Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.015
1.
Food Res Int ; 186: 114328, 2024 Jun.
Article En | MEDLINE | ID: mdl-38729714

The metabolism and absorption of citrus flavanones are intrinsically linked to the gut microbiota, creating a bidirectional relationship where these compounds influence the microbiome, and in turn, the microbiota affects their metabolism. This study evaluates the effect of acute and chronic consumption of orange juice (OJ) on the urinary excretion of gut-derived flavanone metabolites and the gut microbiota. Health volunteers ingested 500 mL of OJ for 60 days in a single-arm human intervention study. Blood and feces were collected at baseline and after 60 days, with an additional 24-hour urine collection after a single dose on day 1 and day 63. LC-MS/MS analyzed urinary flavanone metabolites, while 16S rRNA sequencing characterized gut microbiota. Total urinary hesperetin conjugates excretion significantly decreased over 60 days, while gut-derived total phenolic acids, particularly three hydroxybenzoic acids, increased. Moreover, the heterogeneity of the total amount of flavanone conjugates, initially categorizing individuals into high-, medium- and low- urinary excretor profiles, shifted towards medium-excretor, except for five individuals who remained as low-excretors. This alteration was accompanied by a decrease in intestinal ß-glucosidase activity and a shift in the relative abundance of specific genera, such as decreases in Blautia, Eubacterium hallii, Anaerostipes, and Fusicatenibacter, among which, Blautia was associated with higher urinary flavanone conjugates excretion. Conversely, an increase in Prevotella was observed. In summary, chronic OJ consumption induced transient changes in gut microbiota and altered the metabolism of citrus flavanones, leading to distinct urinary excretion profiles of flavanone metabolites.


Citrus sinensis , Feces , Flavanones , Fruit and Vegetable Juices , Gastrointestinal Microbiome , Humans , Flavanones/urine , Male , Adult , Female , Feces/microbiology , Feces/chemistry , Hesperidin/urine , Tandem Mass Spectrometry , Middle Aged , Young Adult , Bacteria/classification , Bacteria/metabolism , Bacteria/genetics , Hydroxybenzoates/urine
2.
Nutrients ; 16(9)2024 Apr 28.
Article En | MEDLINE | ID: mdl-38732578

This study examined the effects of orange juice (OJ) supplemented with vitamin D3 (2000 IU) and probiotics (Lacticaseibacillus casei Shirota and Lacticaseibacillus rhamnosus GG, 108 cfu/mL) on cardiometabolic risk factors in overweight and obese adults following a Westernized-type diet. Fifty-three high-risk individuals were randomly assigned to one of two groups. Over 8 weeks, one group consumed a vitamin D3 and probiotic-enriched OJ and the other regular OJ (control). Diets remained unchanged and were documented through food diaries. Measures of metabolic and inflammatory markers and blood pressure were measured at the start and end of the study. Post-intervention, the enriched OJ group showed the following significant metabolic improvements (without changes in triglycerides, inflammation, or central blood pressure): reduced fasting insulin, peripheral blood pressure, body weight (-1.4 kg 95% CI: -2.4, -0.4), energy (-270 kcal 95% CI: -553.2, -13.7), macronutrient (dietary fat -238 kcal 95% CI: -11.9, -1.0; carbohydrates -155 kcal 95% CI: -282.4, -27.3; sugars -16.1 g 95% CI: -11.9, -1.0) intake, and better lipid profiles (total cholesterol -10.3 mg/dL 95% CI: -21.4, 0.9; LDL-C -7 mg/dL 95% CI: -13.5, -0.5). The enriched OJ led to weight loss, less energy/macronutrient consumption, improved lipid profiles, and increased insulin sensitivity after 8 weeks in those following a Westernized diet, thus indicating potential benefits for cardiometabolic risk. This study was a part of FunJuice-T2EDK-01922, which was funded by the EU Regional Development Fund and Greek National Resources.


Blood Pressure , Cardiometabolic Risk Factors , Cholecalciferol , Citrus sinensis , Diet, Western , Fruit and Vegetable Juices , Insulin Resistance , Lipids , Probiotics , Humans , Male , Probiotics/administration & dosage , Female , Middle Aged , Blood Pressure/drug effects , Cholecalciferol/administration & dosage , Cholecalciferol/pharmacology , Lipids/blood , Obesity/blood , Adult , Dietary Supplements , Overweight , Body Weight , Weight Loss , Lacticaseibacillus rhamnosus
3.
Nutrients ; 16(9)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38732600

BACKGROUND: Exercise and the consumption of sugars result in a dysfunction of the intestinal barrier (IB). Here, we determined the effect of sugar in a natural matrix on the intestinal barrier after moderate (A) and intensive endurance exercise (B). METHOD: The IB function was determined before (pre) and after running (post), and 120 and 180 min after consuming the drink by measuring serum endotoxin concentrations (lipopolysaccharides-LPS), IL-6, CD14, and i-FABP. In study A, nonspecifically trained participants (n = 24, males and females, age 26 ± 4) ran for one hour at 80% of their individual anaerobic threshold (IAT). After finishing, the runners consumed, in a crossover setup, either 500 mL of water, diluted cloudy apple juice (test drink), or an identical drink (placebo) without the fruit juice matrix (FJM). In study B, the participants (n = 30, males and females, age 50 ± 9) completed an ultra-marathon run, were divided into groups, and consumed one of the above-mentioned drinks. RESULTS: Study A: Exercise resulted in a significant increase in serum LPS, i-FABP, and IL-6, which decreased fast after finishing. No impact of the different drinks on LPS i-FABP, or IL-6 could be observed, but there was an impact on CD14. Study B: The ultra-marathon resulted in a strong increase in serum LPS, which decreased fast after finishing in the water and test drink groups, but not in the placebo group. CONCLUSIONS: The consumed drinks did not affect the kinetics of IB regeneration after moderate exercise, but impacted CD14 serum concentrations, indicating possible beneficial effects of the FJM on the immune system. After an ultra-marathon, IB function regenerates very fast. The intake of sugar (placebo) seems to have had a negative impact on IB regeneration, which was diminished by the presence of the FJM.


Cross-Over Studies , Fruit and Vegetable Juices , Interleukin-6 , Lipopolysaccharide Receptors , Malus , Marathon Running , Physical Endurance , Polyphenols , Humans , Male , Female , Adult , Middle Aged , Polyphenols/pharmacology , Polyphenols/administration & dosage , Physical Endurance/drug effects , Physical Endurance/physiology , Interleukin-6/blood , Lipopolysaccharide Receptors/blood , Marathon Running/physiology , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Lipopolysaccharides/blood , Fatty Acid-Binding Proteins/blood , Running/physiology , Young Adult
4.
Nutrients ; 16(9)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38732622

Acute lung injury, a fatal condition characterized by a high mortality rate, necessitates urgent exploration of treatment modalities. Utilizing UHPLS-Q-Exactive Orbitrap/MS, our study scrutinized the active constituents present in Rosa roxburghii-fermented juice (RRFJ) while also assessing its protective efficacy against LPS-induced ALI in mice through lung histopathological analysis, cytokine profiling, and oxidative stress assessment. The protective mechanism of RRFJ against ALI in mice was elucidated utilizing metabolomics, network pharmacology, and molecular docking methodologies. Our experimental findings demonstrate that RRFJ markedly ameliorates pathological injuries in ALI-afflicted mice, mitigates systemic inflammation and oxidative stress, enhances energy metabolism, and restores dysregulated amino acid and arachidonic acid metabolic pathways. This study indicates that RRFJ can serve as a functional food for adjuvant treatment of ALI.


Acute Lung Injury , Fruit and Vegetable Juices , Lipopolysaccharides , Metabolomics , Oxidative Stress , Rosa , Animals , Acute Lung Injury/drug therapy , Acute Lung Injury/chemically induced , Acute Lung Injury/metabolism , Acute Lung Injury/prevention & control , Rosa/chemistry , Metabolomics/methods , Mice , Male , Oxidative Stress/drug effects , Network Pharmacology , Fermentation , Lung/drug effects , Lung/pathology , Lung/metabolism , Disease Models, Animal , Molecular Docking Simulation , Plant Extracts/pharmacology , Cytokines/metabolism , Energy Metabolism/drug effects
5.
BMC Plant Biol ; 24(1): 390, 2024 May 11.
Article En | MEDLINE | ID: mdl-38730367

Granulation of juice sacs is a physiological disorder, which affects pomelo fruit quality. Here, the transcriptome and ubiquitinome of the granulated juice sacs were analyzed in Guanxi pomelo. We found that lignin accumulation in the granulated juice sacs was regulated at transcription and protein modification levels. In transcriptome data, we found that the genes in lignin biosynthesis pathway and antioxidant enzyme system of the granulated juice sacs were significantly upregulated. However, in ubiquitinome data, we found that ubiquitinated antioxidant enzymes increased in abundance but the enzyme activities decreased after the modification, which gave rise to reactive oxygen species (ROS) contents in granulated juice sacs. This finding suggests that ubiquitination level of the antioxidant enzymes is negatively correlated with the enzyme activities. Increased H2O2 is considered to be a signaling molecule to activate the key gene expressions in lignin biosynthesis pathway, which leads to the lignification in granulated juice sacs of pomelo. This regulatory mechanism in juice sac granulation of pomelo was further confirmed through the verification experiment using tissue culture by adding H2O2 or dimethylthiourea (DMTU). Our findings suggest that scavenging H2O2 and other ROS are important for reducing lignin accumulation, alleviating juice sac granulation and improving pomelo fruit quality.


Citrus , Lignin , Lignin/metabolism , Citrus/metabolism , Citrus/genetics , Fruit and Vegetable Juices/analysis , Reactive Oxygen Species/metabolism , Transcriptome , Hydrogen Peroxide/metabolism , Gene Expression Regulation, Plant , Fruit/metabolism , Fruit/genetics , Antioxidants/metabolism
6.
J Chromatogr A ; 1726: 464977, 2024 Jul 05.
Article En | MEDLINE | ID: mdl-38735117

A magnetic molecularly imprinted polymer (MMIP) adsorbent incorporating amino-functionalized magnetite nanoparticles, nitrogen-doped graphene quantum dots and mesoporous carbon (MIP@MPC@N-GQDs@Fe3O4NH2) was fabricated to extract triazine herbicides from fruit juice. The embedded magnetite nanoparticles simplified the isolation of the adsorbent from the sample solution. The N-GQDs and MPC enhanced adsorption by affinity binding with triazines. The MIP layer provided highly specific recognition sites for the selective adsorption of three target triazines. The extracted triazines were determined by high-performance liquid chromatography (HPLC) coupled with diode-array detection (DAD). The developed method exhibited linearity from 1.5 to 100.0 µg L-1 with a detection limit of 0.5 µg L-1. Recoveries from spiked fruit juice samples were in the range of 80.1- 108.4 %, with a relative standard deviation of less than 6.0 %. The developed MMIP adsorbent demonstrated good selectivity, high extraction efficiency, ease of fabrication and use, and good stability.


Carbon , Fruit and Vegetable Juices , Herbicides , Limit of Detection , Molecularly Imprinted Polymers , Quantum Dots , Triazines , Quantum Dots/chemistry , Triazines/chemistry , Triazines/analysis , Triazines/isolation & purification , Herbicides/analysis , Herbicides/isolation & purification , Herbicides/chemistry , Fruit and Vegetable Juices/analysis , Adsorption , Molecularly Imprinted Polymers/chemistry , Carbon/chemistry , Chromatography, High Pressure Liquid/methods , Magnetite Nanoparticles/chemistry , Solid Phase Microextraction/methods , Molecular Imprinting/methods , Porosity , Graphite/chemistry
7.
J Agric Food Chem ; 72(20): 11652-11662, 2024 May 22.
Article En | MEDLINE | ID: mdl-38738910

Pectin lyases (PNLs) can enhance juice clarity and flavor by degrading pectin in highly esterified fruits, but their inadequate acid resistance leads to rapid activity loss in juice. This study aimed to improve the acid resistance of Aspergillus niger PNL pelA through surface charge design. A modification platform was established by fusing pelA with a protein tag and expressing the fusion enzyme in Escherichia coli. Four single-point mutants were identified to increase the surface charge using computational tools. Moreover, the combined mutant M6 (S514D/S538E) exhibited 99.8% residual activity at pH 3.0. The M6 gene was then integrated into the A. niger genome using a multigene integration system to obtain the recombinant PNL AM6. Notably, AM6 improved the light transmittance of orange juice to 45.3%, which was 8.39 times higher than that of pelA. In conclusion, AM6 demonstrated the best-reported acid resistance, making it a promising candidate for industrial juice clarification.


Aspergillus niger , Fruit and Vegetable Juices , Fungal Proteins , Polysaccharide-Lyases , Aspergillus niger/enzymology , Aspergillus niger/genetics , Fruit and Vegetable Juices/analysis , Polysaccharide-Lyases/genetics , Polysaccharide-Lyases/metabolism , Polysaccharide-Lyases/chemistry , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fungal Proteins/chemistry , Hydrogen-Ion Concentration , Food Handling , Acids/chemistry , Acids/metabolism , Acids/pharmacology , Citrus sinensis/chemistry , Pectins/chemistry , Pectins/metabolism , Enzyme Stability
8.
J Agric Food Chem ; 72(20): 11629-11639, 2024 May 22.
Article En | MEDLINE | ID: mdl-38739462

Blueberries (Vaccinium section Cyanococcus) have a wealth of bioactive compounds, including anthocyanins and other antioxidants, that offer significant health benefits. Preserving these compounds and maintaining the sensory and nutritional qualities of blueberry products such as juice during cold market storage is critical to meet consumer expectations for nutritious, safe, and minimally processed food. In this study, we compared the effects of two preservation processing techniques, high-temperature short-time (HTST) and continuous flow high-pressure homogenization (CFHPH), on blueberry juice quality during storage at 4 °C. Our findings revealed that inlet temperature (Tin) of CFHPH processing at 4 °C favored anthocyanin retention, whereas Tin at 22 °C favored ascorbic acid retention. After 45 days of storage, CFHPH (300 MPa, 1.5 L/min, 4 °C) juice retained up to 54% more anthocyanins compared to control at 0 day. In contrast, HTST treatment (95 °C, 15 s) initially increased anthocyanin concentrations but led to their subsequent degradation over time, while also significantly degrading ascorbic acid. Furthermore, CFHPH (300 MPa, 4 °C) juice had significantly lower polyphenol oxidase activity (>80% less than control), contributing to the overall quality of the juice. This innovative processing technique has the potential to improve commercial blueberry juice, and help meet the rising demand for healthy and appealing food choices.


Anthocyanins , Ascorbic Acid , Blueberry Plants , Cold Temperature , Food Storage , Fruit and Vegetable Juices , Fruit , Anthocyanins/chemistry , Anthocyanins/analysis , Blueberry Plants/chemistry , Ascorbic Acid/analysis , Ascorbic Acid/chemistry , Fruit and Vegetable Juices/analysis , Fruit/chemistry , Pressure , Food Preservation/methods , Food Preservation/instrumentation , Food Handling/methods , Food Handling/instrumentation , Antioxidants/chemistry , Antioxidants/analysis
9.
Ultrason Sonochem ; 105: 106868, 2024 May.
Article En | MEDLINE | ID: mdl-38581798

The use of extracts rich in bioactive compounds is becoming increasingly common in the food, cosmetics, and pharmaceutical industries for the production of functional products. Araticum is a potential fruit to be analyzed due to its content of phenolic compounds, carotenoids and vitamins, with antioxidant properties. Therefore, this study aimed to investigate the effect of ultrasound on total phenolic compounds, total carotenoids, ascorbic acid, color, turbidity and rheology in araticum juice. Response surface methodology based on a central composite design was applied. Araticum juice was subjected to sonication at amplitude levels ranging from 20 to 100 % of the total power (400 W) at a constant frequency of 20 kHz for different durations (2 to 10 min). Morphological analysis was conducted to observe microscopic particles, and viscosity and suitability to rheological models (Newtonian, Power Law, and Herschel-Bulkley) were assessed. The ultrasonic probe extraction method was compared to the control juice. According to the responses, using the desirability function, the optimal conditions for extraction were determined to be low power (low amplitude) applied in a short period of time or low power applied in a prolonged time. These conditions allowed an ultrasonic probe to act on releasing bioactive compounds without degrading them. All three rheological models were suitable, with the Power Law model being the most appropriate, exhibiting non-Newtonian pseudoplastic behavior.


Rheology , Annona/chemistry , Fruit and Vegetable Juices/analysis , Carotenoids/chemistry , Viscosity , Ultrasonic Waves , Sonication , Phenols/chemistry , Ascorbic Acid/chemistry
10.
J Environ Sci Health B ; 59(6): 285-299, 2024.
Article En | MEDLINE | ID: mdl-38686491

In this paper, dispersive micro-solid phase extraction technique was developed for the purpose of extracting and preconcentrating organochlorine pesticide residues in juice samples before their separation and quantitative analysis by gas chromatography-mass spectrometry. A sorbent composed of a silica-supported Fe2O3-modified khat leftover biochar nanocomposite (SiO2-Fe2O3-KLBNC) was implemented in the process. To improve the dispersion of the sorbent in the solution, vortex mixer was employed. Experimental parameters influencing the performance of the method were optimized, and the optimal conditions were established. With these conditions, linear dynamic ranges ranged from 0.003 to 100.0 ng/mL were achieved, with a correlation coefficient (r2) ≥ 0.9981. The limits of detection and quantification, determined by signal-to-noise ratios of 3 and 10, respectively, were found to be in the ranges of 0.001-0.006 ng/mL and 0.003-0.020 ng/mL. Intra- and inter-day precision, values ranging from 0.3-4.8% and 1.7-5.2% were obtained, respectively. The matrix-matched extraction recoveries demonstrated favorable outcomes, falling within the range of 83.4-108.3%. The utilization of khat leftover as an adsorbent in contemporary sample preparation methodologies offers a cost-effective alternative to the currently available, yet expensive, adsorbents. This renders it economically viable, particularly in resource-constrained regions, and is anticipated to witness widespread adoption in the coming future.


Charcoal , Gas Chromatography-Mass Spectrometry , Hydrocarbons, Chlorinated , Nanocomposites , Silicon Dioxide , Charcoal/chemistry , Nanocomposites/chemistry , Silicon Dioxide/chemistry , Hydrocarbons, Chlorinated/analysis , Hydrocarbons, Chlorinated/chemistry , Ferric Compounds/chemistry , Catha/chemistry , Solid Phase Microextraction/methods , Pesticide Residues/analysis , Pesticide Residues/chemistry , Fruit and Vegetable Juices/analysis , Food Contamination/analysis
11.
Int J Biol Macromol ; 268(Pt 1): 131857, 2024 May.
Article En | MEDLINE | ID: mdl-38670187

The utilization of xylanase in juice clarification is contingent upon its stability within acidic environments. We generated a mutant xynA-1 by substituting the N-terminal segment of the recombinant xylanase xynA to investigate the correlation between the N-terminal region of xylanase and its acid stability. The enzymatic activity of xynA-1 was found to be superior under acidic conditions (pH 5.0). It exhibited enhanced acid stability, surpassing the residual enzyme activity values of xynA at pH 4.0 (53.07 %), pH 4.5 (69.8 %), and pH 5.0 (82.4 %), with values of 60.16 %, 77.74 %, and 87.3 %, respectively. Additionally, the catalytic efficiency of xynA was concurrently improved. Through molecular dynamics simulation, we observed that N-terminal shortening induced a reduction in motility across most regions of the protein structure while enhancing its stability, particularly Lys131-Phe146 and Leu176-Gly206. Furthermore, the application of treated xynA-1 in the process of apple juice clarification led to a significant increase in clarity within a short duration of 20 min at 35 °C while ensuring the quality of the apple juice. This study not only enhances the understanding of the N-terminal region of xylanase but also establishes a theoretical basis for augmenting xylanase resources employed in fruit juice clarification.


Endo-1,4-beta Xylanases , Enzyme Stability , Fruit and Vegetable Juices , Malus , Recombinant Proteins , Endo-1,4-beta Xylanases/chemistry , Endo-1,4-beta Xylanases/genetics , Endo-1,4-beta Xylanases/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Hydrogen-Ion Concentration , Malus/chemistry , Malus/enzymology , Molecular Dynamics Simulation
12.
J Environ Manage ; 358: 120781, 2024 May.
Article En | MEDLINE | ID: mdl-38608570

Transforming global agricultural waste into eco-friendly products like industrial enzymes through bioconversion can help address sustainability challenges aligning with the United Nations' Sustainable Development Goals. Present study explored the production of high-yield food-grade cellulolytic enzymes from Trichoderma reesei MTCC 4876, using a novel media formulation with a combination of waste sorghum grass and cottonseed oil cake (3:1). Optimization of physical and environmental parameters, along with the screening and optimization of media components, led to an upscaled process in a novel 6-L solid-state fermentation (SSF)-packed bed reactor (PBR) with a substrate loading of 200 g. Saturated forced aeration proved crucial, resulting in high fungal biomass (31.15 ± 0.63 mg glucosamine/gm dry fermented substrate) and high yield cellulase (20.64 ± 0.36 FPU/g-ds) and xylanase (16,186 ± 912 IU/g-ds) production at an optimal airflow rate of 0.75 LPM. The PBR exhibited higher productivity than shake flasks for all the enzyme systems. Microfiltration and ultrafiltration of the crude cellulolytic extract achieved 94% and 71% recovery, respectively, with 13.54 FPU/mL activity in the cellulolytic enzyme concentrate. The concentrate displayed stability across wide pH and temperature ranges, with a half-life of 24.5-h at 50 °C. The cellulase concentrate, validated for food-grade safety, complies with permissible limits for potential pathogens, heavy metals, mycotoxins, and pesticide residue. It significantly improved apple juice clarity (94.37 T%) by reducing turbidity (21%) and viscosity (99%) while increasing total reducing sugar release by 63% compared with untreated juice. The study also highlighted the potential use of lignin-rich fermented end residue for fuel pellets within permissible SOx emission limits, offering sustainable biorefinery prospects. Utilizing agro wastes in a controlled bioreactor environment underscores the potential for efficient large-scale cellulase production, enabling integration into food-grade applications and presenting economic benefits to fruit juice industries.


Bioreactors , Fermentation , Fruit and Vegetable Juices , Hypocreales , Sorghum , Sorghum/metabolism , Fruit and Vegetable Juices/analysis , Cellulase/metabolism , Malus
14.
Talanta ; 274: 126038, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38579419

Herein, a High-Throughput Semi-automated Emulsive Liquid-Liquid Microextraction (HTSA-ELLME) method was developed to detect Succinate Dehydrogenase Inhibitor (SDHI) fungicides in food samples via UHPLC-MS/MS. The Oil-in-Water (O/W) emulsion comprising a hydrophobic extractant and water was dilutable with the aqueous sample solution. Upon injecting the primary emulsion into the sample solution, a secondary O/W emulsion was formed, allowing SDHI fungicides to be extracted. Subsequently, a NaCl-saturated solution was injected in the secondary O/W emulsion as a demulsifier to rapidly separate the extractant, eliminating the need for centrifugation. A 12-channel electronic micropipette was used to achieve a high-throughput semi-automation of the novel sample pretreatment. The linear range was 0.003-0.3 µg L-1 with R2 > 0.998. The limit of detection was 0.001 µg L-1. The HTSA-ELLME method successfully detected SDHI fungicides in water, juice, and alcoholic beverage samples, with recoveries and relative standard deviations of 82.6-106.9% and 0.8-5.8%, respectively. Unlike previously reported liquid-liquid microextraction approaches, the HTSA-ELLME method is the first to be both high-throughput and semi-automated and may aid in designing pesticide pretreatment processes in food samples.


Alcoholic Beverages , Fruit and Vegetable Juices , Fungicides, Industrial , Liquid Phase Microextraction , Tandem Mass Spectrometry , Liquid Phase Microextraction/methods , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Fungicides, Industrial/analysis , Fruit and Vegetable Juices/analysis , Alcoholic Beverages/analysis , Emulsions/chemistry , Water/chemistry , Food Contamination/analysis , Automation
15.
J Cancer Res Clin Oncol ; 150(4): 212, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38662247

BACKGROUND AND AIM: Morinda citrifolia fruit juice (noni) is an herbal remedy documented to have antioxidant properties. It has been suggested that prevention of carcinogen-DNA adduct formation and the antioxidant activity of NJ may contribute to the cancer preventive effect. In the present study, the antitumor activity of noni was investigated in the presence of cyclophosphamide (CYL) in vitro and in vivo. METHODS: In vitro breast cancer cells (MDA-MB-468) were used to measure the percentage of inhibition and the IC50. The in vivo antitumor activity of noni was studied by monitoring the mean survival time (MST), percentage increase in life span (%ILS), viable and non-viable cell count, tumor volume, body weight, and hematological and serum biochemical parameters in mice. Treatment with noni and CYL exhibited dose- and time-dependent cytotoxicity toward breast cancer cells. RESULTS: Individual treatment of noni and CYL exhibited dose- and time-dependent cytotoxicity on breast cancer cell lines, while in combination therapy of noni and CYL, noni enhances cytotoxic effect of CYL at 48 h than that at 24 h. Similar result was found in in vivo studies, the results of which revealed that alone treatment of CYL and noni suppressed tumor growth. However, combination treatment with CYL and noni presented better tumor inhibition than that of alone treatment of CYL and noni. On the contrary, CYL alone drastically attenuated hematological parameters, i.e., RBC, WBC, and Hb compared to normal and control groups, and this change was reversed and normalized by noni when given as combination therapy with CYL. Moreover, the levels of serum biochemical markers, i.e., AST, ALP, and ALT, were significantly increased in the control and CYL-treated groups than those in the normal group. In the combination treatment of noni and CYL, the above biochemical marker levels significantly decreased compared to CYL alone-treated group. CONCLUSIONS: The present study suggested that CYL treatment can cause serious myelotoxicity and hepatic injury in cancer patients. In conclusion, the combined use of noni with CYL potentially enhances the antitumor activity of CYL and suppresses myelotoxicity and hepatotoxicity induced by CYL in tumor-bearing mice.


Breast Neoplasms , Cyclophosphamide , Morinda , Animals , Cyclophosphamide/pharmacology , Cyclophosphamide/adverse effects , Mice , Humans , Female , Morinda/chemistry , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cell Line, Tumor , Fruit and Vegetable Juices , Xenograft Model Antitumor Assays , Drug Synergism , Plant Extracts/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/adverse effects , Mice, Inbred BALB C , Chemical and Drug Induced Liver Injury/prevention & control , Chemical and Drug Induced Liver Injury/etiology
16.
Int J Mol Sci ; 25(8)2024 Apr 15.
Article En | MEDLINE | ID: mdl-38673938

Despite data showing that nutritional interventions high in antioxidant/anti-inflammatory properties (anthocyanin-rich foods, such as blueberries/elderberries) may decrease risk of memory loss and cognitive decline, evidence for such effects in mild cognitive impairment (MCI) is limited. This study examined preliminary effects of American elderberry (Sambucus nigra subsp. canadensis) juice on cognition and inflammatory markers in patients with MCI. In a randomized, double-blind, placebo-controlled trial, patients with MCI (n = 24, Mage = 76.33 ± 6.95) received American elderberry (n = 11) or placebo (n = 13) juice (5 mL orally 3 times a day) for 6 months. At baseline, 3 months, and 6 months, patients completed tasks measuring global cognition, verbal memory, language, visuospatial cognitive flexibility/problem solving, and memory. A subsample (n = 12, 7 elderberry/5 placebo) provided blood samples to measure serum inflammatory markers. Multilevel models examined effects of the condition (elderberry/placebo), time (baseline/3 months/6 months), and condition by time interactions on cognition/inflammation outcomes. Attrition rates for elderberry (18%) and placebo (15%) conditions were fairly low. The dosage compliance (elderberry-97%; placebo-97%) and completion of cognitive (elderberry-88%; placebo-87%) and blood-based (elderberry-100%; placebo-100%) assessments was high. Elderberry (not placebo) trended (p = 0.09) towards faster visuospatial problem solving performance from baseline to 6 months. For the elderberry condition, there were significant or significantly trending decreases over time across several markers of low-grade peripheral inflammation, including vasorin, prenylcysteine oxidase 1, and complement Factor D. Only one inflammatory marker showed an increase over time (alpha-2-macroglobin). In contrast, for the placebo, several inflammatory marker levels increased across time (L-lactate dehydrogenase B chain, complement Factor D), with one showing deceased levels over time (L-lactate dehydrogenase A chain). Daily elderberry juice consumption in patients with MCI is feasible and well tolerated and may provide some benefit to visuospatial cognitive flexibility. Preliminary findings suggest elderberry juice may reduce low-grade inflammation compared to a placebo-control. These promising findings support the need for larger, more definitive prospective studies with longer follow-ups to better understand mechanisms of action and the clinical utility of elderberries for potentially mitigating cognitive decline.


Cognition , Cognitive Dysfunction , Fruit and Vegetable Juices , Inflammation , Sambucus , Humans , Male , Aged , Female , Cognition/drug effects , Inflammation/blood , Double-Blind Method , Sambucus/chemistry , Aged, 80 and over , Biomarkers/blood , Feasibility Studies , Sambucus nigra/chemistry
17.
Food Chem ; 449: 139228, 2024 Aug 15.
Article En | MEDLINE | ID: mdl-38604033

Cabernet Sauvignon grape juice and wine underwent in vitro digestion, resulting in a reduction of most phenolic compounds (10%-100% decline), notably impacting anthocyanins (82%-100% decline) due to pH variations. However, specific phenolics, including p-hydroxybenzoic, protocatechuic, vanillic, p-coumaric, gallic and syringic acids, and coumarin esculetin, increased in concentration (10%-120%). Grape juice and wine samples showed comparable polyphenolic profile during all phases of digestion. Antioxidant activity persisted, and inhibition of angiotensin-I converting enzyme was improved after the digestion process, likely because of increased concentrations of listed phenolic acids and esculetin. Digested grape juice displayed comparable or superior bioactivity to red wine, indicating it as a promising source of accessible grape polyphenols for a broader audience. Nevertheless, Caco-2 cell model metabolization experiments revealed that only 3 of 42 analyzed compounds passed to the basolateral compartment, emphasizing the significant impact of digestion on polyphenol bioactivity, suggesting potential yet unmeasurable and overlooked implications for human health.


Digestion , Fruit and Vegetable Juices , Phenols , Vitis , Wine , Wine/analysis , Humans , Vitis/chemistry , Vitis/metabolism , Caco-2 Cells , Fruit and Vegetable Juices/analysis , Phenols/metabolism , Phenols/chemistry , Antioxidants/chemistry , Antioxidants/metabolism , Polyphenols/metabolism , Polyphenols/chemistry , Models, Biological
18.
Int J Biol Macromol ; 267(Pt 2): 131565, 2024 May.
Article En | MEDLINE | ID: mdl-38614184

Endopolygalacturonases are crucial pectinases known for their efficient and sustainable pectin depolymerization activities. The present study identified a novel gene encoding endopolygalacturonase from an acidic mine tailing metagenome. The putative gene showed a maximum identity of 67.55 % with an uncharacterized peptide sequence from Flavobacterium fluvii. The gene was cloned and expressed in a heterologous host, E. coli. Biochemical characterization of the novel endopolygalacturonase enzyme variant (EPHM) showed maximum activity at 60 °C and at 5.0 pH, while retaining 50 % activity under the temperature and pH range of 20 °C to 70 °C for 6 h, and 3.0 to 10.0 for 3 h, respectively. The enzyme exhibited tolerance to different metal ions. EPHM was characterized for the depolymerization of methylated pectin into pectic oligosaccharides. Further, its utility was established for fruit juice clarification, as endorsed by high transmittance, significant viscosity reduction, and release of reducing sugars in the treated fruit juice samples.


Fruit and Vegetable Juices , Pectins , Polygalacturonase , Pectins/metabolism , Pectins/chemistry , Polygalacturonase/metabolism , Polygalacturonase/chemistry , Polygalacturonase/genetics , Fruit and Vegetable Juices/analysis , Hydrogen-Ion Concentration , Temperature , Cloning, Molecular , Polymerization , Oligosaccharides/chemistry
19.
Food Res Int ; 184: 114207, 2024 May.
Article En | MEDLINE | ID: mdl-38609209

The worldwide market for vegetable and fruit juices stands as a thriving sector with projected revenues reaching to $81.4 billion by 2024 and an anticipated annual growth rate of 5.27% until 2028. Juices offer a convenient means of consuming bioactive compounds and essential nutrients crucial for human health. However, conventional thermal treatments employed in the juice and beverage industry to inactivate spoilage and pathogenic microorganisms, as well as endogenous enzymes, can lead to the degradation of bioactive compounds and vitamins. In response, non-thermal technologies have emerged as promising alternatives to traditional heat processing, with pulsed electric field (PEF) technology standing out as an innovative and sustainable choice. In this context, this comprehensive review investigated the impact of PEF on the microbiological, physicochemical, functional, nutritional, and sensory qualities of vegetable and fruit juices. PEF induces electroporation phenomena in cell membranes, resulting in reversible or irreversible changes. Consequently, a detailed examination of the effects of PEF process variables on juice properties is essential. Monitoring factors such as electric field strength, frequency, pulse width, total treatment time, and specific energy is important to ensure the production of a safe and chemically/kinetically stable product. PEF technology proves effective in microbial and enzymatic inactivation within vegetable and fruit juices, mitigating factors contributing to deterioration while maintaining the physicochemical characteristics of these products. Furthermore, PEF treatment does not compromise the content of substances with functional, nutritional, and sensory properties, such as phenolic compounds and vitamins. When compared to alternative processing methods, such as mild thermal treatments and other non-thermal technologies, PEF treatment consistently demonstrates comparable outcomes in terms of physicochemical attributes, functional properties, nutritional quality, and overall safety.


Fruit and Vegetable Juices , Vegetables , Humans , Vitamins , Vitamin A , Vitamin K , Technology
20.
Int J Food Microbiol ; 417: 110686, 2024 Jun 02.
Article En | MEDLINE | ID: mdl-38593553

Rosa roxburghii Tratt fruits (RRT) exhibit extremely high nutritional and medicinal properties due to its unique phytochemical composition. Probiotic fermentation is a common method of processing fruits. Variations in the non-volatile metabolites and bioactivities of RRT juice caused by different lactobacilli are not well understood. Therefore, we aimed to profile the non-volatile components and investigate the impact of L. plantarum fermentation (LP) and L. paracasei fermentation (LC) on RRT juice (the control, CG). There were both similarities and differences in the effects of LP and LC on RRT juice. Both of the two strains significantly increased the content of total phenolic, total flavonoid, and some bioactive compounds such as 2-hydroxyisocaproic acid, hydroxytyrosol and indole-3-lactic acid in RRT juice. Interestingly, compared with L. paracasei, L. plantarum showed better ability to increase the content of total phenolic and these valuable compounds, as well as certain bioactivities. The antioxidant capacity and α-glucosidase inhibitory activity of RRT juice were notably enhanced after the fermentations, whereas its cholesterol esterase inhibitory activity was reduced significantly. Moreover, a total of 1466 metabolites were identified in the unfermented and fermented RRT juices. There were 278, 251 and 134 differential metabolites in LP vs CG, LC vs CG, LC vs LP, respectively, most of which were upregulated. The key differential metabolites were classified into amino acids and their derivatives, organic acids, nucleotides and their analogues, phenolic acids and alkaloids, which can serve as potential markers for authentication and discrimination between the unfermented and lactobacilli fermented RRT juice samples. The KEGG enrichment analysis uncovered that metabolic pathways, purine metabolism, nucleotide metabolism and ABC transporters contributed mainly to the formation of unique composition of fermented RRT juice. These results provide good coverage of the metabolome of RRT juice in both unfermented and fermented forms and also provide a reference for future research on the processing of RRT or other fruits.


Fermentation , Fruit and Vegetable Juices , Lactobacillus plantarum , Metabolomics , Rosa , Lactobacillus plantarum/metabolism , Rosa/chemistry , Rosa/microbiology , Fruit and Vegetable Juices/microbiology , Fruit and Vegetable Juices/analysis , Metabolomics/methods , Lacticaseibacillus paracasei/metabolism , Fruit/microbiology , Fruit/chemistry , Antioxidants/metabolism , Phenols/metabolism , Phenols/analysis , Flavonoids/analysis , Flavonoids/metabolism , Probiotics/metabolism
...