Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 209
Filtrar
1.
J Biotechnol ; 379: 53-64, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38070779

RESUMEN

The baculovirus-insect cell expression system allows addition of O-fucose to EGF-like domains of glycoproteins, following the action of the protein O-fucosyltransferase 1 named POFUT1. In this study, recombinant Spodoptera frugiperda POFUT1 from baculovirus-infected Sf9 cells was compared to recombinant Mus musculus POFUT1 produced by CHO cells. Contrary to recombinant murine POFUT1 carrying two hybrid and/or complex type N-glycans, Spodoptera frugiperda POFUT1 exhibited paucimannose N-glycans, at least on its highly evolutionary conserved across Metazoa NRT site. The abilities of both recombinant enzymes to add in vitro O -fucose to EGF-like domains of three different recombinant mammalian glycoproteins were then explored. In vitro POFUT1-mediated O-fucosylation experiments, followed by click chemistry and blot analyses, showed that Spodoptera frugiperda POFUT1 was able to add O-fucose to mouse NOTCH1 EGF-like 26 and WIF1 EGF-like 3 domains, similarly to the murine counterpart. As proved by mass spectrometry, full-length human WNT Inhibitor Factor 1 expressed by Sf9 cells was also modified with O-fucose. However, Spodoptera frugiperda POFUT1 was unable to modify the single EGF-like domain of mouse PAMR1 with O-fucose, contrary to murine POFUT1. Absence of orthologous proteins such as PAMR1 in insects may explain the enzyme's difficulty in adding O-fucose to a domain that it never encounters naturally.


Asunto(s)
Fucosiltransferasas , Proteínas Recombinantes , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Spodoptera/enzimología , Spodoptera/genética , Spodoptera/metabolismo , Fucosiltransferasas/química , Fucosiltransferasas/genética , Fucosiltransferasas/metabolismo , Humanos , Animales , Ratones , Células CHO , Cricetulus , Células Sf9 , Glicosilación , Secuencia de Consenso , Fucosa/metabolismo , Dominios Proteicos
2.
Nat Chem Biol ; 19(8): 1022-1030, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37202521

RESUMEN

Mammalian cell surface and secreted glycoproteins exhibit remarkable glycan structural diversity that contributes to numerous physiological and pathogenic interactions. Terminal glycan structures include Lewis antigens synthesized by a collection of α1,3/4-fucosyltransferases (CAZy GT10 family). At present, the only available crystallographic structure of a GT10 member is that of the Helicobacter pylori α1,3-fucosyltransferase, but mammalian GT10 fucosyltransferases are distinct in sequence and substrate specificity compared with the bacterial enzyme. Here, we determined crystal structures of human FUT9, an α1,3-fucosyltransferase that generates Lewisx and Lewisy antigens, in complex with GDP, acceptor glycans, and as a FUT9-donor analog-acceptor Michaelis complex. The structures reveal substrate specificity determinants and allow prediction of a catalytic model supported by kinetic analyses of numerous active site mutants. Comparisons with other GT10 fucosyltransferases and GT-B fold glycosyltransferases provide evidence for modular evolution of donor- and acceptor-binding sites and specificity for Lewis antigen synthesis among mammalian GT10 fucosyltransferases.


Asunto(s)
Fucosiltransferasas , Glicosiltransferasas , Animales , Humanos , Fucosiltransferasas/genética , Fucosiltransferasas/química , Fucosiltransferasas/metabolismo , Antígenos del Grupo Sanguíneo de Lewis , Polisacáridos/metabolismo , Mamíferos
3.
Drug Discov Today ; 28(1): 103394, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36223858

RESUMEN

Fucosyltransferases (FUTs) have significant roles in various pathophysiological events. Their high expression is a signature of malignant cell transformation, contributing to many abnormal events during cancer development, such as uncontrolled cell proliferation, tumor cell invasion, angiogenesis, metastasis, immune evasion, and therapy resistance. Therefore, FUTs have evolved as an attractive therapeutic target for treating solid cancers, and many substrate analogs have been discovered with potential as FUT inhibitors for cancer therapy. Meanwhile, the development of FUT protein structures represents a significant advance in the design of FUT inhibitors with nonsubstrate structures. In this review, we summarize the role of FUTs in cancers, the resolved protein crystal structures and progress in the development of FUT inhibitors as cancer therapeutics.


Asunto(s)
Fucosiltransferasas , Neoplasias , Humanos , Fucosiltransferasas/química , Fucosiltransferasas/metabolismo , Glicosilación , Neoplasias/tratamiento farmacológico , Proliferación Celular
4.
Matrix Biol ; 107: 77-96, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35167946

RESUMEN

Many extracellular matrix (ECM) associated proteins that influence ECM properties have Thrombospondin type 1 repeats (TSRs) which are modified with O-linked fucose. The O-fucose is added in the endoplasmic reticulum to folded TSRs by the enzyme Protein O-fucosyltransferase-2 (POFUT2) and is proposed to promote efficient trafficking of substrates. The importance of this modification for function of TSR-proteins is underscored by the early embryonic lethality of mouse embryos lacking Pofut2. To overcome early lethality and investigate the impact of the Pofut2 knockout on the secretion of POFUT2 substrates and on extracellular matrix properties in vivo, we deleted Pofut2 in the developing limb mesenchyme using Prrx1-Cre recombinase. Loss of Pofut2 in the limb mesenchyme caused significant shortening of the limbs, long bones and tendons and stiff joint resembling the musculoskeletal dysplasias in human and in mice with mutations in ADAMTS or ADAMTSL proteins. Limb shortening was evident at embryonic day 14.5 where loss of O-fucosylation led to an accumulation of fibrillin 2 (FBN2), decreased BMP and IHH signaling, and increased TGF-ß signaling. Consistent with these changes we saw a decrease in the size of the hypertrophic zone with lower levels of Collagen-X. Unexpectedly, we observed minimal effects of the Pofut2 knockout on secretion of two POFUT2 substrates, CCN2 or ADAMTS17, in the developing bone. In contrast, CCN2 and two other POFUT2 substrates important for bone development, ADAMTS6 and 10, showed a decrease in secretion from POFUT2-null HEK293T cells in vitro. These combined results suggest that the impact of the Pofut2 mutation is cell-type specific. In addition, these observations raise the possibility that the O-fucose modification on TSRs extends beyond promoting efficient trafficking of POFUT2 substrates and has the potential to influence their function in the extracellular environment.


Asunto(s)
Fucosiltransferasas , Trombospondinas , Animales , Desarrollo Óseo , Matriz Extracelular/metabolismo , Fucosiltransferasas/química , Fucosiltransferasas/genética , Fucosiltransferasas/metabolismo , Células HEK293 , Proteínas de Homeodominio , Humanos , Ratones
5.
Biomolecules ; 11(12)2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34944439

RESUMEN

Diverse members of the Bacteroidetes phylum have general protein O-glycosylation systems that are essential for processes such as host colonization and pathogenesis. Here, we analyzed the function of a putative fucosyltransferase (FucT) family that is widely encoded in Bacteroidetes protein O-glycosylation genetic loci. We studied the FucT orthologs of three Bacteroidetes species-Tannerella forsythia, Bacteroides fragilis, and Pedobacter heparinus. To identify the linkage created by the FucT of B. fragilis, we elucidated the full structure of its nine-sugar O-glycan and found that l-fucose is linked ß1,4 to glucose. Of the two fucose residues in the T. forsythia O-glycan, the fucose linked to the reducing-end galactose was shown by mutational analysis to be l-fucose. Despite the transfer of l-fucose to distinct hexose sugars in the B. fragilis and T. forsythia O-glycans, the FucT orthologs from B. fragilis, T. forsythia, and P. heparinus each cross-complement the B. fragilis ΔBF4306 and T. forsythia ΔTanf_01305 FucT mutants. In vitro enzymatic analyses showed relaxed acceptor specificity of the three enzymes, transferring l-fucose to various pNP-α-hexoses. Further, glycan structural analysis together with fucosidase assays indicated that the T. forsythia FucT links l-fucose α1,6 to galactose. Given the biological importance of fucosylated carbohydrates, these FucTs are promising candidates for synthetic glycobiology.


Asunto(s)
Bacteroides/crecimiento & desarrollo , Fucosiltransferasas/química , Fucosiltransferasas/genética , Polisacáridos/química , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bacteroides/enzimología , Bacteroides fragilis/enzimología , Bacteroides fragilis/crecimiento & desarrollo , Conformación de Carbohidratos , Evolución Molecular , Fucosiltransferasas/metabolismo , Regulación Bacteriana de la Expresión Génica , Glicosilación , Modelos Moleculares , Pedobacter/enzimología , Pedobacter/crecimiento & desarrollo , Polisacáridos/metabolismo , Tannerella forsythia/enzimología , Tannerella forsythia/crecimiento & desarrollo
6.
PLoS One ; 16(10): e0257623, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34648519

RESUMEN

Fucosyltransferase 2 (FUT2) catalyzes the biosynthesis of A, B, and H antigens and other important glycans, such as (Sialyl Lewisx) sLex, and (Sialyl Lewisy) sLey. The production of these glycans is increased in various cancers, hence to design and develop specific inhibitors of FUT2 is a therapeutic strategy. The current study was designed to identify the inhibitors for FUT2. In silico screening of 300 synthetic compounds was performed. Molecular docking studies highlighted the interactions of ligands with critical amino acid residues, present in the active site of FUT2. The epitope mapping in ligands was performed using the STD-NMR experiments to identify the interactions between ligands, and receptor protein. Finally, we have identified 5 lead compounds 4, 5, 26, 27, and 28 that can be studied for further development as cancer therapeutic agents.


Asunto(s)
Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Fucosiltransferasas/antagonistas & inhibidores , Dominio Catalítico/efectos de los fármacos , Fucosiltransferasas/química , Fucosiltransferasas/metabolismo , Humanos , Ligandos , Espectroscopía de Resonancia Magnética , Simulación del Acoplamiento Molecular , Galactósido 2-alfa-L-Fucosiltransferasa
7.
Molecules ; 26(17)2021 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-34500643

RESUMEN

Mammalian cell surfaces are modified with complex arrays of glycans that play major roles in health and disease. Abnormal glycosylation is a hallmark of cancer; terminal sialic acid and fucose in particular have high levels in tumor cells, with positive implications for malignancy. Increased sialylation and fucosylation are due to the upregulation of a set of sialyltransferases (STs) and fucosyltransferases (FUTs), which are potential drug targets in cancer. In the past, several advances in glycostructural biology have been made with the determination of crystal structures of several important STs and FUTs in mammals. Additionally, how the independent evolution of STs and FUTs occurred with a limited set of global folds and the diverse modular ability of catalytic domains toward substrates has been elucidated. This review highlights advances in the understanding of the structural architecture, substrate binding interactions, and catalysis of STs and FUTs in mammals. While this general understanding is emerging, use of this information to design inhibitors of STs and FUTs will be helpful in providing further insights into their role in the manifestation of cancer and developing targeted therapeutics in cancer.


Asunto(s)
Fucosiltransferasas/química , Fucosiltransferasas/metabolismo , Mamíferos/metabolismo , Sialiltransferasas/química , Sialiltransferasas/metabolismo , Animales , Catálisis , Dominio Catalítico/fisiología , Glicosilación , Humanos
8.
Molecules ; 26(8)2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33916911

RESUMEN

Protein O-fucosyltransferase 1 (PoFUT1) is a GT-B fold enzyme that fucosylates proteins containing EGF-like repeats. GT-B glycosyltransferases have shown a remarkable grade of plasticity adopting closed and open conformations as a way of tuning their catalytic cycle, a feature that has not been observed for PoFUT1. Here, we analyzed Caenorhabditis elegans PoFUT1 (CePoFUT1) conformational behavior in solution by atomic force microscopy (AFM) and single-molecule fluorescence resonance energy transfer (SMF-FRET). Our results show that this enzyme is very flexible and adopts mainly compact conformations and to a lesser extend a highly dynamic population that oscillates between compact and highly extended conformations. Overall, our experiments illustrate the inherent complexity of CePoFUT1 dynamics, which might play a role during its catalytic cycle.


Asunto(s)
Fucosiltransferasas/química , Dominios Proteicos , Dominios y Motivos de Interacción de Proteínas , Algoritmos , Proteínas Portadoras , Fucosiltransferasas/genética , Fucosiltransferasas/metabolismo , Humanos , Microscopía de Fuerza Atómica , Modelos Moleculares , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Proteínas Recombinantes , Soluciones , Especificidad por Sustrato , Galactósido 2-alfa-L-Fucosiltransferasa
9.
Biochem J ; 478(8): 1571-1583, 2021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-33734311

RESUMEN

The α1,6-fucosyltransferase, FUT8, is the sole enzyme catalyzing the core-fucosylation of N-glycoproteins in mammalian systems. Previous studies using free N-glycans as acceptor substrates indicated that a terminal ß1,2-GlcNAc moiety on the Man-α1,3-Man arm of N-glycan substrates is required for efficient FUT8-catalyzed core-fucosylation. In contrast, we recently demonstrated that, in a proper protein context, FUT8 could also fucosylate Man5GlcNAc2 without a GlcNAc at the non-reducing end. We describe here a further study of the substrate specificity of FUT8 using a range of N-glycans containing different aglycones. We found that FUT8 could fucosylate most of high-mannose and complex-type N-glycans, including highly branched N-glycans from chicken ovalbumin, when the aglycone moiety is modified with a 9-fluorenylmethyloxycarbonyl (Fmoc) moiety or in a suitable peptide/protein context, even if they lack the terminal GlcNAc moiety on the Man-α1,3-Man arm. FUT8 could also fucosylate paucimannose structures when they are on glycoprotein substrates. Such core-fucosylated paucimannosylation is a prominent feature of lysosomal proteins of human neutrophils and several types of cancers. We also found that sialylation of N-glycans significantly reduced their activity as a substrate of FUT8. Kinetic analysis demonstrated that Fmoc aglycone modification could either improve the turnover rate or decrease the KM value depending on the nature of the substrates, thus significantly enhancing the overall efficiency of FUT8 catalyzed fucosylation. Our results indicate that an appropriate aglycone context of N-glycans could significantly broaden the acceptor substrate specificity of FUT8 beyond what has previously been thought.


Asunto(s)
Eritropoyetina/metabolismo , Fucosa/metabolismo , Fucosiltransferasas/metabolismo , Glicoproteínas/metabolismo , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Manosa/metabolismo , Polisacáridos/metabolismo , Animales , Secuencia de Carbohidratos , Pollos , Eritropoyetina/química , Eritropoyetina/genética , Fluorenos/química , Fucosa/química , Fucosiltransferasas/química , Fucosiltransferasas/genética , Expresión Génica , Glicoproteínas/química , Glicoproteínas/genética , Glicosilación , Factor Estimulante de Colonias de Granulocitos y Macrófagos/química , Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Células HEK293 , Proteína gp120 de Envoltorio del VIH/química , Proteína gp120 de Envoltorio del VIH/genética , Proteína gp120 de Envoltorio del VIH/metabolismo , VIH-1/genética , VIH-1/metabolismo , Humanos , Cinética , Manosa/química , Ovalbúmina/química , Ovalbúmina/genética , Ovalbúmina/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Polisacáridos/química , Especificidad por Sustrato
10.
ACS Synth Biol ; 10(3): 447-458, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33687208

RESUMEN

Human milk oligosaccharide (HMO) is a key component of human milk carbohydrates and is closely related to the nutrition and health benefits of breastfeeding in infants. 2'-Fucosyllactose (2'-FL) is the most abundant fucosylated HMO, which has remarkable value in nutrition and medicine, such as suppressing pathogen infection, regulating intestinal flora, and boosting immunity. However, 2'-FL production via the method of extraction or chemical synthesis cannot meet its large demand, and as a result, environmentally friendly and efficient biotechnological approaches, including in vitro enzymatic synthesis and microbial cell factory production, have been developed and applied to its commercialized production. This review introduces, summarizes, and discusses the recent advances in the biotechnological production of 2'-FL. Furthermore, future research directions for the biotechnological production of 2'-FL as well as the strategies to further improve its concentration are highlighted and discussed.


Asunto(s)
Biotecnología , Leche Humana/metabolismo , Trisacáridos/biosíntesis , Fucosiltransferasas/química , Fucosiltransferasas/genética , Fucosiltransferasas/metabolismo , Humanos , Ingeniería Metabólica , Saccharomyces cerevisiae/metabolismo , alfa-L-Fucosidasa/química , alfa-L-Fucosidasa/genética , alfa-L-Fucosidasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA