 expression (both P<0.05). In vitro results showed that quercetin promoted miR-6089 expression and inhibited E2F2 expression in a dose-dependent manner (both P<0.05). Quercetin dose-dependently promoted MC3T3-E1 cell viability, proliferation, migration, and osteogenic differentiation, and inhibited MC3T3-E1 cell apoptosis (all P<0.05). Up-regulating miR-6089 further promoted MC3T3-E1 cell viability, proliferation, migration and osteogenic differentiation, and inhibited MC3T3-E1 cell apoptosis (all P<0.05). miR-6089 targeted and regulated E2F2 expression. Up-regulating E2F2 attenuated the promoting effect of up-regulated miR-6089 on MC3T3-E1 cell viability, proliferation, migration, osteogenic differentiation, and inhibition of apoptosis (all P<0.05). We conclude that quercetin enhances osteoblast viability, proliferation, migration, and osteogenic differentiation by modulating the miR-6089/E2F2 axis, thereby promoting fracture healing.


E2F2 Transcription Factor , Fracture Healing , MicroRNAs , Osteoblasts , Osteogenesis , Quercetin , Animals , Male , Mice , Apoptosis/drug effects , Cell Differentiation/drug effects , Cell Line , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , E2F2 Transcription Factor/metabolism , E2F2 Transcription Factor/genetics , Fracture Healing/drug effects , MicroRNAs/genetics , MicroRNAs/metabolism , Osteoblasts/drug effects , Osteoblasts/metabolism , Osteogenesis/drug effects , Quercetin/pharmacology
3.
J Orthop Surg Res ; 19(1): 309, 2024 May 23.
Article En | MEDLINE | ID: mdl-38783358

BACKGROUND: Elderly patients suffering from osteoporotic fractures are more susceptible to delayed union or nonunion, and their bodies then are in a state of low-grade chronic inflammation with decreased antioxidant capacity. Tanshinone IIA is widely used in treating cardiovascular and cerebrovascular diseases in China and has anti-inflammatory and antioxidant effects. We aimed to observe the antioxidant effects of Tanshinone IIA on mesenchymal stem cells (MSCs), which play important roles in bone repair, and the effects of local application of Tanshinone IIA using an injectable biodegradable hydrogel on osteoporotic fracture healing. METHODS: MSCs were pretreated with or without different concentrations of Tanshinone IIA followed by H2O2 treatment. Ovariectomized (OVX) C57BL/6 mice received a mid-shaft transverse osteotomy fracture on the left tibia, and Tanshinone IIA was applied to the fracture site using an injectable hydrogel. RESULTS: Tanshinone IIA pretreatment promoted the expression of nuclear factor erythroid 2-related factor 2 and antioxidant enzymes, and inhibited H2O2-induced reactive oxygen species accumulation in MSCs. Furthermore, Tanshinone IIA reversed H2O2-induced apoptosis and decrease in osteogenic differentiation in MSCs. After 4 weeks of treatment with Tanshinone IIA in OVX mice, the bone mineral density of the callus was significantly increased and the biomechanical properties of the healed tibias were improved. Cell apoptosis was decreased and Nrf2 expression was increased in the early stage of callus formation. CONCLUSIONS: Taken together, these results indicate that Tanshinone IIA can activate antioxidant enzymes to protect MSCs from H2O2-induced cell apoptosis and osteogenic differentiation inhibition. Local application of Tanshinone IIA accelerates fracture healing in ovariectomized mice.


Abietanes , Apoptosis , Fracture Healing , Mesenchymal Stem Cells , Mice, Inbred C57BL , Ovariectomy , Animals , Abietanes/administration & dosage , Abietanes/pharmacology , Female , Mesenchymal Stem Cells/drug effects , Apoptosis/drug effects , Fracture Healing/drug effects , Mice , Antioxidants/administration & dosage , Antioxidants/pharmacology , Hydrogen Peroxide , Osteogenesis/drug effects , Osteoporotic Fractures/prevention & control
4.
Open Vet J ; 14(4): 1012-1018, 2024 Apr.
Article En | MEDLINE | ID: mdl-38808286

Background: The bone regeneration potential of erythropoietin (EPO) is not yet fully investigated, but some previous experimental studies demonstrated that its application activated the differentiation of osteoblasts and promoted bone formation. Aim: The aim of the present study was to evaluate the effects of recombinant human erythropoietin (rhEpo) on bone healing in cats with fragmented long bone fractures. Methods: Twelve cats were divided into two groups-control (n = 6) in which physiological saline was applied at the fracture gap site and EPO (n = 6) with the application of 1,000 IU rhEpo. The effects of EPO on blood erythrocyte counts, hemoglobin content, and hematocrit were monitored by serial complete blood cell tests, whereas bone formation was evaluated by clinical and radiographic examinations on post-operative weeks 1, 2, 3, 4, 6, and 8. Results: All tested blood parameters were within the reference range. A faster fracture healing and full limb weight-bearing were observed in the EPO group, with statistically significant differences with respect to the control group. Conclusion: The obtained results confirmed that the local application of rhEpo promoted bone healing in cats with fragmented femoral fractures and increased bone callus strength without having significant systemic effects.


Erythropoietin , Femoral Fractures , Fracture Healing , Recombinant Proteins , Animals , Cats , Erythropoietin/pharmacology , Erythropoietin/administration & dosage , Recombinant Proteins/administration & dosage , Fracture Healing/drug effects , Femoral Fractures/veterinary , Femoral Fractures/drug therapy , Male , Female , Cat Diseases/drug therapy , Humans
5.
J Bone Miner Metab ; 42(3): 282-289, 2024 May.
Article En | MEDLINE | ID: mdl-38704516

INTRODUCTION: Glucocorticoids delay fracture healing and induce osteoporosis. Angiogenesis plays an important role in bone repair after bone injury. Plasminogen activator inhibitor-1 (PAI-1) is the principal inhibitor of plasminogen activators and an adipocytokine that regulates metabolism. However, the mechanisms by which glucocorticoids delay bone repair remain unclear. MATERIALS AND METHODS: Therefore, we herein investigated the roles of PAI-1 and angiogenesis in glucocorticoid-induced delays in bone repair after femoral bone injury using PAI-1-deficient female mice intraperitoneally administered dexamethasone (Dex). RESULTS: PAI-1 deficiency significantly attenuated Dex-induced decreases in the number of CD31-positive vessels at damaged sites 4 days after femoral bone injury in mice. PAI-1 deficiency also significantly ameliorated Dex-induced decreases in the number of CD31- and endomucin-positive type H vessels and CD31-positive- and endomucin-negative vessels at damaged sites 4 days after femoral bone injury. Moreover, PAI-1 deficiency significantly mitigated Dex-induced decreases in the expression of vascular endothelial growth factor as well as hypoxia inducible factor-1α, transforming growth factor-ß1, and bone morphogenetic protein-2 at damaged sites 4 days after femoral bone injury. CONCLUSION: The present results demonstrate that Dex-reduced angiogenesis at damaged sites during the early bone-repair phase after femoral bone injury partly through PAI-1 in mice.


Dexamethasone , Glucocorticoids , Neovascularization, Physiologic , Plasminogen Activator Inhibitor 1 , Animals , Mice , Plasminogen Activator Inhibitor 1/metabolism , Female , Glucocorticoids/pharmacology , Neovascularization, Physiologic/drug effects , Dexamethasone/pharmacology , Femur/drug effects , Femur/metabolism , Femur/pathology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Vascular Endothelial Growth Factor A/metabolism , Fracture Healing/drug effects , Mice, Knockout , Mice, Inbred C57BL , Bone Morphogenetic Protein 2/metabolism , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Angiogenesis
6.
J Nanobiotechnology ; 22(1): 261, 2024 May 17.
Article En | MEDLINE | ID: mdl-38760744

Delayed repair of fractures seriously impacts patients' health and significantly increases financial burdens. Consequently, there is a growing clinical demand for effective fracture treatment. While current materials used for fracture repair have partially addressed bone integrity issues, they still possess limitations. These challenges include issues associated with autologous material donor sites, intricate preparation procedures for artificial biomaterials, suboptimal biocompatibility, and extended degradation cycles, all of which are detrimental to bone regeneration. Hence, there is an urgent need to design a novel material with a straightforward preparation method that can substantially enhance bone regeneration. In this context, we developed a novel nanoparticle, mPPTMP195, to enhance the bioavailability of TMP195 for fracture treatment. Our results demonstrate that mPPTMP195 effectively promotes the differentiation of bone marrow mesenchymal stem cells into osteoblasts while inhibiting the differentiation of bone marrow mononuclear macrophages into osteoclasts. Moreover, in a mouse femur fracture model, mPPTMP195 nanoparticles exhibited superior therapeutic effects compared to free TMP195. Ultimately, our study highlights that mPPTMP195 accelerates fracture repair by preventing HDAC4 translocation from the cytoplasm to the nucleus, thereby activating the NRF2/HO-1 signaling pathway. In conclusion, our study not only proposes a new strategy for fracture treatment but also provides an efficient nano-delivery system for the widespread application of TMP195 in various other diseases.


Cell Differentiation , Histone Deacetylases , Mesenchymal Stem Cells , Nanoparticles , Animals , Mice , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Nanoparticles/chemistry , Cell Differentiation/drug effects , Histone Deacetylases/metabolism , NF-E2-Related Factor 2/metabolism , Mice, Inbred C57BL , Osteoclasts/drug effects , Osteoclasts/metabolism , Osteoblasts/drug effects , Signal Transduction/drug effects , Heme Oxygenase-1/metabolism , Male , Bone Regeneration/drug effects , Osteogenesis/drug effects , Cell Nucleus/metabolism , Fracture Healing/drug effects , Humans , Membrane Proteins
7.
Biochem Biophys Res Commun ; 719: 150100, 2024 Jul 30.
Article En | MEDLINE | ID: mdl-38763043

One of the factors that predispose to fractures is liver damage. Interestingly, fractures are sometimes accompanied by abnormal liver function. Polyene phosphatidylcholine (PPC) is an important liver repair drug. We wondered if PPC had a role in promoting fracture healing. A rat model of tibial fracture was developed using the modified Einhorn model method. X-rays were used to detect the progression of fracture healing. Progress of ossification and angiogenesis at the fracture site were analyzed by Safranin O/fast green staining and CD31 immunohistochemistry. To investigate whether PPC has a direct angiogenesis effect, HUVECs were used. We performed MTT, wound healing, Transwell migration, and tube formation assays. Finally, RT-qPCR and Western blot analysis were used to study the underlying mechanism. The results showed that PPC significantly shortened the apparent recovery time of mobility in rats. PPC treatment significantly promoted the formation of cartilage callus, endochondral ossification, and angiogenesis at the fracture site. In vitro, PPC promoted the proliferative viability of HUVECs, their ability to heal wounds, and their ability to penetrate membranes in the Transwell apparatus and increased the tube formation of cells. The transcription of VEGFA, VEGFR2, PLCγ, RAS, ERK1/2 and MEK1/2 was significantly up regulated by PPC. Further, the protein level results demonstrated a significant increase in the expression of VEGFA, VEGFR2, MEK1/2, and ERK1/2 proteins. In conclusion, our findings suggest that PPC promotes angiogenesis by activating the VEGFA/VEGFR2 and downstream signaling pathway, thereby accelerating fracture healing.


Fracture Healing , Human Umbilical Vein Endothelial Cells , Neovascularization, Physiologic , Phosphatidylcholines , Rats, Sprague-Dawley , Signal Transduction , Tibial Fractures , Vascular Endothelial Growth Factor A , Vascular Endothelial Growth Factor Receptor-2 , Animals , Fracture Healing/drug effects , Vascular Endothelial Growth Factor Receptor-2/metabolism , Vascular Endothelial Growth Factor Receptor-2/genetics , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , Tibial Fractures/metabolism , Tibial Fractures/drug therapy , Tibial Fractures/pathology , Signal Transduction/drug effects , Neovascularization, Physiologic/drug effects , Humans , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Rats , Male , Phosphatidylcholines/pharmacology , Polyenes/pharmacology , Angiogenesis
8.
J Am Acad Orthop Surg ; 32(12): e596-e604, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38579315

INTRODUCTION: Nonsteroidal anti-inflammatory drugs (NSAIDs) are effective analgesics commonly used in fracture management. Although previously associated with delayed fracture healing, multiple studies have demonstrated their safety, with minimal risks of fracture healing. Given the current opioid crisis in the United States, alternate pain control modalities are essential to reduce opioid consumption. This study aims to determine whether the combination of oral acetaminophen and intravenous ketorolac is a viable alternative to opioid-based pain management in closed tibial shaft fractures treated with intramedullary nailing. METHODS: We conducted a randomized controlled trial evaluating postoperative pain control and opioid consumption in patients with closed tibial shaft fractures who underwent intramedullary nailing. Patients were randomized into an NSAID-based pain control group (52 patients) and an opioid-based pain control group (44 patients). Visual analog scale (VAS) scores and morphine milligram equivalents (MMEs) were evaluated at 12-hour postoperative intervals during the first 48 hours after surgery. Nonunion and delayed healing rates were recorded for both groups. RESULTS: A statistically significant decrease in MMEs was noted at every measured interval (12, 24, 36, and 48 hours) in the NSAID group compared with the opioid group ( P -value 0.001, 0.001, 0.040, 0.024, respectively). No significant change in visual analog scale scores was observed at 12, 36, and 48 hours between both groups ( P -value 0.215, 0.12, and 0.083, respectively). A significant decrease in VAS scores was observed at the 24-hour interval in the NSAID group compared with the opioid group ( P -value 0.041). No significant differences in union rates were observed between groups ( P -value 0.820). DISCUSSION: Using an NSAID-based postoperative pain protocol led to a decrease in opioid consumption without affecting pain scores or union rates. Owing to the minimal risk of short-term NSAID use, their role in the perioperative management of tibia shaft fractures is justified, especially when they reduce opioid consumption markedly. LEVEL OF EVIDENCE: Therapeutic Level I.


Acetaminophen , Analgesics, Opioid , Anti-Inflammatory Agents, Non-Steroidal , Fracture Fixation, Intramedullary , Fracture Healing , Ketorolac , Pain Measurement , Pain, Postoperative , Tibial Fractures , Humans , Tibial Fractures/surgery , Fracture Fixation, Intramedullary/methods , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Pain, Postoperative/drug therapy , Pain, Postoperative/prevention & control , Analgesics, Opioid/administration & dosage , Male , Female , Adult , Ketorolac/administration & dosage , Ketorolac/therapeutic use , Acetaminophen/administration & dosage , Acetaminophen/therapeutic use , Middle Aged , Fracture Healing/drug effects , Drug Therapy, Combination , Pain Management/methods , Young Adult , Administration, Oral
9.
J Ethnopharmacol ; 330: 118234, 2024 Aug 10.
Article En | MEDLINE | ID: mdl-38670404

ETHNOPHARMACOLOGICAL RELEVANCE: Hai-Honghua medicinal liquor (HHML), an external Chinese herbal formula preparation, is often applied to treat freshly closed tibia/fibular fractures, ankle fractures, and other bone-related disorders, but the related molecular mechanism is unclear. AIM OF THE STUDY: To evaluate the therapeutic effect of HHML in patients with tibial/fibular and ankle fractures, and to explore its related possible mechanism. METHODS AND MATERIALS: A total of 182 patients with tibia/fibular fractures and 183 patients with ankle fractures were enrolled in this study. A randomized, controlled, unblinded clinical trial was designed to evaluate the therapeutic effect of HHML on tibial/fibular and ankle fractures. The chemical compositions of HHML were analyzed by the HPLC-Q-Extractive MS/MS. Furthermore, a rat tibial fracture model was established to evaluate the therapeutic effects of HHML in promoting fracture healing, and the mouse embryonic osteoblasts cell line of MC3T3-E1 was further carried out to explore the mechanisms of HHML on osteoblast differentiation. RESULTS: In the clinical evaluation, HHML treatment significantly shortened the time for pain and swelling in patients with tibial/fibular fractures (P < 0.01) and ankle fractures (P < 0.01), and the incidence of complications was significantly reduced as well. Subsequently, 116 constituents were identified from HHML via HPLC-Q-TOF-MS/MS analysis. In vivo, no obvious changes in weight were observed in HHML-treated rats. Moreover, the levels of bone formation markers (including osteocalcin (OCN), N-terminal propeptide of type I procollagen (PINP), alkaline phosphatase (ALP), calcium (Ca) and substance P) in rat serum were significantly increased in HHML-treated rats compared with model rats (P < 0.05). Micro-CT analysis showed bone mineral density (BMD), bone volume fraction (BV/TV), trabecular thickness (Tb.Th) of the HHML-treated rats were significantly increased (P < 0.05, vs. Model) while trabecular separation (Tb.Sp) and structure model index (SMI) values were significantly reduced (P < 0.05, vs. Model). Histological analysis showed that HHML treatment promoted the healing of fractures and cartilage repair, and increased the osteoblasts and collagen fibers. Furthermore, our results also revealed HHML could promote MC3T3-E1 cells proliferation and osteoblast differentiation via regulation of the runt-related transcription factor 2 (RUNX2), bone alkaline phosphatase (BALP), and OCN by activating phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) pathway, which confirmed by adding PI3K chemical inhibitor of LY294002. CONCLUSION: HHML treatment is a reliable remedy for fractures in tibial and ankle by promotion of osteogenic differentiation via activation of PI3K/Akt pathway.


Cell Differentiation , Drugs, Chinese Herbal , Osteoblasts , Osteogenesis , Proto-Oncogene Proteins c-akt , Rats, Sprague-Dawley , Animals , Drugs, Chinese Herbal/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Male , Osteogenesis/drug effects , Humans , Mice , Cell Differentiation/drug effects , Female , Middle Aged , Adult , Rats , Osteoblasts/drug effects , Signal Transduction/drug effects , Fracture Healing/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Fractures, Bone/drug therapy , Aged , Young Adult , Disease Models, Animal
10.
J Am Soc Mass Spectrom ; 35(6): 1184-1196, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38679918

Bone fracture healing is a complex process in which specific molecular knowledge is still lacking. The citrulline-arginine-nitric oxide metabolism is one of the involved pathways, and its enrichment via citrulline supplementation can enhance fracture healing. This study investigated the molecular effects of citrulline supplementation during the different fracture healing phases in a rat model. Microcomputed tomography (µCT) was applied for the analysis of the fracture callus formation. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) and liquid-chromatography tandem mass spectrometry (LC-MS/MS) were used for lipid and protein analyses, respectively. µCT analysis showed no significant differences in the fracture callus volume and volume fraction between the citrulline supplementation and control group. The observed lipid profiles for the citrulline supplementation and control group were distinct for the different fracture healing stages. The main contributing lipid classes were phosphatidylcholines (PCs) and lysophosphatidylcholines (LPCs). The changing effect of citrulline supplementation throughout fracture healing was indicated by changes in the differentially expressed proteins between the groups. Pathway analysis showed an enhancement of fracture healing in the citrulline supplementation group in comparison to the control group via improved angiogenesis and earlier formation of the soft and hard callus. This study showed the molecular effects on lipids, proteins, and pathways associated with citrulline supplementation during bone fracture healing, even though no effect was visible with µCT.


Citrulline , Fracture Healing , Rats, Sprague-Dawley , Tandem Mass Spectrometry , X-Ray Microtomography , Animals , Fracture Healing/drug effects , Rats , Citrulline/analysis , Citrulline/metabolism , Citrulline/pharmacology , Tandem Mass Spectrometry/methods , X-Ray Microtomography/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Dietary Supplements/analysis , Disease Models, Animal , Male , Bony Callus/drug effects , Bony Callus/diagnostic imaging , Bony Callus/metabolism , Chromatography, Liquid/methods , Lysophosphatidylcholines/metabolism , Lysophosphatidylcholines/analysis , Phosphatidylcholines/metabolism , Phosphatidylcholines/analysis , Phosphatidylcholines/pharmacology
11.
Acta Biochim Pol ; 69(4): 839-845, 2022 Dec 02.
Article En | MEDLINE | ID: mdl-36459539

Bone fracture is one of the most common injuries in the human musculoskeletal system. This study was performed to investigate the effects of celastrol on bone wound healing in rats. Bone wound models of Sprague-Dawley rats were treated with low (10 µg/kg) and high (100 µg/kg) celastrol for 14 days. Serum calcium (Ca), phosphorus (P), and alkaline phosphatase (ALP) contents, bone mechanical properties, bone mineral density (BMD), and the levels of osteogenesis-related and inflammation-related proteins were assessed at the end of the experiments. Rats feeding with celastrol grew normally as control. Compared with model, celastrol administration significantly increased fracture strength, elastic load (0.12 vs 0.16 kg/m), bending energy (11.23 vs 14.23 n x mm), and BMD (0.49 vs 0.54 g/cm3), particularly at a high dose. Serum Ca (2.2 vs 2.7 mmol/L) and ALP (217.3 vs 245.8 IU/L) contents were significantly increased after a high dose celastrol administration, although P content did not change. Western blot analyses showed that OPG (0.72 vs 1.15) and COL-1 (0.20 vs 0.42) but not RUNX2 were upregulated significantly after celastrol administration, and IL-1α (0.82 vs 0.37), IL-6 (0.62 vs 0.28), MCP-1(0.68 vs 0.18), and VEGF (0.62 vs 0.42) were significantly downregulated, while IFN-γ was upregulated (0.29 vs 0.46). Our data demonstrate that celastrol effectively promotes the healing of bone wound in rats and may be further explored as a therapeutic agent to treat bone fracture.


Bone Density , Fracture Healing , Fractures, Bone , Pentacyclic Triterpenes , Animals , Rats , Alkaline Phosphatase , Rats, Sprague-Dawley , Wound Healing/drug effects , Pentacyclic Triterpenes/pharmacology , Fracture Healing/drug effects
12.
PLoS One ; 17(2): e0263839, 2022.
Article En | MEDLINE | ID: mdl-35213543

The ubiquitin/proteasome system controls the stability of Runx2 and JunB, proteins essential for differentiation of mesenchymal progenitor/stem cells (MPCs) to osteoblasts. Local administration of proteasome inhibitor enhances bone fracture healing by accelerating endochondral ossification. However, if a short-term administration of proteasome inhibitor enhances fracture repair and potential mechanisms involved have yet to be exploited. We hypothesize that injury activates the ubiquitin/proteasome system in callus, leading to elevated protein ubiquitination and degradation, decreased MPCs, and impaired fracture healing, which can be prevented by a short-term of proteasome inhibition. We used a tibial fracture model in Nestin-GFP reporter mice, in which a subgroup of MPCs are labeled by Nestin-GFP, to test our hypothesis. We found increased expression of ubiquitin E3 ligases and ubiquitinated proteins in callus tissues at the early phase of fracture repair. Proteasome inhibitor Bortezomib, given soon after fracture, enhanced fracture repair, which is accompanied by increased callus Nestin-GFP+ cells and their proliferation, and the expression of osteoblast-associated genes and Runx2 and JunB proteins. Thus, early treatment of fractures with Bortezomib could enhance the fracture repair by increasing the number and proliferation of MPCs.


Bortezomib/pharmacology , Cell Proliferation/drug effects , Fracture Healing/drug effects , Mesenchymal Stem Cells/enzymology , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors/pharmacology , Tibial Fractures/enzymology , Animals , Cell Proliferation/genetics , Core Binding Factor Alpha 1 Subunit/biosynthesis , Core Binding Factor Alpha 1 Subunit/genetics , Disease Models, Animal , Fracture Healing/genetics , Male , Mice , Mice, Transgenic , Osteoblasts/enzymology , Proteasome Endopeptidase Complex/genetics , Tibial Fractures/drug therapy , Tibial Fractures/genetics , Transcription Factors/biosynthesis , Transcription Factors/genetics , Ubiquitin-Protein Ligases/biosynthesis , Ubiquitin-Protein Ligases/genetics
13.
ACS Appl Mater Interfaces ; 14(1): 1-19, 2022 Jan 12.
Article En | MEDLINE | ID: mdl-34939784

Compared with traditional internal fixation devices, bone adhesives are expected to exhibit remarkable advantages, such as improved fixation of comminuted fractures and maintained spatial location of fractured scattered bone pieces in treating bone injuries. In this review, different bone adhesives are summarized from the aspects of bone tissue engineering, and the applications of bone adhesives are emphasized. The concepts of "liquid scaffold" and "liquid plate" are proposed to summarize two different research directions of bone adhesives. Furthermore, significant advances of bone adhesives in recent years in mechanical strength, osseointegration, osteoconductivity, and osteoinductivity are discussed. We conclude this topic by providing perspectives on the state-of-the-art research progress and future development trends of bone adhesives. We hope this review will provide a comprehensive summary of bone adhesives and inspire more extensive and in-depth research on this subject.


Fracture Healing/drug effects , Fractures, Bone/drug therapy , Macromolecular Substances/pharmacology , Tissue Adhesives/pharmacology , Animals , Bone Regeneration/drug effects , Bone and Bones/drug effects , Cell Line, Tumor , Humans , Macromolecular Substances/chemistry , Osseointegration/drug effects , Tissue Adhesives/chemistry , Tissue Engineering , Tissue Scaffolds/chemistry
14.
Mediators Inflamm ; 2021: 8817421, 2021.
Article En | MEDLINE | ID: mdl-34924815

Short-chain fatty acids (SCFAs) produced by the gut microbiota have previously been demonstrated to play a role in numerous chronic inflammatory diseases and to be key mediators in the gut-bone signaling axis. However, the role of SCFAs in bone fracture healing and its impact on systemic inflammation during the regeneration process has not been extensively investigated yet. The aim of this study was to first determine the effects of the SCFA butyrate on key cells involved in fracture healing in vitro, namely, osteoclasts and mesenchymal stromal cells (MSCs), and second, to assess if butyrate supplementation or antibiotic therapy impacts bone healing, systemic immune status, and inflammation levels in a murine osteotomy model. Butyrate significantly reduced osteoclast formation and resorption activity in a dose-dependent manner and displayed a trend for increased calcium deposits in MSC cultures. Numerous genes associated with osteoclast differentiation were differentially expressed in osteoclast precursor cells upon butyrate exposure. In vivo, antibiotic-treated mice showed reduced SCFA levels in the cecum, as well as a distinct gut microbiome composition. Furthermore, circulating proinflammatory TNFα, IL-17a, and IL-17f levels, and bone preserving osteoprotegerin (OPG), were increased in antibiotic-treated mice compared to controls. Antibiotic-treated mice also displayed a trend towards delayed bone healing as revealed by reduced mineral apposition at the defect site and higher circulating levels of the bone turnover marker PINP. Butyrate supplementation resulted in a lower abundance of monocyte/macrophages in the bone marrow, as well as reduced circulating proinflammatory IL-6 levels compared to antibiotic- and control-treated mice. In conclusion, this study supports our hypothesis that SCFAs, in particular butyrate, are important contributors to successful bone healing by modulating key cells involved in fracture healing as well as systemic inflammation and immune responses.


Anti-Bacterial Agents/pharmacology , Butyrates/pharmacology , Fracture Healing/drug effects , Inflammation/etiology , Osteoclasts/drug effects , Animals , Cell Differentiation/drug effects , Cells, Cultured , Cytokines/analysis , Fatty Acids, Volatile/pharmacology , Fracture Healing/physiology , Gastrointestinal Microbiome/drug effects , Humans , Inflammation Mediators/analysis , Levofloxacin/pharmacology , Male , Mice , Mice, Inbred C57BL , Osteoclasts/cytology , Osteotomy , Rifampin/pharmacology
15.
ACS Appl Mater Interfaces ; 13(48): 56944-56960, 2021 Dec 08.
Article En | MEDLINE | ID: mdl-34797653

The immune system and skeletal system are closely linked. Macrophages are one of the most important immune cells for bone remodeling, playing a prohealing role mainly through M2 phenotype polarization. Baicalein (5,6,7-trihydroxyflavone, BCL) has been well documented to have a noticeable promotion effect on M2 macrophage polarization. However, due to the limitations in targeted delivery to macrophages and the toxic effect on other organs, BCL has rarely been used in the treatment of bone fractures. In this study, we developed mesoporous silica and Fe3O4 composite-targeted nanoparticles loaded with BCL (BCL@MMSNPs-SS-CD-NW), which could be magnetically delivered to the fracture site. This induced macrophage recruitment in a targeted manner, polarizing them toward the M2 phenotype, which was demonstrated to induce mesenchymal stem cells (MSCs) toward osteoblastic differentiation. The mesoporous silicon nanoparticles (MSNs) were prepared with surface sulfhydrylation and amination modification, and the mesoporous channels were blocked with ß-cyclodextrin. The outer layer of the mesoporous silicon was added with an amantane-modified NW-targeting peptide to obtain the targeted nanosystem. After entering macrophages, BCL could be released from nanoparticles since the disulfide linker could be cleaved by intracellular glutathione (GSH), resulting in the removal of cyclodextrin (CD) gatekeeper, which is a key element in the pro-bone-remodeling functions such as anti-inflammation and induction of M2 macrophage polarization to facilitate osteogenic differentiation. This nanosystem passively accumulated in the fracture site, promoting osteogenic differentiation activities, highlighting a potent therapeutic benefit with high biosafety.


Biomimetic Materials/pharmacology , Fracture Healing/drug effects , Osteogenesis/drug effects , Animals , Biomimetic Materials/chemical synthesis , Biomimetic Materials/chemistry , Cells, Cultured , Fracture Healing/immunology , Macrophages/drug effects , Macrophages/immunology , Male , Materials Testing , Mice , Mice, Inbred C57BL , Osteogenesis/immunology
16.
Sci Rep ; 11(1): 22326, 2021 11 16.
Article En | MEDLINE | ID: mdl-34785696

Macrophage colony-stimulating factor 1 (M-CSF) is known to play a critical role during fracture repair e.g. by recruiting stem cells to the fracture site and impacting hard callus formation by stimulating osteoclastogenesis. The aim of this experiment was to study the impact of systemic M-CSF application and its effect on bony healing in a mouse model of femoral osteotomy. Doing so, we studied 61 wild type (wt) mice (18-week-old female C57BL/6) which were divided into three groups: (1) femoral osteotomy, (2) femoral osteotomy + stabilization with external fixator and (3) femoral osteotomy + stabilization with external fixator + systemic M-CSF application. Further, 12 op/op mice underwent femoral osteotomy and served as proof of concept. After being sacrificed at 28 days bony bridging was evaluated ex vivo with µCT, histological and biomechanical testing. Systemic M-CSF application impacted osteoclasts numbers, which were almost as low as found in op/op mice. Regarding callus size, the application of M-CSF in wt mice resulted in significantly larger calluses compared to wt mice without systemic M-CSF treatment. We further observed an anabolic effect of M-CSF application resulting in increased trabecular thickness compared to wt animals without additional M-CSF application. Systemic M-CSF application did not alter biomechanical properties in WT mice. The impact of M-CSF application in a mouse model of femoral osteotomy was oppositional to what we were expecting. While M-CSF application had a distinct anabolic effect on callus size as well as trabecular thickness, this on bottom line did not improve biomechanical properties. We hypothesize that in addition to the well-recognized negative effects of M-CSF on osteoclast numbers this seems to further downstream cause a lack of feedback on osteoblasts. Ultimately, continuous M-CSF application in the absence of co-stimulatory signals (e.g. RANKL) might overstimulate the hematopoietic linage in favor of tissue macrophages instead of osteoclasts.


External Fixators , Femur , Fracture Healing/drug effects , Macrophage Colony-Stimulating Factor/pharmacology , Osteoclasts/metabolism , Osteotomy , Animals , Disease Models, Animal , Female , Femur/injuries , Femur/metabolism , Mice , Mice, Transgenic
17.
J Bone Joint Surg Am ; 103(21): 2024-2031, 2021 11 03.
Article En | MEDLINE | ID: mdl-34730563

BACKGROUND: The negative impact of cigarette smoking on bone union has been well documented. However, the impact of heated tobacco product (HTP) use on bone fracture-healing remains unclear. The present study investigated the effect of HTPs on preosteoblast viability, osteoblastic differentiation, and fracture-healing and compared the effects with those of conventional combustible cigarettes. METHODS: Cigarette smoke extracts (CSEs) were generated from combustible cigarettes (cCSE) and HTPs (hCSE). CSE concentrations were standardized by assessing optical density. Preosteoblast (MC3T3-E1) cells were incubated with normal medium, cCSE, or hCSE. The cell viability was assessed via MTT assay. After osteoblastic differentiation of CSE-exposed cells, alkaline phosphatase (ALP) activity was assessed. To assess the in vivo effects of CSEs, a femoral midshaft osteotomy was performed in a rat model; thereafter, saline solution, cCSE, or hCSE was injected intraperitoneally, and bone union was assessed on the basis of micro-computed tomography (µCT) and biomechanical analysis 4 weeks later. RESULTS: MC3T3-E1 cell viability was reduced in a time and concentration-dependent manner when treated with either cCSE or hCSE. ALP activity after osteoblastic differentiation of cCSE-treated cells was significantly lower than that of both untreated and hCSE-treated cells (mean and standard deviation, 452.4 ± 48.8 [untreated], 326.2 ± 26.2 [cCSE-treated], and 389.9 ± 26.6 [hCSE-treated] mol/L/min; p = 0.002). Moreover, the levels of osteoblastic differentiation in untreated and hCSE-treated cells differed significantly (p < 0.05). In vivo assessment of the femoral midshaft cortical region revealed that both cCSE and hCSE administration significantly decreased bone mineral content 4 weeks after surgery compared with levels observed in untreated animals (107.0 ± 11.9 [untreated], 94.5 ± 13.0 [cCSE-treated], and 89.0 ± 10.1 mg/cm3 [hCSE-treated]; p = 0.049). Additionally, cCSE and hCSE-exposed femora had significantly lower bone volumes than unexposed femora. Biomechanical analyses showed that both cCSE and hCSE administration significantly decreased femoral maximum load and elastic modulus (p = 0.015 and 0.019). CONCLUSIONS: HTP use impairs cell viability, osteoblastic differentiation, and bone fracture-healing at levels comparable with those associated with combustible cigarette use. CLINICAL RELEVANCE: HTP use negatively affects bone fracture-healing to a degree similar to that of combustible cigarettes. Orthopaedic surgeons should recommend HTP smoking cessation to improve bone union.


Fracture Healing/drug effects , Heating/adverse effects , Tobacco Products/adverse effects , Tobacco Use/adverse effects , Animals , Cell Differentiation/drug effects , Cell Line , Cell Survival/drug effects , Disease Models, Animal , Femur/injuries , Humans , Male , Mice , Osteoblasts/drug effects , Osteoblasts/physiology , Rats , X-Ray Microtomography
18.
Biomed Res Int ; 2021: 7421582, 2021.
Article En | MEDLINE | ID: mdl-34692841

Implant-associated infections remain one of the main problems in the treatment of open tibia fractures. The role of systemic antibiotic prophylaxis is now agreed and accepted; nevertheless, recent literature also seems to emphasize the importance of local antibiotic therapy at the fracture site. Several therapeutic strategies have been proposed to overcome this new need. Antibiotic-coated nails play crucial role in this, allowing both infection prevention and favoring the fracture stabilization. We describe the outcome of patients with open diaphyseal tibia fracture treated either with a standard uncoated nail or a gentamicin-coated nail from January 2016 to December 2018 at our second level emergency-urgency department. Primary outcomes were infection rate and bone union rate. Other outcomes reported are reoperation rate, time between injury and nailing, and safety of antibiotic nail. Numerical variables were tabulated using mean, standard deviation, minimum, maximum, and number of observations. Categorical variables were tabulated using number of observations. 23 patients treated with uncoated nail and 23 patients treated with antibiotic-coated tibia nail were included in the study and were evaluated for a minimum follow-up of 18 months. Among the 46 patients, 9 were Gustilo-Anderson type I, 21 type II, and 16 type III open fracture. Regarding the bone healing rate at 12 months, 16 fractures in the first group and 18 in the second were completely healed. 4 infections were found in the first group (3 superficial surgical site infection and 1 osteomyelitis) and 3 superficial infections in the second one. No adverse events have been recorded with antibiotic-coated nails. In this unicentric retrospective study observed no deep wound infections and good fracture healing in the use of antibiotic-coated nails. Antibiotic nails have been shown to play a role in the treatment of fractures in critically ill patients with severe soft tissue damage.


Anti-Bacterial Agents/therapeutic use , Bone Nails , Fracture Healing/drug effects , Fractures, Open/surgery , Surgical Wound Infection/prevention & control , Tibia/drug effects , Tibial Fractures/surgery , Adult , Aged , Aged, 80 and over , Antibiotic Prophylaxis , Female , Humans , Male , Middle Aged , Postoperative Complications/pathology , Postoperative Complications/prevention & control , Reoperation/methods , Retrospective Studies , Treatment Outcome , Young Adult
19.
Orthop Surg ; 13(8): 2433-2441, 2021 Dec.
Article En | MEDLINE | ID: mdl-34676672

OBJECTIVE: To better understand the risks of bisphosphonates in order to develop guidance for appropriate clinical usage, to compared femoral fracture healing at different time points and to explore the effects of Residronate on fracture healing. METHODS: Osteoporosis model was achieved by ovariectomy surgery, followed by surgical incision of left femoral shaft 4 weeks after ovariectomy surgery. Three days after fracture surgery, risedronateor saline was fed by intragastric administration. X ray examination was used to check the callus formation, Bone Mineral Density (BMD), Bone Mineral Content (BMC), biomechanical, imaging and micromorphological of bone tissue as well as the trabecular bone parameters were all examined. The femoral pathology tissue of each rat was used to analyze trabecular bone parameters, including trabecular bone volume/tissue volume (Tb. BV/TV), bone surface to tissue volume ratio (BS/TV), trabecular bone mineral density (Tb. BMD), trabecular bone number (Tb. N), trabecular bone thickness (Tb. Th) and small bone Trabecular bone space (Tb. Sp). RESULTS: Via X-ray and pathologically, risedronate treatment promoted the callus forming at the fracture site during the following 6 weeks after osteoporotic fracture by X-ray (P < 0.01), increased the local bone mineral density (P < 0.01), and accelerated the fracture healing during the first 3 weeks (P <0.01), but delayed facture healing in the later 3 weeks (P < 0.01). Risedronate increased the bone continuity of fracture at 7th week, but this phenomenon was not found at the 10th week (P < 0.01). Delayed fracture healing occurred locally at the fracture site. At 7th week, Risedronate may promote cartilage cells proliferating at fracture site, increase the dense of bone trabeculae and the connection of bone trabeculae, thicken the bone cortex showing better fracture healing than OPF-Saline groups (P < 0.01). However, these parameter did not continue during the 7th and 10th weeks. Comparing the first and the later 3 weeks, the rats in group Osteoporotic Fracture-Risedronate (OPF-RD) accelerated the local fracture healing in the first 3 weeks but not in the last 3 weeks, which is consistent for the BMD and BMC among each group (P < 0.05). Through evaluation of bone mineral density and bone mineral content, risedronate dramatically increased the BMD at the fracture site and resulted in reduction of BMC by risedronate at the fracture site (P < 0.05) among each group still exist, indicating dramatic (P < 0.05). Through load testing, Risedronate increased the structural strength and mechanical indexes of the new callus (P < 0.01). CONCLUSION: Risedronate can improve the structural strength and mechanical index of newborn callus. Longer than 7 weeks usage of third generation bisphosphonate of risedronate does not contribute to osteoporotic fracture.


Diphosphonates/pharmacology , Femoral Fractures/drug therapy , Femoral Fractures/surgery , Osteoporotic Fractures/drug therapy , Osteoporotic Fractures/surgery , Risedronic Acid/pharmacology , Animals , Bone Density/drug effects , Bone Density Conservation Agents/pharmacology , Female , Fracture Healing/drug effects , Ovariectomy , Rats , Rats, Sprague-Dawley
20.
Front Endocrinol (Lausanne) ; 12: 688269, 2021.
Article En | MEDLINE | ID: mdl-34526966

Background: Osteoporosis is a common complication of acute fracture, which can lead to fracture delayed union or other complications and resulting in poor fracture healing. Bisphosphate is a common anti-osteoporosis drug, but its application in fracture patients is still controversial because of its inhibitory effect on bone resorption. Method: Studies were acquired from literature databases in accordance with established inclusion criteria. Standard mean difference (SMD) and 95% confidence intervals (Cls) were calculated to evaluate the effectiveness of the bisphosphonates treatment in fracture patients. Data analysis was conducted with the Review Manager 5.4.1 software. Results: A total of 16 studies involving 5022 patients obtained from selected databases were examined. As expected, bisphosphate had no significant effect on fracture healing time, but it could significantly increase BMD and prevent osteoporosis. Meanwhile, bisphosphate can inhibit both bone resorption and bone formation markers, resulting in low bone turnover state. Conclusion: This meta-analysis showed that bisphosphonate have no significant effect on fracture healing time but they do increase the changes in BMD and reduce bone synthesis and resorption markers. Early application of bisphosphonates after injury in the appropriate patient population should be considered.


Bone Density Conservation Agents/administration & dosage , Bone Density/drug effects , Diphosphonates/administration & dosage , Fracture Healing/drug effects , Osteoporosis/drug therapy , Bone Density Conservation Agents/therapeutic use , Bone Remodeling/drug effects , Diphosphonates/therapeutic use , Humans
...