Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 173
1.
Breast Cancer Res ; 26(1): 95, 2024 Jun 07.
Article En | MEDLINE | ID: mdl-38849889

BACKGROUND: Breast cancers treated with aromatase inhibitors (AIs) can develop AI resistance, which is often driven by estrogen receptor-alpha (ERα/ESR1) activating mutations, as well as by ER-independent signaling pathways. The breast ER antagonist lasofoxifene, alone or combined with palbociclib, elicited antitumor activities in a xenograft model of ER + metastatic breast cancer (mBC) harboring ESR1 mutations. The current study investigated the activity of LAS in a letrozole-resistant breast tumor model that does not have ESR1 mutations. METHODS: Letrozole-resistant, MCF7 LTLT cells tagged with luciferase-GFP were injected into the mammary duct inguinal glands of NSG mice (MIND model; 6 mice/group). Mice were randomized to vehicle, lasofoxifene ± palbociclib, fulvestrant ± palbociclib, or palbociclib alone 2-3 weeks after cell injections. Tumor growth and metastases were monitored with in vivo and ex vivo luminescence imaging, terminal tumor weight measurements, and histological analysis. The experiment was repeated with the same design and 8-9 mice in each treatment group. RESULTS: Western blot analysis showed that the MCF7 LTLT cells had lower ERα and higher HER2 expressions compared with normal MCF7 cells. Lasofoxifene ± palbociclib, but not fulvestrant, significantly reduced primary tumor growth versus vehicle as assessed by in vivo imaging of tumors at study ends. Percent tumor area in excised mammary glands was significantly lower for lasofoxifene plus palbociclib versus vehicle. Ki67 staining showed decreased overall tumor cell proliferation with lasofoxifene ± palbociclib. The lasofoxifene + palbociclib combination was also associated with significantly fewer bone metastases compared with vehicle. Similar results were observed in the repeat experiment. CONCLUSIONS: In a mouse model of letrozole-resistant breast cancer with no ESR1 mutations, reduced levels of ERα, and overexpression of HER2, lasofoxifene alone or combined with palbociclib inhibited primary tumor growth more effectively than fulvestrant. Lasofoxifene plus palbociclib also reduced bone metastases. These results suggest that lasofoxifene alone or combined with a CDK4/6 inhibitor may offer benefits to patients who have ER-low and HER2-positive, AI-resistant breast cancer, independent of ESR1 mutations.


Aromatase Inhibitors , Breast Neoplasms , Drug Resistance, Neoplasm , Pyrrolidines , Tetrahydronaphthalenes , Animals , Female , Humans , Mice , Aromatase Inhibitors/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Disease Models, Animal , Estrogen Receptor alpha/genetics , Fulvestrant/pharmacology , Letrozole/pharmacology , MCF-7 Cells , Piperazines/pharmacology , Pyridines/pharmacology , Pyrrolidines/pharmacology , Tetrahydronaphthalenes/pharmacology , Xenograft Model Antitumor Assays
2.
ESMO Open ; 9(6): 103465, 2024 Jun.
Article En | MEDLINE | ID: mdl-38833970

BACKGROUND: In most patients with advanced human epidermal growth factor receptor-2-positive (HER2+) breast cancer, anti-HER2 therapies fail due to the development of acquired resistance, potentially mediated through phosphoinositide-3-kinase (PI3K) signaling. We investigated adding taselisib, an α-selective potent oral inhibitor of PI3K, to different HER2-directed regimens in order to improve disease control. PATIENTS AND METHODS: Patients (n = 68) with advanced HER2+ breast cancer were enrolled to this open-label, dose-escalation phase Ib study. The primary endpoint was defining the maximal tolerated dose (MTD) for the various taselisib-containing combinations. The secondary endpoint was safety. Exploratory endpoints included circulating tumor DNA analysis. The study included four cohorts: (A) taselisib + trastuzumab emtansine (T-DM1), (C) taselisib + trastuzumab and pertuzumab (TP), (D) taselisib + TP + paclitaxel, and (E) taselisib + TP + fulvestrant. RESULTS: Following dose escalation, the taselisib MTD was defined as 4 mg once daily. Treatment was associated with significant toxicities, as 34 out of 68 patients experienced grade ≥3 adverse events (AEs) attributed to taselisib, the most common all-grade AEs being diarrhea, fatigue, and oral mucositis. At a median follow-up of 43.8 months, median progression-free survival (PFS) for the MTD-treated population in cohorts A, C, and E was 6.3 [95% confidence interval (CI) 3.2-not applicable (NA)] months, 1.7 (95% CI 1.4-NA) months, and 10.6 (95% CI 8.3-NA) months, respectively. The median PFS for patients in cohort A with prior T-DM1 use was 10.4 (95% CI 2.7-NA) months. CONCLUSIONS: PIK3CA targeting with taselisib in combination with HER2-targeted therapies was associated with both promising efficacy and substantial toxicities.


Antineoplastic Combined Chemotherapy Protocols , Breast Neoplasms , Maximum Tolerated Dose , Receptor, ErbB-2 , Humans , Female , Middle Aged , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Receptor, ErbB-2/metabolism , Aged , Adult , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Oxazoles/therapeutic use , Oxazoles/pharmacology , Oxazoles/administration & dosage , Quinazolines/therapeutic use , Quinazolines/pharmacology , Quinazolines/administration & dosage , Paclitaxel/pharmacology , Paclitaxel/therapeutic use , Paclitaxel/administration & dosage , Uracil/analogs & derivatives , Uracil/pharmacology , Uracil/therapeutic use , Uracil/administration & dosage , Ado-Trastuzumab Emtansine/therapeutic use , Ado-Trastuzumab Emtansine/pharmacology , Fulvestrant/pharmacology , Fulvestrant/therapeutic use , Fulvestrant/administration & dosage , Trastuzumab/therapeutic use , Trastuzumab/pharmacology , Imidazoles , Oxazepines , Antibodies, Monoclonal, Humanized
3.
Cancer Lett ; 593: 216968, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38788968

In patients with ER + metastatic breast cancer (mBC), the first-line treatment involves the combination of endocrine therapy (ET) and CDK4/6 inhibitors (CDK4/6i). However, a significant group of patients experiences disease progression, emphasizing the urgent clinical need to identify novel anti-tumor therapies. We previously generated breast cancer cells resistant to the combination of fulvestrant (ER downregulator) and abemaciclib (CDK4/6 inhibitor) from MCF7 and T47D (MCF7-FAR and T47D-FAR). RNA-seq-based Gene Set Enrichment Analysis (GSEA) revealed hyper-activation of EGFR, HER2, and AKT signaling in both MCF7-FAR and T47D-FAR. Modulating EGFR or ERBB2 expression through loss- and gain-of-function experiments altered tumor sensitivity to fulvestrant and abemaciclib in parental and FAR spheroids, affecting ERK and AKT/S6 pathways. Cetuximab treatment overcame tumor resistance to fulvestrant and abemaciclib in FAR and EGFR-overexpressing breast cancer spheroids and xenografts. Likewise, patient-derived organoids (PDOs) from individuals with ER + mBC, progressing on palbociclib, exhibited up-regulation of EGFR and HER2 pathways. In conclusion, our findings suggest that inhibiting EGFR and HER2 pathways might overcome resistance to ET + CDK4/6i in selected patients with ER + mBC.


Breast Neoplasms , Cyclin-Dependent Kinase 4 , Cyclin-Dependent Kinase 6 , Drug Resistance, Neoplasm , ErbB Receptors , Receptor, ErbB-2 , Receptors, Estrogen , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Receptor, ErbB-2/metabolism , Receptor, ErbB-2/genetics , Female , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 4/genetics , Cyclin-Dependent Kinase 4/metabolism , Animals , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , ErbB Receptors/genetics , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Cyclin-Dependent Kinase 6/metabolism , Cyclin-Dependent Kinase 6/genetics , Receptors, Estrogen/metabolism , Mice , Fulvestrant/pharmacology , Fulvestrant/therapeutic use , Protein Kinase Inhibitors/pharmacology , Benzimidazoles/pharmacology , Aminopyridines/pharmacology , Xenograft Model Antitumor Assays , Antineoplastic Agents, Hormonal/pharmacology , Antineoplastic Agents, Hormonal/therapeutic use , MCF-7 Cells , Cell Line, Tumor , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use
4.
Cell Signal ; 119: 111184, 2024 Jul.
Article En | MEDLINE | ID: mdl-38640982

Estrogen receptor alpha (ERα) is expressed in approximately 70% of breast cancer cases and determines the sensitivity and effectiveness of endocrine therapy. 6-phosphofructo-2-kinase/fructose-2, 6-biphosphatase3 (PFKFB3) is a glycolytic enzyme that is highly expressed in a great many human tumors, and recent studies have shown that it plays a significant role in improving drug sensitivity. However, the role of PFKFB3 in regulating ERα expression and the underlying mechanism remains unclear. Here, we find by using immunohistochemistry (IHC) that PFKFB3 is elevated in ER-positive breast cancer and high expression of PFKFB3 resulted in a worse prognosis. In vitro and in vivo experiments verify that PFKFB3 promotes ER-positive breast cancer cell proliferation. The overexpression of PFKFB3 promotes the estrogen-independent ER-positive breast cancer growth. In an estrogen-free condition, RNA-sequencing data from MCF7 cells treated with siPFKFB3 showed enrichment of the estrogen signaling pathway, and a luciferase assay demonstrated that knockdown of PFKFB3 inhibited the ERα transcriptional activity. Mechanistically, down-regulation of PFKFB3 promotes STUB1 binding to ERα, which accelerates ERα degradation by K48-based ubiquitin linkage. Finally, growth of ER-positive breast cancer cells in vivo was more potently inhibited by fulvestrant combined with the PFKFB3 inhibitor PFK158 than for each drug alone. In conclusion, these data suggest that PFKFB3 is identified as an adverse prognosis factor for ER-positive breast cancer and plays a previously unrecognized role in the regulation of ERα stability and activity. Our results further explores an effective approach to improve fulvestrant sensitivity through the early combination with a PFKFB3 inhibitor.


Breast Neoplasms , Estrogen Receptor alpha , Fulvestrant , Phosphofructokinase-2 , Humans , Phosphofructokinase-2/metabolism , Phosphofructokinase-2/genetics , Estrogen Receptor alpha/metabolism , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Female , Fulvestrant/pharmacology , Animals , Protein Stability/drug effects , Mice , MCF-7 Cells , Cell Proliferation/drug effects , Mice, Nude , Carcinogenesis/metabolism , Carcinogenesis/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Antineoplastic Agents, Hormonal/pharmacology , Cell Line, Tumor
5.
Expert Rev Anticancer Ther ; 24(6): 397-405, 2024 Jun.
Article En | MEDLINE | ID: mdl-38642015

INTRODUCTION: Estrogen receptor positive (ER+) breast cancer is the most common breast cancer subtype, and therapeutic management relies primarily on inhibiting ER signaling. In the metastatic setting, ER signaling is typically targeted by selective estrogen receptor degraders (SERDs) or aromatase inhibitors (AIs), the latter of which prevent estrogen production. Activating ESR1 mutations are among the most common emergent breast cancer mutations and confer resistance to AIs. AREAS COVERED: Until 2023, fulvestrant was the only approved SERD; fulvestrant is administered intramuscularly, and in some cases may also have limited efficacy in the setting of certain ESR1 mutations. In 2023, the first oral SERD, elacestrant, was approved for use in ESR1-mutated, ER+/HER2- advanced breast cancer and represents a new class of therapeutic options. While the initial approval was as monotherapy, ongoing studies are evaluating elacestrant (as well as other oral SERDs) in combination with other therapies including CDK4/6 inhibitors and PI3K inhibitors, which parallels the current combination uses of fulvestrant. EXPERT OPINION: Elacestrant's recent approval sheds light on the use of biomarkers such as ESR1 to gauge a tumor's endocrine sensitivity. Ongoing therapeutic and correlative biomarker studies will offer new insight and expanding treatment options for patients with advanced breast cancer.


Breast Neoplasms , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Female , Administration, Oral , Aromatase Inhibitors/pharmacology , Aromatase Inhibitors/administration & dosage , Estrogen Receptor alpha/metabolism , Estrogen Receptor alpha/genetics , Animals , Mutation , Fulvestrant/administration & dosage , Fulvestrant/pharmacology , Drug Resistance, Neoplasm , Receptors, Estrogen/metabolism , Selective Estrogen Receptor Modulators/pharmacology , Selective Estrogen Receptor Modulators/administration & dosage , Molecular Targeted Therapy , Signal Transduction/drug effects
6.
J Nanobiotechnology ; 22(1): 107, 2024 Mar 12.
Article En | MEDLINE | ID: mdl-38475902

BACKGROUND: Breast cancer is the most prevalent malignant tumor among women, with hormone receptor-positive cases constituting 70%. Fulvestrant, an antagonist for these receptors, is utilized for advanced metastatic hormone receptor-positive breast cancer. Yet, its inhibitory effect on tumor cells is not strong, and it lacks direct cytotoxicity. Consequently, there's a significant challenge in preventing recurrence and metastasis once cancer cells develop resistance to fulvestrant. METHOD: To address these challenges, we engineered tumor-targeting nanoparticles termed 131I-fulvestrant-ALA-PFP-FA-NPs. This involved labeling fulvestrant with 131I to create 131I-fulvestrant. Subsequently, we incorporated the 131I-fulvestrant and 5-aminolevulinic acid (ALA) into fluorocarbon nanoparticles with folate as the targeting agent. This design facilitates a tri-modal therapeutic approach-endocrine therapy, radiotherapy, and PDT for estrogen receptor-positive breast cancer. RESULTS: Our in vivo and in vitro tests showed that the drug-laden nanoparticles effectively zeroed in on tumors. This targeting efficiency was corroborated using SPECT-CT imaging, confocal microscopy, and small animal fluorescence imaging. The 131I-fulvestrant-ALA-PFP-FA-NPs maintained stability and showcased potent antitumor capabilities due to the synergism of endocrine therapy, radiotherapy, and CR-PDT. Throughout the treatment duration, we detected no notable irregularities in hematological, biochemical, or histological evaluations. CONCLUSION: We've pioneered a nanoparticle system loaded with radioactive isotope 131I, endocrine therapeutic agents, and a photosensitizer precursor. This system offers a combined modality of radiotherapy, endocrine treatment, and PDT for breast cancer.


Breast Neoplasms , Animals , Humans , Female , Fulvestrant/pharmacology , Fulvestrant/therapeutic use , Breast Neoplasms/drug therapy , Drug Interactions , Iodine Radioisotopes
7.
ESMO Open ; 9(4): 102385, 2024 Apr.
Article En | MEDLINE | ID: mdl-38387111

BACKGROUND: The FUTURE trial (UMIN000029294) demonstrated the safety and efficacy of adding palbociclib after fulvestrant resistance in patients with hormone receptor-positive (HR+)/human epidermal growth factor receptor 2-negative (HER2-) advanced and metastatic breast cancer (ABC/MBC). In this planned sub-study, cancer panel sequencing of cell-free DNA (cfDNA) was utilized to explore prognostic and predictive biomarkers for further palbociclib treatment following fulvestrant resistance. MATERIALS AND METHODS: Herein, 149 cfDNA samples from 65 patients with fulvestrant-resistant disease were analysed at the time of palbociclib addition after fulvestrant resistance (baseline), on day 15 of cycle 1, and at the end of treatment using the assay for identifying diverse mutations in 34 cancer-related genes. RESULTS: During the course of treatment, mutations in ESR1, PIK3CA, FOXA1, RUNX1, TBX3, and TP53 were the most common genomic alterations observed. Analysis of genomic mutations revealed that before fulvestrant introduction, baseline PIK3CA mutations were marginally lower in metastatic aromatase inhibitor (AI)-treated patients compared to adjuvant AI-treated patients (P = 0.063). Baseline PIK3CA mutations were associated with poorer progression-free survival [hazard ratio: 1.62, P = 0.04]. Comparative analysis between baseline and early-changing gene mutations identified poor prognostic factors including early-changing MAP3K1 mutations (hazard ratio: 4.66, P = 0.04), baseline AR mutations (hazard ratio: 3.53, P = 0.04), and baseline PIK3CA mutations (hazard ratio: 3.41, P = 0.02). Notably, the relationship between ESR1 mutations and mutations in PIK3CA, MAP3K1, and TP53 weakened as treatment progressed. Instead, PIK3CA mutations became correlated with TP53 and FOXA1 mutations. CONCLUSIONS: Cancer panel testing for cfDNA identified prognostic and predictive biomarkers for palbociclib add-on therapy after acquiring fulvestrant resistance in patients with HR+/HER2- ABC/MBC.


Biomarkers, Tumor , Breast Neoplasms , Drug Resistance, Neoplasm , Fulvestrant , Piperazines , Pyridines , Humans , Fulvestrant/therapeutic use , Fulvestrant/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Piperazines/therapeutic use , Piperazines/pharmacology , Female , Pyridines/therapeutic use , Pyridines/pharmacology , Drug Resistance, Neoplasm/genetics , Middle Aged , Biomarkers, Tumor/genetics , Prognosis , Aged , Adult , Cell-Free Nucleic Acids , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Mutation
8.
Biomed Pharmacother ; 171: 116142, 2024 Feb.
Article En | MEDLINE | ID: mdl-38198953

HER-2 overexpression is a major mechanism involved in endocrine-resistant breast cancer, which has very limited treatment options. Zoledronic acid (ZA) is a drug in the bisphosphonate group used to treat osteoporosis. ZA was reported to exhibit activity in various cancers, with higher efficacy associated with estrogen-deprivation states. ZA inhibits cell proliferation in lung cancer through the epidermal growth factor receptor signaling pathway. Because endocrine-resistant breast cancer cells overexpress HER-2 and grow independently without estrogen, ZA may exert anticancer effects in these cell types. The inhibitory effects and mechanisms of ZA in endocrine-resistant cells through HER-2 signaling were investigated. The efficacy of ZA was higher in the endocrine-resistant breast cancer cells when compared with the wild-type cells. ZA also exhibited a synergistic effect with fulvestrant and may circumvent fulvestrant resistance. ZA decreased phosphorylated ERK (pERK) levels in resistant cell lines and attenuated HER-2 signaling in tamoxifen- and fulvestrant-resistant cells. ZA significantly decreased HER-2 levels and its downstream signaling molecules, including pAKT and pNF-κB in fulvestrant-resistant breast cancer cells. This inhibitory effect may explain the lower IC50 values of ZA in fulvestrant-resistant cells compared with tamoxifen-resistant cells. Moreover, ZA inhibited the migration and invasion in the resistant cell lines, suggesting an ability to inhibit tumor metastasis. The results indicate that ZA has potential for repurposing as an adjuvant treatment for patients with endocrine-resistant breast cancer.


Antineoplastic Agents , Breast Neoplasms , Zoledronic Acid , Female , Humans , Breast Neoplasms/drug therapy , Cell Line, Tumor , Cell Proliferation , Drug Resistance, Neoplasm , Estrogens/pharmacology , Fulvestrant/pharmacology , Fulvestrant/therapeutic use , Signal Transduction , Tamoxifen/pharmacology , Zoledronic Acid/pharmacology , Zoledronic Acid/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
9.
Int J Exp Pathol ; 105(1): 4-12, 2024 Feb.
Article En | MEDLINE | ID: mdl-37899670

Human bone marrow mesenchymal stem cells (hBMSCs) are attractive therapeutic agents for bone tissue regeneration owing to their osteogenic differentiation potential. Notoginsenoside R1 (NGR1) is a novel phytoestrogen with diverse pharmacological activities. Here, we probed whether NGR1 has an effect on the osteogenic differentiation of hBMSCs. EdU, CCK-8 and Transwell assays were used to measure proliferation and migration of hBMSCs after treatment with different doses of NGR1. hBMSCs were treated with osteogenic differentiation induction medium for osteogenesis. Alizarin red S (ARS) and alkaline phosphatase (ALP) staining were used to measure mineralized nodule formation and ALP activity in hBMSCs, respectively. ICI 182780, an antagonist of oestrogen receptor alpha (ERα) was used to inhibit ERα expression. The results showed that NGR1 enhanced hBMSC proliferation and migration. NGR1 increased ALP activity and mineralized nodule formation as well as promoting ALP, RUNX2 and OCN expression in hBMSCs. NGR1 enhanced ERα expression and promoted GSK-3ß/ß-catenin signal transduction in hBMSCs. ICI 182780 reversed NGR1-mediated activation of the GSK-3ß/ß-catenin signalling and promoted an effect on hBMSC behaviour. Thus NGR1 promotes proliferation, migration and osteogenic differentiation of hBMSCs via the ERα/GSK-3ß/ß-catenin signalling pathway.


Ginsenosides , Mesenchymal Stem Cells , Osteogenesis , Humans , Osteogenesis/physiology , Glycogen Synthase Kinase 3 beta/metabolism , beta Catenin/metabolism , Estrogen Receptor alpha , Fulvestrant/metabolism , Fulvestrant/pharmacology , Cells, Cultured , Signal Transduction , Cell Differentiation/physiology , Bone Marrow Cells/metabolism
10.
Breast Cancer Res Treat ; 203(2): 383-396, 2024 Jan.
Article En | MEDLINE | ID: mdl-37847455

PURPOSE: Estrogen Receptor α (ERα) is a well-established therapeutic target for Estrogen Receptor (ER)-positive breast cancers. Both Selective Estrogen Receptor Degraders (SERD) and PROTAC ER degraders are synthetic compounds suppressing the ER activity through the degradation of ER. However, the differences between SERD and PROTAC ER degraders are far from clear. METHODS: The effect of PROTAC ER degrader ERD-148 and SERD fulvestrant on protein degradation was evaluated by western blot analysis. The cell proliferation was tested by WST-8 assays and the gene expressions were assessed by gene microarray and real-time RT-PCR analysis after the compound treatment. RESULTS: ERD-148 is a potent and selective PROTAC ERα degrader. It degrades not only unphosphorylated ERα but also the phosphorylated ERα in the cells. In contrast, the SERD fulvestrant showed much-reduced degradation potency on the phosphorylated ERα. The more complete degradation of ERα by ERD-148 translates into a greater maximum cell growth inhibition. However, ERD-148 and fulvestrant share a similar gene regulation profile except for the variation of regulation potency. Further studies indicate that ERD-148 degrades the ERα in fulvestrant-resistant cells. CONCLUSION: PROTAC ER degrader has a different mechanism of action compared to SERD which may be used in treating fulvestrant-resistant cancers.


Breast Neoplasms , Estrogen Receptor alpha , Female , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Estrogen Antagonists/pharmacology , Estrogen Receptor alpha/metabolism , Fulvestrant/pharmacology , Selective Estrogen Receptor Modulators/pharmacology
11.
Breast Cancer Res Treat ; 203(3): 613-625, 2024 Feb.
Article En | MEDLINE | ID: mdl-37924380

PURPOSE: Endocrine therapy is the anti-tumor therapy for human breast cancer but endocrine resistance was a major burden. It has been reported that Palbociclib and fulvestrant can be used in combination for the treatment of patients who are experiencing endocrine resistance. However, the underlying mechanism is unclear. In this study, we aimed to investigate the mechanism by which Palbocicilib affected ER-positive breast cancer, combined with fulvestrant. METHODS: We first detected the effect of palbociclib on cell survival, growth and cycle distribution separately by MTT, colony formation and flow cytometry. Then SNHG17 was screened as palbociclib-targeted LncRNA by LncRNA-seq, and the SNHG17-targeted mRNAs were selected by mRNA-seq for further determination. Subsequently, the underlying mechanism by which palbociclib promoted the cytotoxicity of fulvestrant was confirmed by qRT-PCR, western blot, and immunoprecipitation. Eventually, the xenograft model and immunohistochemistry experiments were used to validate the sensitization effect of palbociclib on fulvestrant and its mechanism in vivo. RESULTS: Palbociclib significantly enhanced the cytotoxicity of fulvestrant in fulvestrant-resistant breast cancer cell lines. Interestingly, this might be related to the lncRNA SNHG17 and the Hippo signaling pathway. And our subsequent western blotting experiments confirmed that overexpressing SNHG17 induced the down-regulation of LATS1 and up-regulated YAP expression. Furthermore, we found that the increased sensitivity of breast cancer cells was closely associated with the LATS1-mediated degradation of ER-α. The following animal experiments also indicated that overexpressing SNHG17 obviously impaired the anti-cancer effect of co-treatment of palbociclib and fulvestrant accompanied by decreased LATS1 and increased ER-α levels. CONCLUSION: Palbociclib might sensitize the cytotoxicity of fulvestrant in ER-positive breast cancer cells by down-regulating SNHG17 expression, and then resulted in the LATS1-inactivated oncogene YAP and LATS1-mediated degradation of ER-α.


Breast Neoplasms , Piperazines , Pyridines , RNA, Long Noncoding , Animals , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Fulvestrant/pharmacology , Fulvestrant/therapeutic use , RNA, Long Noncoding/genetics , Receptors, Estrogen/metabolism , Protein Serine-Threonine Kinases , Ubiquitins , Antineoplastic Combined Chemotherapy Protocols/adverse effects
12.
Cancer Discov ; 14(2): 274-289, 2024 Feb 08.
Article En | MEDLINE | ID: mdl-37982575

Fulvestrant is used to treat patients with hormone receptor-positive advanced breast cancer, but acquired resistance is poorly understood. PlasmaMATCH Cohort A (NCT03182634) investigated the activity of fulvestrant in patients with activating ESR1 mutations in circulating tumor DNA (ctDNA). Baseline ESR1 mutations Y537S are associated with poor outcomes and Y537C with good outcomes. Sequencing of baseline and EOT ctDNA samples (n = 69) revealed 3/69 (4%) patients acquired novel ESR1 F404 mutations (F404L, F404I, and F404V), in cis with activating mutations. In silico modeling revealed that ESR1 F404 contributes to fulvestrant binding to estrogen receptor-alpha (ERα) through a pi-stacking bond, with mutations disrupting this bond. In vitro analysis demonstrated that single F404L, E380Q, and D538G models were less sensitive to fulvestrant, whereas compound mutations D538G + F404L and E380Q + F404L were resistant. Several oral ERα degraders were active against compound mutant models. We have identified a resistance mechanism specific to fulvestrant that can be targeted by treatments in clinical development. SIGNIFICANCE: Novel F404 ESR1 mutations may be acquired to cause overt resistance to fulvestrant when combined with preexisting activating ESR1 mutations. Novel combinations of mutations in the ER ligand binding domain may cause drug-specific resistance, emphasizing the potential of similar drug-specific mutations to impact the efficacy of oral ER degraders in development. This article is featured in Selected Articles from This Issue, p. 201.


Breast Neoplasms , Circulating Tumor DNA , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Fulvestrant/pharmacology , Fulvestrant/therapeutic use , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Circulating Tumor DNA/genetics , Mutation
13.
Mol Cancer Ther ; 23(3): 285-300, 2024 Mar 04.
Article En | MEDLINE | ID: mdl-38102750

The estrogen receptor (ER) is a well-established target for the treatment of breast cancer, with the majority of patients presenting as ER-positive (ER+). Endocrine therapy is a mainstay of breast cancer treatment but the development of resistance mutations in response to aromatase inhibitors, poor pharmacokinetic properties of fulvestrant, agonist activity of tamoxifen, and limited benefit for elacestrant leave unmet needs for patients with or without resistance mutations in ESR1, the gene that encodes the ER protein. Here we describe palazestrant (OP-1250), a novel, orally bioavailable complete ER antagonist and selective ER degrader. OP-1250, like fulvestrant, has no agonist activity on the ER and completely blocks estrogen-induced transcriptional activity. In addition, OP-1250 demonstrates favorable biochemical binding affinity, ER degradation, and antiproliferative activity in ER+ breast cancer models that is comparable or superior to other agents of interest. OP-1250 has superior pharmacokinetic properties relative to fulvestrant, including oral bioavailability and brain penetrance, as well as superior performance in wild-type and ESR1-mutant breast cancer xenograft studies. OP-1250 combines well with cyclin-dependent kinase 4 and 6 inhibitors in xenograft studies of ER+ breast cancer models and effectively shrinks intracranially implanted tumors, resulting in prolonged animal survival. With demonstrated preclinical efficacy exceeding fulvestrant in wild-type models, elacestrant in ESR1-mutant models, and tamoxifen in intracranial xenografts, OP-1250 has the potential to benefit patients with ER+ breast cancer.


Breast Neoplasms , Tetrahydronaphthalenes , Animals , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Fulvestrant/pharmacology , Fulvestrant/therapeutic use , Estrogen Receptor Antagonists/therapeutic use , Xenograft Model Antitumor Assays , Tamoxifen , Estrogens , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism
14.
Eur J Pharmacol ; 960: 176165, 2023 Dec 05.
Article En | MEDLINE | ID: mdl-38059444

AIM: Men are more susceptible to liver fibrosis (LF) than women. However, the underlying molecular mechanism, especially the role of estrogen/estrogen receptor (ER) activation in this sexual dimorphism is unclear. Therefore, the aim of the current study was to investigate the impact and the underlying molecular mechanisms of estrogen/ER activation on diethyl nitrosamine (DEN)-induced LF. MAIN METHODS: Thirty ovariectomized (OVX) female rats were randomly allocated into five groups (n = 6), and received no treatment, diethyl nitrosamine (DEN), DEN/fulvestrant, DEN/silymarin or DEN/estradiol benzoate (EB). In addition, three sham groups received no treatment, DEN or DEN/fulvestrant, and one control group that neither ovariectomized nor treated. Directly after treatment, liver injury biomarkers were measured. In addition, hepatic tissue hydroxyproline, TNF- α, TGF- ß, and IL-10 were evaluated. Expression of NF-kß, CD68 (a marker for macrophage infiltration), ER-ß and TLR-4 were measured. Finally, liver tissue histopathology was assessed. KEY FINDINGS: Ovariectomy aggravates DEN-induced LF, as it significantly elevated all liver tissue injury biomarkers. This effect has become even worse after blocking ER by fulvestrant, indicating a protective role of estrogen/ER activation against DEN-induced LF. Inhibition of TLR-4/NF-kß signaling pathway contributed to this protective effect, as estrogen deprivation or blocking of ER significantly activates this pathway during the onset of LF. While administration of EB or silymarin (selective ER-ß activator) improved LF indices and deactivated this pathway. SIGNIFICANCE: These results provide new insight into the pivotal role of estrogen/ER activation via modulation of TLR-4/NF-kß, in the alleviation of LF pathogenesis.


Nitrosamines , Silymarin , Humans , Male , Rats , Female , Animals , Toll-Like Receptor 4 , Fulvestrant/pharmacology , Estrogens/pharmacology , Estradiol/pharmacology , Liver Cirrhosis/chemically induced , Liver Cirrhosis/prevention & control , Estrogen Receptor beta/metabolism , Signal Transduction , Transforming Growth Factor beta/pharmacology , Biomarkers , Silymarin/pharmacology , Nitrosamines/pharmacology , Ovariectomy , Estrogen Receptor alpha/metabolism
15.
Endocrinology ; 164(12)2023 Nov 02.
Article En | MEDLINE | ID: mdl-37897495

Breast tumors overexpressing human epidermal growth factor receptor (HER2) confer intrinsic resistance to endocrine therapy (ET), and patients with HER2/estrogen receptor-positive (HER2+/ER+) breast cancer (BCa) are less responsive to ET than HER2-/ER+. However, real-world evidence reveals that a large subset of patients with HER2+/ER+ receive ET as monotherapy, positioning this treatment pattern as a clinical challenge. In the present study, we developed and characterized 2 in vitro models of ET-resistant (ETR) HER2+/ER+ BCa to identify possible therapeutic vulnerabilities. To mimic ETR to aromatase inhibitors (AIs), we developed 2 long-term estrogen deprivation (LTED) cell lines from BT-474 (BT474) and MDA-MB-361 (MM361). Growth assays, PAM50 subtyping, and genomic and transcriptomic analyses, followed by validation and functional studies, were used to identify targetable differences between ET-responsive parental and ETR-LTED HER2+/ER+ cells. Compared to their parental cells, MM361 LTEDs grew faster, lost ER, and increased HER2 expression, whereas BT474 LTEDs grew slower and maintained ER and HER2 expression. Both LTED variants had reduced responsiveness to fulvestrant. Whole-genome sequencing of aggressive MM361 LTEDs identified mutations in genes encoding transcription factors and chromatin modifiers. Single-cell RNA sequencing demonstrated a shift towards non-luminal phenotypes, and revealed metabolic remodeling of MM361 LTEDs, with upregulated lipid metabolism and ferroptosis-associated antioxidant genes, including GPX4. Combining a GPX4 inhibitor with anti-HER2 agents induced significant cell death in both MM361 and BT474 LTEDs. The BT474 and MM361 AI-resistant models capture distinct phenotypes of HER2+/ER+ BCa and identify altered lipid metabolism and ferroptosis remodeling as vulnerabilities of this type of ETR BCa.


Breast Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Drug Resistance, Neoplasm/genetics , Fulvestrant/pharmacology , Fulvestrant/therapeutic use , Aromatase Inhibitors/pharmacology , Aromatase Inhibitors/therapeutic use , Estrogens/metabolism , Cell Line, Tumor , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism
16.
Int J Mol Sci ; 24(18)2023 Sep 21.
Article En | MEDLINE | ID: mdl-37762687

Endogenous hydrogen sulfide (H2S) produced by cystathionine ß-synthase (CBS) and cystathionine-γ lyase (CSE) has emerged as a novel uterine vasodilator contributing to pregnancy-associated increases in uterine blood flow, which safeguard pregnancy health. Uterine artery (UA) H2S production is stimulated via exogenous estrogen replacement and is associated with elevated endogenous estrogens during pregnancy through the selective upregulation of CBS without altering CSE. However, how endogenous estrogens regulate uterine artery CBS expression in pregnancy is unknown. This study was conducted to test a hypothesis that endogenous estrogens selectively stimulate UA CBS expression via specific estrogen receptors (ER). Treatment with E2ß (0.01 to 100 nM) stimulated CBS but not CSE mRNA in organ cultures of fresh UA rings from both NP and P (gestational day 20, GD20) rats, with greater responses to all doses of E2ß tested in P vs. NP UA. ER antagonist ICI 182,780 (ICI, 1 µM) completely attenuated E2ß-stimulated CBS mRNA in both NP and P rat UA. Subcutaneous injection with ICI 182,780 (0.3 mg/rat) of GD19 P rats for 24 h significantly inhibited UA CBS but not mRNA expression, consistent with reduced endothelial and smooth muscle cell CBS (but not CSE) protein. ICI did not alter mesenteric and renal artery CBS and CSE mRNA. In addition, ICI decreased endothelial nitric oxide synthase mRNA in UA but not in mesenteric or renal arteries. Thus, pregnancy-augmented UA CBS/H2S production is mediated by the actions of endogenous estrogens via specific ER in pregnant rats.


Cystathionine beta-Synthase , Fulvestrant , Hydrogen Sulfide , Animals , Female , Pregnancy , Rats , Cystathionine beta-Synthase/genetics , Cystathionine beta-Synthase/metabolism , Cystathionine gamma-Lyase/genetics , Cystathionine gamma-Lyase/metabolism , Estrogens/metabolism , Fulvestrant/pharmacology , Hydrogen Sulfide/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Up-Regulation , Uterine Artery/metabolism
17.
Breast Cancer Res ; 25(1): 96, 2023 08 14.
Article En | MEDLINE | ID: mdl-37580832

BACKGROUND: Targeted estrogen receptor degradation has been approved to effectively treat ER + breast cancers. Due to the poor bioavailability of fulvestrant, the first generation of SERD, many efforts were made to develop oral SERDs. With the approval of Elacestrant, oral SERDs demonstrated superior efficacy than fulvestrant. However, due to the poor ability of known SERDs to penetrate the blood-brain barrier (BBB), breast cancer patients with brain metastasis cannot benefit from clinical SERDs. METHODS: The ER inhibitory effects were evaluated on ERα protein degradation, and target genes downregulation. And anti-proliferation activities were further determined in a panel of ER + breast cancer cell lines. The subcutaneous and intracranial ER + tumor models were used to evaluate the efficacy of anti-tumor effects. Brain penetrability was determined in multiple animal species. RESULTS: SCR-6852 is a novel SERD and currently is under early clinical evaluation. In vitro studies demonstrated that it strongly induced both wildtype and mutant ERα degradation. It potently inhibited cell proliferation in a panel of ER + breast cancer cell lines, including the cell lines containing ESR1 mutations (Y537 and D538). Furthermore, SCR-6852 exhibited pure antagonistic activities on the ERɑ signal axis identified both in vitro and in vivo. Oral administration of SCR-6852 at 10 mg/kg resulted in tumor shrinkage which was superior to Fulvestrant at 250 mg/kg, notably, in the intracranial tumor model, SCR-6852 effectively inhibited tumor growth and significantly prolonged mice survival, which correlated well with the high exposure in brains. In addition to mice, SCR-6852 also exhibited high brain penetrability in rats and dogs. CONCLUSIONS: SCR-6852 is a novel SERD with high potency in inducing ERα protein degradation and pure antagonistic activity on ERɑ signaling in vitro and in vivo. Due to the high brain penetrability, SCR-6852 could be used to treat breast patients with brain metastasis.


Brain Neoplasms , Receptors, Estrogen , Rats , Mice , Animals , Dogs , Receptors, Estrogen/metabolism , Fulvestrant/pharmacology , Estrogen Receptor alpha/metabolism , Estrogen Antagonists , Brain , Brain Neoplasms/drug therapy
18.
Am J Physiol Cell Physiol ; 325(3): C708-C720, 2023 09 01.
Article En | MEDLINE | ID: mdl-37575061

Breast cancer is the leading cause of cancer deaths for women worldwide. Endocrine therapies represent the cornerstone for hormone-dependent breast cancer treatment. However, in many cases, endocrine resistance is induced with poor prognosis for patients. In the current study, we have developed MCF-7 cell lines resistant to fulvestrant (MCF-7Fulv) and tamoxifen (MCF-7Tam) aiming at investigating mechanisms underlying resistance. Both resistant cell lines exerted lower proliferation capacity in two-dimensional (2-D) cultures but retain estrogen receptor α (ERα) expression and proliferate independent of the presence of estrogens. The established cell lines tend to be more aggressive exhibiting advanced capacity to form colonies, increased expression of epidermal growth factor receptor (EGFR), human epidermal growth factor receptor 2 (HER2), and heterodimerization of ERBB family receptors and activation of EGFR downstream pathways like MEK/ERK1/2 and PI3K/AKT. Tyrosine kinase inhibitors tested against resistant MCF-7Fulv and MCF-7Tam cells showed moderate efficacy to inhibit cell proliferation, except for lapatinib, which concomitantly inhibits both EGFR and HER2 receptors and strongly reduced cell proliferation. Furthermore, increased autophagy was observed in resistant MCF-7Fulv and MCF-7Tam cells as shown by the presence of autophagosomes and increased Beclin-1 levels. The increased autophagy in resistant cells is not associated with increased apoptosis, suggesting a cytoprotective role for autophagy that may favor cells' survival and aggressiveness. Thus, by exploiting those underlying mechanisms, new targets could be established to overcome endocrine resistance.NEW & NOTEWORTHY The development of resistance to hormone therapy caused by both fulvestrant and tamoxifen promotes autophagy with concomitant apoptosis evasion, rendering cells capable of surviving and growing. The fact that resistance also triggers ERBB family signaling pathways, which are poorly inhibited by tyrosine kinase inhibitors might attribute to cells' aggressiveness. It is obvious that the development of endocrine therapy resistance involves a complex interplay between deregulated ERBB signaling and autophagy that may be considered in clinical practice.


Breast Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Fulvestrant/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Cell Line, Tumor , Signal Transduction , Tamoxifen/pharmacology , Tamoxifen/therapeutic use , Cell Proliferation , MCF-7 Cells , Autophagy , Drug Resistance, Neoplasm , ErbB Receptors/metabolism
19.
Cancer Res Commun ; 3(7): 1366-1377, 2023 07.
Article En | MEDLINE | ID: mdl-37501682

NF1 is a key tumor suppressor that represses both RAS and estrogen receptor-α (ER) signaling in breast cancer. Blocking both pathways by fulvestrant (F), a selective ER degrader, together with binimetinib (B), a MEK inhibitor, promotes tumor regression in NF1-depleted ER+ models. We aimed to establish approaches to determine how NF1 protein levels impact B+F treatment response to improve our ability to identify B+F sensitive tumors. We examined a panel of ER+ patient-derived xenograft (PDX) models by DNA and mRNA sequencing and found that more than half of these models carried an NF1 shallow deletion and generally have low mRNA levels. Consistent with RAS and ER activation, RET and MEK levels in NF1-depleted tumors were elevated when profiled by mass spectrometry (MS) after kinase inhibitor bead pulldown. MS showed that NF1 can also directly and selectively bind to palbociclib-conjugated beads, aiding quantification. An IHC assay was also established to measure NF1, but the MS-based approach was more quantitative. Combined IHC and MS analysis defined a threshold of NF1 protein loss in ER+ breast PDX, below which tumors regressed upon treatment with B+F. These results suggest that we now have a MS-verified NF1 IHC assay that can be used for patient selection as a complement to somatic genomic analysis. Significance: A major challenge for targeting the consequence of tumor suppressor disruption is the accurate assessment of protein functional inactivation. NF1 can repress both RAS and ER signaling, and a ComboMATCH trial is underway to treat the patients with binimetinib and fulvestrant. Herein we report a MS-verified NF1 IHC assay that can determine a threshold for NF1 loss to predict treatment response. These approaches may be used to identify and expand the eligible patient population.


Breast Neoplasms , Proteogenomics , Humans , Female , Breast Neoplasms/drug therapy , Neurofibromin 1/genetics , Fulvestrant/pharmacology , Receptors, Estrogen/genetics , Protein Kinase Inhibitors/pharmacology , NFI Transcription Factors , RNA, Messenger , Mitogen-Activated Protein Kinase Kinases
20.
J Steroid Biochem Mol Biol ; 233: 106365, 2023 10.
Article En | MEDLINE | ID: mdl-37468002

Estrogen receptor alpha (ER) is a key biomarker for breast cancer, and the presence or absence of ER in breast and other hormone-dependent cancers decides treatment regimens and patient prognosis. ER is activated after ligand binding - typically by steroid. 2682 steroid compounds were used in a molecular docking study to identify novel ligands for ER and to predict compounds that may show anticancer activity. The effect of the most promising compounds was determined by a novel luciferase reporter assay. Two compounds, 7 and 12, showing ER inhibitory activity comparable to clinical inhibitors such as tamoxifen or fulvestrant were selected. We propose that the inhibitory effect of compounds 7 and 12 on ER is related to the presence of a double bond in their D-ring, which may protect against ER activation by reducing the electron density of the keto group, or may undergo metabolism leading to an active compound. Western blotting revealed that compound 12 decreased the level of ER in the breast cancer cell line MCF7, which was associated with reduced expression of both isoforms of the progesterone receptor, a well-known downstream target of ER. However, compound 12 has a different mechanism of action from fulvestrant. Furthermore, we found that compound 12 interferes with mitochondrial functions, probably by disrupting the electron transport chain, leading to induction of the intrinsic apoptotic pathway even in ER-negative breast cancer cells. In conclusion, the combination of computational and experimental methods shown here represents a rapid approach to determine the activity of compounds towards ER. Our data will not only contribute to research focused on the regulation of ER activity but may also be useful for the further development of novel steroid receptor-targeted drugs applicable in clinical practice.


Breast Neoplasms , Estrone , Humans , Female , Fulvestrant/pharmacology , Fulvestrant/therapeutic use , Estrone/pharmacology , Receptors, Estrogen/metabolism , Molecular Docking Simulation , Cell Line, Tumor , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Tamoxifen/pharmacology , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Estradiol/pharmacology , Estradiol/therapeutic use
...