Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Genet Genomics ; 294(3): 739-755, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30879203

RESUMEN

The legume endosymbiont Sinorhizobium meliloti can utilize a broad range of carbon compounds to support its growth. The linear, six-carbon polyol galactitol is abundant in vascular plants and is metabolized in S. meliloti by the contribution of two loci SMb21372-SMb21377 and SMc01495-SMc01503 which are found on pSymB and the chromosome, respectively. The data suggest that several transport systems, including the chromosomal ATP-binding cassette (ABC) transporter smoEFGK, contribute to the uptake of galactitol, while the adjacent gene smoS encodes a protein for oxidation of galactitol into tagatose. Subsequently, genes SMb21374 and SMb21373, encode proteins that phosphorylate and epimerize tagatose into fructose-6-phosphate, which is further metabolized by the enzymes of the Entner-Doudoroff pathway. Of note, it was found that SMb21373, which was annotated as a 1,6-bis-phospho-aldolase, is homologous to the E. coli gene gatZ, which is annotated as encoding the non-catalytic subunit of a tagatose-1,6-bisphosphate aldolase heterodimer. When either of these genes was introduced into an Agrobacterium tumefaciens strain that carries a tagatose-6-phosphate epimerase mutation, they are capable of complementing the galactitol growth deficiency associated with this mutation, strongly suggesting that these genes are both epimerases. Phylogenetic analysis of the protein family (IPR012062) to which these enzymes belong, suggests that this misannotation is systemic throughout the family. S. meliloti galactitol catabolic mutants do not exhibit symbiotic deficiencies or the inability to compete for nodule occupancy.


Asunto(s)
Proteínas Bacterianas/genética , Galactitol/metabolismo , Hexosas/metabolismo , L-Iditol 2-Deshidrogenasa/genética , Operón/genética , Sinorhizobium meliloti/genética , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/metabolismo , Cromosomas Bacterianos/genética , Fructosa-Bifosfato Aldolasa/clasificación , Fructosa-Bifosfato Aldolasa/genética , Fructosa-Bifosfato Aldolasa/metabolismo , Regulación Bacteriana de la Expresión Génica , L-Iditol 2-Deshidrogenasa/metabolismo , Filogenia , Plásmidos/genética , Sinorhizobium meliloti/clasificación , Sinorhizobium meliloti/metabolismo
2.
Biochemistry ; 47(38): 9955-65, 2008 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-18754683

RESUMEN

One of the major challenges in the postgenomic era is the functional assignment of proteins using sequence- and structure-based predictive methods coupled with experimental validation. We have used these approaches to investigate the structure and function of the Escherichia coli K-12 protein YfaU, annotated as a putative 4-hydroxy-2-ketoheptane-1,7-dioate aldolase (HpcH) in the sequence databases. HpcH is the final enzyme in the degradation pathway of the aromatic compound homoprotocatechuate. We have determined the crystal structure of apo-YfaU and the Mg (2+)-pyruvate product complex. Despite greater sequence and structural similarity to HpcH, genomic context suggests YfaU is instead a 2-keto-3-deoxy sugar aldolase like the homologous 2-dehydro-3-deoxygalactarate aldolase (DDGA). Enzyme kinetic measurements show activity with the probable physiological substrate 2-keto-3-deoxy- l-rhamnonate, supporting the functional assignment, as well as the structurally similar 2-keto-3-deoxy- l-mannonate and 2-keto-3-deoxy- l-lyxonate (see accompanying paper: Rakus, J. F., Fedorov, A. A., Fedorov, E. V., Glasner, M. E., Hubbard, B. K., Delli, J. D., Babbitt, P. C., Almo, S. C., and Gerlt, J. A. (2008) Biochemistry 47, 9944-9954). YfaU has similar activity toward the HpcH substrate 4-hydroxy-2-ketoheptane-1,7-dioate and synthetic substrates 4-hydroxy-2-ketopentanoic acid and 4-hydroxy-2-ketohexanoic acid. This indicates a relaxed substrate specificity that complicates the functional assignment of members of this enzyme superfamily. Crystal structures suggest these enzymes use an Asp-His intersubunit dyad to activate a metal-bound water or hydroxide for proton transfer during catalysis.


Asunto(s)
Escherichia coli K12/enzimología , Fructosa-Bifosfato Aldolasa/química , Fructosa-Bifosfato Aldolasa/clasificación , Metales/química , Aldehído-Liasas/metabolismo , Secuencia de Aminoácidos , Cationes Bivalentes , Cristalografía por Rayos X , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Fructosa-Bifosfato Aldolasa/metabolismo , Datos de Secuencia Molecular , Especificidad por Sustrato
3.
Biochem Biophys Res Commun ; 347(3): 616-25, 2006 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-16843441

RESUMEN

It was recently established that fructose-1,6-bisphosphate (FBP) aldolase (FBA) and tagatose-1,6-bisphosphate (TBP) aldolase (TBA), two class II aldolases, are highly specific for the diastereoselective synthesis of FBP and TBP from glyceraldehyde-3-phosphate (G3P) and dihydroxyacetone phosphate (DHAP), respectively. In this paper, we report on a FBA from the thermophile Thermus caldophilus GK24 (Tca) that produces both FBP and TBP from C(3) substrates. Moreover, the FBP:TBP ratio could be adjusted by manipulating the concentrations of G3P and DHAP. This is the first native FBA known to show dual diastereoselectivity among the FBAs and TBAs characterized thus far. To explain the behavior of this enzyme, the X-ray crystal structure of the Tca FBA in complex with DHAP was determined at 2.2A resolution. It appears that as a result of alteration of five G3P binding residues, the substrate binding cavity of Tca FBA has a greater volume than those in the Escherichia coli FBA-phosphoglycolohydroxamate (PGH) and TBA-PGH complexes. We suggest that this steric difference underlies the difference in the diastereoselectivities of these class II aldolases.


Asunto(s)
Fructosa-Bifosfato Aldolasa/química , Fructosa-Bifosfato Aldolasa/metabolismo , Thermus/enzimología , Sitios de Unión , Cristalografía por Rayos X , Fructosa-Bifosfato Aldolasa/clasificación , Fructosadifosfatos/metabolismo , Hexosadifosfatos/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Receptores de Aminoácidos , Alineación de Secuencia , Estereoisomerismo , Homología Estructural de Proteína , Especificidad por Sustrato , Thermus/clasificación
4.
Eukaryot Cell ; 3(5): 1169-75, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15470245

RESUMEN

Plastids (photosynthetic organelles of plants and algae) are known to have spread between eukaryotic lineages by secondary endosymbiosis, that is, by the uptake of a eukaryotic alga by another eukaryote. But the number of times this has taken place is controversial. This is particularly so in the case of eukaryotes with plastids derived from red algae, which are numerous and diverse. Despite their diversity, it has been suggested that all these eukaryotes share a recent common ancestor and that their plastids originated in a single endosymbiosis, the so-called "chromalveolate hypothesis." Here we describe a novel molecular character that supports the chromalveolate hypothesis. Fructose-1,6-bisphosphate aldolase (FBA) is a glycolytic and Calvin cycle enzyme that exists as two nonhomologous types, class I and class II. Red algal plastid-targeted FBA is a class I enzyme related to homologues from plants and green algae, and it would be predicted that the plastid-targeted FBA from algae with red algal secondary endosymbionts should be related to this class I enzyme. However, we show that plastid-targeted FBA of heterokonts, cryptomonads, haptophytes, and dinoflagellates (all photosynthetic chromalveolates) are class II plastid-targeted enzymes, completely unlike those of red algal plastids. The chromalveolate enzymes form a strongly supported group in FBA phylogeny, and their common possession of this unexpected plastid characteristic provides new evidence for their close relationship and a common origin for their plastids.


Asunto(s)
Evolución Biológica , Fructosa-Bifosfato Aldolasa/genética , Fotosíntesis/genética , Rhodophyta/genética , Rhodophyta/metabolismo , Secuencia de Bases , ADN/genética , Fructosa-Bifosfato Aldolasa/clasificación , Modelos Genéticos , Filogenia , Plastidios/enzimología , Plastidios/genética , Simbiosis/genética
5.
J Mol Biol ; 315(2): 131-40, 2002 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-11779234

RESUMEN

Class II fructose 1,6-bisphosphate aldolases (FBP-aldolases) catalyse the zinc-dependent, reversible aldol condensation of dihydroxyacetone phosphate (DHAP) and glyceraldehyde 3-phosphate (G3P) to form fructose 1,6-bisphosphate (FBP). Analysis of the structure of the enzyme from Escherichia coli in complex with a transition state analogue (phosphoglycolohydroxamate, PGH) suggested that substrate binding caused a conformational change in the beta5-alpha7 loop of the enzyme and that this caused the relocation of two glutamate residues (Glu181 and Glu182) into the proximity of the active site. Site-directed mutagenesis of these two glutamate residues (E181A and E182A) along with another active site glutamate (Glu174) was carried out and the mutant enzymes characterised using steady-state kinetics. Mutation of Glu174 (E174A) resulted in an enzyme which was severely crippled in catalysis, in agreement with its position as a zinc ligand in the enzyme's structure. The E181A mutant showed the same properties as the wild-type enzyme indicating that the residue played no major role in substrate binding or enzyme catalysis. In contrast, mutation of Glu182 (E182A) demonstrated that Glu182 is important in the catalytic cycle of the enzyme. Furthermore, the measurement of deuterium kinetic isotope effects using [1(S)-(2)H]DHAP showed that, for the wild-type enzyme, proton abstraction was not the rate determining step, whereas in the case of the E182A mutant this step had become rate limiting, providing evidence for the role of Glu182 in abstraction of the C1 proton from DHAP in the condensation direction of the reaction. Glu182 lies in a loop of polypeptide which contains four glycine residues (Gly176, Gly179, Gly180 and Gly184) and a quadruple mutant (where each glycine was converted to alanine) showed that flexibility of this loop was important for the correct functioning of the enzyme, probably to change the microenvironment of Glu182 in order to perturb its pK(a) to a value suitable for its role in proton abstraction. These results highlight the need for further studies of the dynamics of the enzyme in order to fully understand the complexities of loop closure and catalysis in this enzyme.


Asunto(s)
Escherichia coli/enzimología , Fructosa-Bifosfato Aldolasa/química , Fructosa-Bifosfato Aldolasa/metabolismo , Ácido Glutámico/metabolismo , Sustitución de Aminoácidos/genética , Sitios de Unión , Catálisis , Dicroismo Circular , Deuterio/metabolismo , Dihidroxiacetona Fosfato/metabolismo , Escherichia coli/genética , Fructosa-Bifosfato Aldolasa/clasificación , Fructosa-Bifosfato Aldolasa/genética , Ácido Glutámico/genética , Ácidos Hidroxámicos/metabolismo , Cinética , Modelos Moleculares , Oxidación-Reducción , Docilidad , Conformación Proteica , Protones , Relación Estructura-Actividad , Zinc/metabolismo
6.
Biochemistry ; 40(46): 13868-75, 2001 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-11705376

RESUMEN

Fructose-1,6-bis(phosphate) aldolase is an essential glycolytic enzyme found in all vertebrates and higher plants that catalyzes the cleavage of fructose 1,6-bis(phosphate) (Fru-1,6-P(2)) to glyceraldehyde 3-phosphate and dihydroxyacetone phosphate (DHAP). Mutations in the aldolase genes in humans cause hemolytic anemia and hereditary fructose intolerance. The structure of the aldolase-DHAP Schiff base has been determined by X-ray crystallography to 2.6 A resolution (R(cryst) = 0.213, R(free) = 0.249) by trapping the catalytic intermediate with NaBH(4) in the presence of Fru-1,6-P(2). This is the first structure of a trapped covalent intermediate for this essential glycolytic enzyme. The structure allows the elucidation of a comprehensive catalytic mechanism and identification of a conserved chemical motif in Schiff-base aldolases. The position of the bound DHAP relative to Asp33 is consistent with a role for Asp33 in deprotonation of the C4-hydroxyl leading to C-C bond cleavage. The methyl side chain of Ala31 is positioned directly opposite the C3-hydroxyl, sterically favoring the S-configuration of the substrate at this carbon. The "trigger" residue Arg303, which binds the substrate C6-phosphate group, is a ligand to the phosphate group of DHAP. The observed movement of the ligand between substrate and product phosphates may provide a structural link between the substrate cleavage and the conformational change in the C-terminus associated with product release. The position of Glu187 in relation to the DHAP Schiff base is consistent with a role for the residue in protonation of the hydroxyl group of the carbinolamine in the dehydration step, catalyzing Schiff-base formation. The overlay of the aldolase-DHAP structure with that of the covalent enzyme-dihydroxyacetone structure of the mechanistically similar transaldolase and KDPG aldolase allows the identification of a conserved Lys-Glu dyad involved in Schiff-base formation and breakdown. The overlay highlights the fact that Lys146 in aldolase is replaced in transaldolase with Asn35. The substitution in transaldolase stabilizes the enamine intermediate required for the attack of the second aldose substrate, changing the chemistry from aldolase to transaldolase.


Asunto(s)
Dihidroxiacetona Fosfato/metabolismo , Fructosa-Bifosfato Aldolasa/química , Fructosa-Bifosfato Aldolasa/metabolismo , Animales , Sitios de Unión/genética , Borohidruros/metabolismo , Catálisis , Cristalografía por Rayos X , Fructosa-Bifosfato Aldolasa/clasificación , Fructosa-Bifosfato Aldolasa/genética , Gluconatos/química , Mutagénesis Sitio-Dirigida , Oxidación-Reducción , Unión Proteica/genética , Conejos , Bases de Schiff/metabolismo , Estereoisomerismo , Especificidad por Sustrato/genética , Transaldolasa/química
7.
J Biol Chem ; 276(31): 28710-8, 2001 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-11387336

RESUMEN

Fructose-1,6-bisphosphate (FBP) aldolase activity has been detected previously in several Archaea. However, no obvious orthologs of the bacterial and eucaryal Class I and II FBP aldolases have yet been identified in sequenced archaeal genomes. Based on a recently described novel type of bacterial aldolase, we report on the identification and molecular characterization of the first archaeal FBP aldolases. We have analyzed the FBP aldolases of two hyperthermophilic Archaea, the facultatively heterotrophic Crenarchaeon Thermoproteus tenax and the obligately heterotrophic Euryarchaeon Pyrococcus furiosus. For enzymatic studies the fba genes of T. tenax and P. furiosus were expressed in Escherichia coli. The recombinant FBP aldolases show preferred substrate specificity for FBP in the catabolic direction and exhibit metal-independent Class I FBP aldolase activity via a Schiff-base mechanism. Transcript analyses reveal that the expression of both archaeal genes is induced during sugar fermentation. Remarkably, the fbp gene of T. tenax is co-transcribed with the pfp gene that codes for the reversible PP(i)-dependent phosphofructokinase. As revealed by phylogenetic analyses, orthologs of the T. tenax and P. furiosus enzyme appear to be present in almost all sequenced archaeal genomes, as well as in some bacterial genomes, strongly suggesting that this new enzyme family represents the typical archaeal FBP aldolase. Because this new family shows no significant sequence similarity to classical Class I and II enzymes, a new name is proposed, archaeal type Class I FBP aldolases (FBP aldolase Class IA).


Asunto(s)
Fructosa-Bifosfato Aldolasa/genética , Operón , Pyrococcus/enzimología , Pyrococcus/genética , Thermoproteaceae/enzimología , Thermoproteaceae/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Bacterias/enzimología , Bacterias/genética , Secuencia de Bases , Sitios de Unión , Fructosa-Bifosfato Aldolasa/química , Fructosa-Bifosfato Aldolasa/clasificación , Fructosa-Bifosfato Aldolasa/metabolismo , Cinética , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Filogenia , Regiones Promotoras Genéticas , Subunidades de Proteína , Pyrococcus/clasificación , Pyrococcus furiosus/clasificación , Pyrococcus furiosus/enzimología , Pyrococcus furiosus/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico , TATA Box , Thermoproteaceae/clasificación , Transcripción Genética
8.
FEBS Lett ; 447(2-3): 200-2, 1999 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-10214945

RESUMEN

Class I and class II aldolases are products of two evolutionary non-related gene families. The cytosol and chloroplast enzymes of higher plants are of the class I type, the latter being bifunctional for fructose-1,6- and sedoheptulose-1,7-P2 in the Calvin cycle. Recently, class II aldolases were detected for the cytosol and chloroplasts of the lower alga Cyanophora paradoxa. The respective chloroplast enzyme has been shown here to be also bifunctional for fructose-1,6- and sedoheptulose-1,7-P2. Kinetics, also including fructose-1-P, were determined for all these enzymes. Apparently, aldolases are multifunctional enzymes, irrespective of their class I or class II type.


Asunto(s)
Cloroplastos/enzimología , Fructosa-Bifosfato Aldolasa/clasificación , Fructosa-Bifosfato Aldolasa/metabolismo , Fructosadifosfatos/metabolismo , Fosfatos de Azúcar/metabolismo , Compartimento Celular , Citosol/enzimología , Eucariontes/enzimología , Eucariontes/genética , Fructosa-Bifosfato Aldolasa/genética , Fructosafosfatos/metabolismo , Isoenzimas/clasificación , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Spinacia oleracea/enzimología , Spinacia oleracea/genética , Especificidad por Sustrato
9.
Gene ; 222(2): 163-8, 1998 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-9831644

RESUMEN

A Giardia lamblia gene, Glfba, was cloned and sequenced. This gene codes for a 324-residue-long putative class II fructose-1, 6-bisphosphate aldolase. The positions of gaps and phylogenetic analysis with maximum likelihood and maximum parsimony methods showed the sequence to be most closely related to the as-yet uncharacterized aldolases of Helicobacter pylori and Aquifex aeolicus and to the group that comprises the Calvin-cycle aldolases of photosynthetic proteobacteria and cyanobacteria. In combination with the known taxonomic and functional distribution of class I and II aldolases, the results indicate that the G. lamblia enzyme is distinct in its evolutionary history from all eukaryotic fructose-1, 6-bisphosphate aldolases studied so far.


Asunto(s)
Fructosa-Bifosfato Aldolasa/genética , Genes Protozoarios , Giardia lamblia/enzimología , Giardia lamblia/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Cartilla de ADN/genética , ADN Protozoario/genética , Evolución Molecular , Fructosa-Bifosfato Aldolasa/clasificación , Helicobacter pylori/enzimología , Helicobacter pylori/genética , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Filogenia , Homología de Secuencia de Aminoácido
10.
Structure ; 4(11): 1303-15, 1996 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-8939754

RESUMEN

BACKGROUND: [corrected] Aldolases catalyze a variety of condensation and cleavage reactions, with exquisite control on the stereochemistry. These enzymes, therefore, are attractive catalysts for synthetic chemistry. There are two classes of aldolase: class I aldolases utilize Schiff base formation with an active-site lysine whilst class II enzymes require a divalent metal ion, in particular zinc. Fructose-1,6-bisphosphate aldolase (FBP-aldolase) is used in gluconeogenesis and glycolysis; the enzyme controls the condensation of dihydroxyacetone phosphate with glyceraldehyde-3-phosphate to yield fructose-1,6-bisphosphate. Structures are available for class I FBP-aldolases but there is a paucity of detail on the class II enzymes. Characterization is sought to enable a dissection of structure/activity relationships which may assist the construction of designed aldolases for use as biocatalysts in synthetic chemistry. RESULTS: The structure of the dimeric class II FBP-aldolase from Escherichia coli has been determined using data to 2.5 A resolution. The asymmetric unit is one subunit which presents a familiar fold, the (alpha/beta)8 barrel. The active centre, at the C-terminal end of the barrel, contains a novel bimetallic-binding site with two metal ions 6.2 A apart. One ion, the identity of which is not certain, is buried and may play a structural or activating role. The other metal ion is zinc and is positioned at the surface of the barrel to participate in catalysis. CONCLUSIONS: Comparison of the structure with a class II fuculose aldolase suggests that these enzymes may share a common mechanism. Nevertheless, the class II enzymes should be subdivided into two categories on consideration of subunit size and fold, quaternary structure and metal-ion binding sites.


Asunto(s)
Proteínas Bacterianas , Proteínas de Escherichia coli , Escherichia coli/enzimología , Fructosa-Bifosfato Aldolasa/química , Metaloproteínas/química , Zinc/química , Secuencia de Aminoácidos , Sitios de Unión , Cationes/química , Simulación por Computador , Cristalografía por Rayos X , Dimerización , Fructosa-Bifosfato Aldolasa/clasificación , Metaloproteínas/clasificación , Modelos Moleculares , Datos de Secuencia Molecular , Potasio/química , Conformación Proteica , Estructura Secundaria de Proteína
11.
Eur J Biochem ; 241(1): 243-8, 1996 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-8898912

RESUMEN

Fructose-1,6-bisphosphate aldolase activity has been isolated and purified to homogeneity from the extreme thermophile eubacteria Thermus aquaticus. The homogeneous enzyme is a class II aldolase as fructose-1,6-bisphosphate cleavage activity was strongly inhibited by EDTA, and activated by Co2+ metal ion. Taq aldolase is a stable tetramer with estimated molecular mass of 165 kDa. The enzyme is thermostable and is not inactived after heating at 90 degrees C for 2 h but looses 80% of activity after 1 h at 97 degrees C. The pH profile corresponding to maximal aldolase activity is displaced to more acidic values compared to other class II aldolases. Enzyme activation by both detergents and alcohols and chromatographic behaviour on hydrophobic stationary phases is consistent with presence of hydrophobic surface regions on the soluble enzyme. Kinetic behaviour of T. aquaticus aldolase at high fructose-1,6-bisphosphate concentrations indicates significant negative cooperativity. The Taq aldolase NH2-terminal sequence was determined and compared with available sequences from other class II aldolases. Significant sequence similarity was found between Taq aldolase and the thermostable aldolase from Bacillus stearothermophilus.


Asunto(s)
Fructosa-Bifosfato Aldolasa/metabolismo , Thermus/enzimología , Alcoholes/farmacología , Secuencia de Aminoácidos , Detergentes/farmacología , Activación Enzimática , Fructosa-Bifosfato Aldolasa/clasificación , Fructosa-Bifosfato Aldolasa/aislamiento & purificación , Concentración de Iones de Hidrógeno , Cinética , Metales/farmacología , Datos de Secuencia Molecular , Peso Molecular , Conformación Proteica , Alineación de Secuencia , Análisis de Secuencia , Temperatura
12.
Structure ; 4(6): 715-24, 1996 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-8805555

RESUMEN

BACKGROUND: Transaldolase is one of the enzymes in the non-oxidative branch of the pentose phosphate pathway. It transfers a C3 ketol fragment from a ketose donor to an aldose acceptor. Transaldolase, together with transketolase, creates a reversible link between the pentose phosphate pathway and glycolysis. The enzyme is of considerable interest as a catalyst in stereospecific organic synthesis and the aim of this work was to reveal the molecular architecture of transaldolase and provide insights into the structural basis of the enzymatic mechanism. RESULTS: The three-dimensional (3D) structure of recombinant transaldolase B from E. coli was determined at 1.87 A resolution. The enzyme subunit consists of a single eight-stranded alpha/beta-barrel domain. Two subunits form a dimer related by a twofold symmetry axis. The active-site residue Lys132 which forms a Schiff base with the substrate is located at the bottom of the active-site cleft. CONCLUSIONS: The 3D structure of transaldolase is similar to structures of other enzymes in the class I aldolase family. Comparison of these structures suggests that a circular permutation of the protein sequence might have occurred in transaldolase, which nevertheless results in a similar 3D structure. This observation provides evidence for a naturally occurring circular permutation in an alpha/beta-barrel protein. It appears that such genetic permutations occur more frequently during evolution than was previously thought.


Asunto(s)
Escherichia coli/enzimología , Estructura Secundaria de Proteína , Transaldolasa/química , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Escherichia coli/metabolismo , Evolución Molecular , Fructosa-Bifosfato Aldolasa/química , Fructosa-Bifosfato Aldolasa/clasificación , Fructosa-Bifosfato Aldolasa/genética , Modelos Químicos , Modelos Moleculares , Datos de Secuencia Molecular , Vía de Pentosa Fosfato/genética , Conformación Proteica , Bases de Schiff/química , Alineación de Secuencia
14.
Bioorg Med Chem ; 2(8): 837-43, 1994 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-7894977

RESUMEN

A stable overexpression E. coli strain containing the plasmid pKEN 2 for the production of the Zn(2+)-dependent FDP aldolase from E. coli has been developed. Approximately 14,000 U of the enzyme (specific activity = 23.3 U/mg) can be obtained from 4-L of growth medium. The enzyme was isolated, purified to homogeneity and used for the studies of stability, substrate specificity and metal ion replacement and dissociation. Crystals of the enzyme have been obtained for structural analysis. This E. coli strain was deposited with the American Type Culture Collection (ATCC #77472).


Asunto(s)
Escherichia coli/enzimología , Fructosa-Bifosfato Aldolasa/genética , Secuencia de Bases , Clonación Molecular , Cobalto/metabolismo , Cristalización , Cartilla de ADN/genética , Estabilidad de Enzimas , Escherichia coli/genética , Fructosa-Bifosfato Aldolasa/clasificación , Fructosa-Bifosfato Aldolasa/aislamiento & purificación , Expresión Génica , Genes Bacterianos , Cinética , Datos de Secuencia Molecular , Estructura Molecular , Plásmidos/genética , Especificidad por Sustrato , Zinc/metabolismo
15.
Trends Biochem Sci ; 17(3): 110-3, 1992 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-1412694

RESUMEN

Two mechanistically distinct forms of fructose-bisphosphate aldolase are known to exist. It has been assumed that the Class II (metallo) aldolases are evolutionary more primitive than their Class I (Schiff-base) analogs since the latter had only been found in eukaryotes. With the identification of prokaryotic Class I aldolases, we present here an alternative scheme of aldolase evolution. This scheme proposes that both aldolase classes are evolutionarily ancient and rationalizes the observed highly variable expression of both enzyme types in contemporary file forms.


Asunto(s)
Fructosa-Bifosfato Aldolasa/genética , Animales , Bacterias/enzimología , Evolución Biológica , Metabolismo de los Hidratos de Carbono , Fructosa-Bifosfato Aldolasa/clasificación , Músculos/enzimología , Saccharomyces cerevisiae/enzimología
16.
Eur J Biochem ; 195(2): 343-50, 1991 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-1900049

RESUMEN

An electrophoretically homogeneous class I (Schiff base) alsolase has been isolated for the first time from the archaebacterial halophile Haloarcula (Halobacterium) vallismortis. The aldolase was characterized with respect to its molecular mass, amino acid composition, salt dependency, immunological cross-reactivity and kinetic properties. The subunit mass of aldolase is 27 kDa, which is much smaller than other class I aldolases. By the gel filtration method, the molecular mass of the halobacterial enzyme was estimated as 280 +/- 10 kDa, suggesting a decameric nature. In contrast to many halobacterial proteins, the H. vallismortis aldolase, though a halophilic enzyme, did not show an excess of acidic residues. Unlike the eukaryotic aldolases, the activity of the halobacterial enzyme was not affected by carboxypeptidase digestion. The general catalytic features of the enzyme were similar to its counterparts from other sources. No antigenic similarity could be detected between the H. vallismortis aldolase and class I aldolase from eubacteria and eukaryotes or class II halobacterial aldolases.


Asunto(s)
Archaea/enzimología , Fructosa-Bifosfato Aldolasa/aislamiento & purificación , Halobacterium/enzimología , Aminoácidos/análisis , Archaea/inmunología , Borohidruros/farmacología , Carboxipeptidasas/farmacología , Carboxipeptidasas A , Reacciones Cruzadas , Electroforesis en Gel de Poliacrilamida , Activación Enzimática/efectos de los fármacos , Estabilidad de Enzimas/efectos de los fármacos , Fructosa-Bifosfato Aldolasa/clasificación , Fructosa-Bifosfato Aldolasa/inmunología , Halobacterium/inmunología , Hidrólisis , Cinética , Peso Molecular , Sales (Química)/farmacología , Bases de Schiff , Relación Estructura-Actividad
18.
Mol Microbiol ; 3(11): 1625-37, 1989 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-2615658

RESUMEN

The Corynebacterium glutamicum fda gene encoding fructose-1,6-biphosphate (FBP) aldolase has been isolated by complementation of an Escherichia coli mutant. The nucleotide sequence of a 3371 bp chromosomal fragment containing the C. glutamicum fda gene was determined. The N-terminal amino acid sequence of C. glutamicum FBP aldolase identified the correct initiation site for the fda gene, and a molecular weight of 37,092 was predicted for the fda polypeptide. S1 nuclease mapping identified the transcriptional start site, and Northern hybridization analysis indicated that the fda gene encodes a single 1.3 kb transcript. The primary structure of C. glutamicum FBP aldolase shows strong homology to class II FBP aldolases. Conservation of primary structure was observed between class I and class II aldolases, but several residues essential for catalytic activity in class I aldolases were absent from class II aldolases.


Asunto(s)
Corynebacterium/genética , Fructosa-Bifosfato Aldolasa/genética , Genes Bacterianos , Secuencia de Aminoácidos , Secuencia de Bases , Clonación Molecular , ADN Bacteriano/genética , Fructosa-Bifosfato Aldolasa/clasificación , Glucosa , Datos de Secuencia Molecular , Mapeo Restrictivo , Transcripción Genética
19.
Orig Life Evol Biosph ; 18(1-2): 59-64, 1988.
Artículo en Inglés | MEDLINE | ID: mdl-11536602

RESUMEN

Both, class I (Schiff-base forming) and class II (metal requiring) fructose biphosphate aldolases were found to be distributed among halophilic archaebacteria. The aldolase activity from Halobacteriium halobium, H. salinarium, H. cutirubrum, H. mediterranei and H. volcanii exhibited properties of a bacterial class II aldolase as it was metal-dependent for activity and therefore inhibited by EDTA. In contrast, aldolase from H. saccharovorum, Halobacterium R-113, H. vallismortis and Halobacterium CH-1 formed a Schiff-base intermediate with the substrate and therefore resembled to eukaryotic class I type. The type of aldolase did not vary by changes in the growth medium.


Asunto(s)
Fructosa-Bifosfato Aldolasa/clasificación , Fructosa-Bifosfato Aldolasa/metabolismo , Halobacterium/enzimología , Dihidroxiacetona Fosfato , Ácido Edético/metabolismo , Halobacterium/clasificación , Halobacterium salinarum , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA