Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 503
1.
J Biomed Sci ; 31(1): 50, 2024 May 13.
Article En | MEDLINE | ID: mdl-38741159

BACKGROUND: G-quadruplex DNA (G4) is a non-canonical structure forming in guanine-rich regions, which play a vital role in cancer biology and are now being acknowledged in both nuclear and mitochondrial (mt) genome. However, the impact of G4-based targeted therapy on both nuclear and mt genome, affecting mt function and its underlying mechanisms remain largely unexplored. METHODS: The mechanisms of action and therapeutic effects of a G4-binding platinum(II) complex, Pt-ttpy, on mitochondria were conducted through a comprehensive approaches with in vitro and in vivo models, including ICP-MS for platinum measurement, PCR-based genetic analysis, western blotting (WB), confocal microscope for mt morphology study, extracellular flux analyzer, JC1 and Annexin V apoptosis assay, flow cytometry and high content microscope screening with single-cell quantification of both ROS and mt specific ROS, as well as click-chemistry for IF study of mt translation. Decipher Pt-ttpy effects on nuclear-encoded mt related genes expression were undertaken via RNA-seq, Chip-seq and CUT-RUN assays. RESULTS: Pt-ttpy, shows a highest accumulation in the mitochondria of A2780 cancer cells as compared with two other platinum(II) complexes with no/weak G4-binding properties, Pt-tpy and cisplatin. Pt-ttpy induces mtDNA deletion, copy reduction and transcription inhibition, hindering mt protein translation. Functional analysis reveals potent mt dysfunction without reactive oxygen species (ROS) induction. Mechanistic study provided first evidence that most of mt ribosome genes are highly enriched in G4 structures in their promoter regions, notably, Pt-ttpy impairs most nuclear-encoded mt ribosome genes' transcription through dampening the recruiting of transcription initiation and elongation factors of NELFB and TAF1 to their promoter with G4-enriched sequences. In vivo studies show Pt-ttpy's efficient anti-tumor effects, disrupting mt genome function with fewer side effects than cisplatin. CONCLUSION: This study underscores Pt-ttpy as a G4-binding platinum(II) complex, effectively targeting cancer mitochondria through dual action on mt and nuclear G4-enriched genomes without inducing ROS, offering promise for safer and effective platinum-based G4-targeted cancer therapy.


G-Quadruplexes , Mitochondria , G-Quadruplexes/drug effects , Humans , Mitochondria/metabolism , Mitochondria/drug effects , Cell Line, Tumor , Genome, Mitochondrial , Antineoplastic Agents/pharmacology , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/metabolism , Platinum/pharmacology , Animals
2.
J Med Chem ; 67(8): 6292-6312, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38624086

Mitochondria are important drug targets for anticancer and other disease therapies. Certain human mitochondrial DNA sequences capable of forming G-quadruplex structures (G4s) are emerging drug targets of small molecules. Despite some mitochondria-selective ligands being reported for drug delivery against cancers, the ligand design is mostly limited to the triphenylphosphonium scaffold. The ligand designed with lipophilic small-sized scaffolds bearing multipositive charges targeting the unique feature of high mitochondrial membrane potential (MMP) is lacking and most mitochondria-selective ligands are not G4-targeting. Herein, we report a new small-sized dicationic lipophilic ligand to target MMP and mitochondrial DNA G4s to enhance drug delivery for anticancer. The ligand showed marked alteration of mitochondrial gene expression and substantial induction of ROS production, mitochondrial dysfunction, DNA damage, cellular senescence, and apoptosis. The ligand also exhibited high anticancer activity against HCT116 cancer cells (IC50, 3.4 µM) and high antitumor efficacy in the HCT116 tumor xenograft mouse model (∼70% tumor weight reduction).


Antineoplastic Agents , Colorectal Neoplasms , G-Quadruplexes , Mitochondria , Humans , G-Quadruplexes/drug effects , Ligands , Animals , Mitochondria/drug effects , Mitochondria/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/therapeutic use , Mice , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Apoptosis/drug effects , Membrane Potential, Mitochondrial/drug effects , Reactive Oxygen Species/metabolism , Mice, Nude , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemical synthesis , Xenograft Model Antitumor Assays , HCT116 Cells , DNA, Mitochondrial/metabolism
3.
Eur J Med Chem ; 271: 116406, 2024 May 05.
Article En | MEDLINE | ID: mdl-38688064

NRAS mutation is the second most common oncogenic factor in cutaneous melanoma. Inhibiting NRAS translation by stabilizing the G-quadruplex (G4) structure with small molecules seems to be a potential strategy for cancer therapy due to the NRAS protein's lack of a druggable pocket. To enhance the effects of previously reported G4 stabilizers quindoline derivatives, we designed and synthesized a novel series of quindoline derivatives with fork-shaped side chains by introducing (alkylamino)alkoxy side chains. Panels of experimental results showed that introducing a fork-shaped (alkylamino)alkoxy side chain could enhance the stabilizing abilities of the ligands against NRAS RNA G-quadruplexes and their anti-melanoma activities. One of them, 10b, exhibited good antitumor activity in the NRAS-mutant melanoma xenograft mouse model, showing the therapeutic potential of this kind of compounds.


Antineoplastic Agents , Drug Design , G-Quadruplexes , GTP Phosphohydrolases , Membrane Proteins , G-Quadruplexes/drug effects , Humans , Animals , GTP Phosphohydrolases/metabolism , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/metabolism , Membrane Proteins/genetics , Structure-Activity Relationship , Molecular Structure , Melanoma/drug therapy , Melanoma/pathology , Dose-Response Relationship, Drug , Cell Proliferation/drug effects , Indoles/pharmacology , Indoles/chemistry , Indoles/chemical synthesis , Cell Line, Tumor , Drug Screening Assays, Antitumor , RNA/metabolism , RNA/chemistry , Protein Biosynthesis/drug effects , Alkaloids , Quinolines
4.
J Med Chem ; 67(9): 7006-7032, 2024 May 09.
Article En | MEDLINE | ID: mdl-38668707

G-quadruplexes are noncanonical four-stranded DNA secondary structures. MYC is a master oncogene and the G-quadruplex formed in the MYC promoter functions as a transcriptional silencer and can be stabilized by small molecules. We have previously revealed a novel mechanism of action for indenoisoquinoline anticancer drugs, dual-downregulation of MYC and inhibition of topoisomerase I. Herein, we report the design and synthesis of novel 7-aza-8,9-methylenedioxyindenoisoquinolines based on desirable substituents and π-π stacking interactions. These compounds stabilize the MYC promoter G-quadruplex, significantly lower MYC levels in cancer cells, and inhibit topoisomerase I. MYC targeting was demonstrated by differential activities in Raji vs CA-46 cells and cytotoxicity in MYC-dependent cell lines. Cytotoxicities in the NCI-60 panel of human cancer cell lines were investigated. Favorable pharmacokinetics were established, and in vivo anticancer activities were demonstrated in xenograft mouse models. Furthermore, favorable brain penetration, brain pharmacokinetics, and anticancer activity in an orthotopic glioblastoma mouse model were demonstrated.


Antineoplastic Agents , Drug Design , G-Quadruplexes , Isoquinolines , Promoter Regions, Genetic , Proto-Oncogene Proteins c-myc , Topoisomerase I Inhibitors , G-Quadruplexes/drug effects , Humans , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Isoquinolines/pharmacology , Isoquinolines/chemistry , Isoquinolines/pharmacokinetics , Isoquinolines/chemical synthesis , Mice , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Topoisomerase I Inhibitors/pharmacology , Topoisomerase I Inhibitors/chemical synthesis , Topoisomerase I Inhibitors/pharmacokinetics , Topoisomerase I Inhibitors/chemistry , Topoisomerase I Inhibitors/therapeutic use , Structure-Activity Relationship , DNA Topoisomerases, Type I/metabolism , Xenograft Model Antitumor Assays
5.
J Biol Chem ; 299(9): 105151, 2023 09.
Article En | MEDLINE | ID: mdl-37567479

Hepatitis B virus (HBV) is a hepatotropic DNA virus that has a very compact genome. Due to this genomic density, several distinct mechanisms are used to facilitate the viral life cycle. Recently, accumulating evidence show that G-quadruplex (G4) in different viruses play essential regulatory roles in key steps of the viral life cycle. Although G4 structures in the HBV genome have been reported, their function in HBV replication remains elusive. In this study, we treated an HBV replication-competent cell line and HBV-infected cells with the G4 structure stabilizer pyridostatin (PDS) and evaluated different HBV replication markers to better understand the role played by the G4. In both models, we found PDS had no effect on viral precore RNA (pcRNA) or pre-genomic RNA (pgRNA), but treatment did increase HBeAg/HBc ELISA reads and intracellular levels of viral core/capsid protein (HBc) in a dose-dependent manner, suggesting post-transcriptional regulation. To further dissect the mechanism of G4 involvement, we used in vitro-synthesized HBV pcRNA and pgRNA. Interestingly, we found PDS treatment only enhanced HBc expression from pgRNA but not HBeAg expression from pcRNA. Our bioinformatic analysis and CD spectroscopy revealed that pgRNA harbors a conserved G4 structure. Finally, we introduced point mutations in pgRNA to disrupt its G4 structure and observed the resulting mutant failed to respond to PDS treatment and decreased HBc level in in vitro translation assay. Taken together, our data demonstrate that HBV pgRNA contains a G4 structure that plays a vital role in the regulation of viral mRNA translation.


G-Quadruplexes , Hepatitis B virus , Hepatitis B , Humans , Capsid Proteins/chemistry , Capsid Proteins/metabolism , Hepatitis B/virology , Hepatitis B e Antigens/metabolism , Hepatitis B virus/genetics , Hepatitis B virus/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , Viral Core Proteins/chemistry , Viral Core Proteins/metabolism , Virus Replication/genetics , Cell Line , G-Quadruplexes/drug effects , Protein Biosynthesis/drug effects , Protein Biosynthesis/genetics , Mutation , Aminoquinolines/pharmacology
6.
J Med Virol ; 95(5): e28783, 2023 05.
Article En | MEDLINE | ID: mdl-37212309

Monkeypox virus (MPXV) is a double-stranded DNA virus from the family Poxviridae, which is endemic in West and Central Africa. Various human outbreaks occurred in the 1980s, resulting from a cessation of smallpox vaccination. Recently, MPXV cases have reemerged in non-endemic nations, and the 2022 outbreak has been declared a public health emergency. Treatment optionsare limited, and many countries lack the infrastructure to provide symptomatic treatments. The development of cost-effective antivirals could ease severe health outcomes. G-quadruplexes have been a target of interest in treating viral infections with different chemicals. In the present work, a genomic-scale mapping of different MPXV isolates highlighted two conserved putative quadruplex-forming sequences MPXV-exclusive in 590 isolates. Subsequently, we assessed the G-quadruplex formation using circular dichroism spectroscopy and solution small-angle X-ray scattering. Furthermore, biochemical assays indicated the ability of MPXV quadruplexes to be recognized by two specific G4-binding partners-Thioflavin T and DHX36. Additionally, our work also suggests that a quadruplex binding small-molecule with previously reported antiviral activity, TMPyP4, interacts with MPXV G-quadruplexes with nanomolar affinity in the presence and absence of DHX36. Finally, cell biology experiments suggests that TMPyP4 treatment substantially reduced gene expression of MPXV proteins. In summary, our work provides insights into the G-quadruplexes from the MPXV genome that can be further exploited to develop therapeutics.


G-Quadruplexes , Monkeypox virus , Mpox (monkeypox) , Monkeypox virus/genetics , G-Quadruplexes/drug effects , Mpox (monkeypox)/virology , Genome, Viral , Scattering, Small Angle , X-Ray Diffraction , Antiviral Agents/pharmacology , Porphyrins/pharmacology , Enzyme Inhibitors/pharmacology
7.
Nucleic Acids Res ; 51(9): 4112-4125, 2023 05 22.
Article En | MEDLINE | ID: mdl-36971129

The importance of non-canonical DNA structures such as G-quadruplexes (G4) and intercalating-motifs (iMs) in the fine regulation of a variety of cellular processes has been recently demonstrated. As the crucial roles of these structures are being unravelled, it is becoming more and more important to develop tools that allow targeting these structures with the highest possible specificity. While targeting methodologies have been reported for G4s, this is not the case for iMs, as evidenced by the limited number of specific ligands able to bind the latter and the total absence of selective alkylating agents for their covalent targeting. Furthermore, strategies for the sequence-specific covalent targeting of G4s and iMs have not been reported thus far. Herein, we describe a simple methodology to achieve sequence-specific covalent targeting of G4 and iM DNA structures based on the combination of (i) a peptide nucleic acid (PNA) recognizing a specific sequence of interest, (ii) a pro-reactive moiety enabling a controlled alkylation reaction, and (iii) a G4 or iM ligand orienting the alkylating warhead to the reactive residues. This multi-component system allows for the targeting of specific G4 or iM sequences of interest in the presence of competing DNA sequences and under biologically relevant conditions.


Alkylating Agents , Alkylation , Color , DNA , G-Quadruplexes , Light , Alkylating Agents/chemistry , Alkylating Agents/radiation effects , Alkylation/drug effects , Alkylation/radiation effects , DNA/chemistry , DNA/drug effects , G-Quadruplexes/drug effects , Ligands
8.
Bioorg Med Chem Lett ; 79: 129085, 2023 01 01.
Article En | MEDLINE | ID: mdl-36423824

With the emergence of new viruses in the human population and the fast mutation rates of existing viruses, new antiviral targets and compounds are needed. Most existing antiviral drugs are active against proteins of a handful of viruses. Most of these proteins in the end affect viral nucleic acid processing, but direct nucleic acid targeting is less represented due to the difficulty of selectively acting at the nucleic acid of interest. Recently, nucleic acids have been shown to fold in structures alternative to the classic double helix and Watson and Crick base-pairing. Among these non-canonical structures, G-quadruplexes (G4s) have attracted interest because of their key biological roles that are being discovered. Molecules able to selectively target G4s have been developed and since G4s have been investigated as targets in several human pathologies, including viral infections. Here, after briefly introducing viruses, G4s and the G4-binding molecules with antiviral properties, we comment on the mechanisms at the base of the antiviral activity reported for G4-binding molecules. Understanding how G4-ligands act in infected cells will possibly help designing and developing next-generation antiviral drugs.


Antiviral Agents , G-Quadruplexes , Humans , Antiviral Agents/pharmacology , G-Quadruplexes/drug effects , Nucleic Acids/drug effects , Nucleic Acids/metabolism
9.
Molecules ; 26(23)2021 Dec 03.
Article En | MEDLINE | ID: mdl-34885920

Ginsenoside compound K (CK) is one of the major metabolites of the bioactive ingredients in Panax ginseng, which presents excellent bioactivity and regulates the expression of important proteins. In this work, the effects of CK on G-quadruplexes (G4s) were quantitatively analyzed in the presence and absence of their complementary sequences. CK was demonstrated to facilitate the formation of G4s, and increase the quantity of G4s in the competition with duplex. Thermodynamic experiments suggested that the electrostatic interactions were important for G4 stabilization by CK. CK was further found to regulate the transcription of G4-containing templates, reduce full-length transcripts, and decrease the transcription efficiency. Our results provide new evidence for the pharmacological study of ginsenosides at the gene level.


G-Quadruplexes/drug effects , Ginsenosides/pharmacology , Cell Line , Ginsenosides/chemistry , Humans , Models, Molecular , Panax/chemistry , Thermodynamics , Transcription, Genetic/drug effects
10.
Viruses ; 13(11)2021 11 04.
Article En | MEDLINE | ID: mdl-34835025

Pseudorabies virus (PRV) is the causative agent of Aujeszky's disease, which still causes large economic losses for the swine industry. Therefore, it is urgent to find a new strategy to prevent and control PRV infection. Previous studies have proven that guanine (G)-rich DNA or RNA sequences in some other viruses' genomes have the potential to form G-quadruplex (G4), which serve as promising antivirus targets. In this study, we identified two novel G4-forming sequences, OriL-A and OriL-S, which are located at the upstream origin of replication (OriL) in the PRV genome and conserved across 32 PRV strains. Circular dichroism (CD) spectroscopy and a gel electrophoresis assay showed that the two G-rich sequences can fold into parallel G4 structures in vitro. Moreover, fluorescence resonance energy transfer (FRET) melting and a Taq polymerase stop assay indicated that the G4 ligand PhenDC3 has the capacity to bind and stabilize the G4. Notably, the treatment of PRV-infected cells with G4-stabilizer PhenDC3 significantly inhibited PRV DNA replication in host cells but did not affect PRV's attachment and entry. These results not only expand our knowledge about the G4 characteristics in the PRV genome but also suggest that G4 may serve as an innovative therapeutic target against PRV.


Antiviral Agents/pharmacology , G-Quadruplexes , Herpesvirus 1, Suid/genetics , Replication Origin/genetics , Animals , Antiviral Agents/chemistry , Cell Line , DNA Replication/drug effects , DNA, Viral/biosynthesis , DNA, Viral/chemistry , DNA, Viral/drug effects , Fused-Ring Compounds/chemistry , Fused-Ring Compounds/pharmacology , G-Quadruplexes/drug effects , Genome, Viral/drug effects , Genome, Viral/genetics , Herpesvirus 1, Suid/drug effects , Herpesvirus 1, Suid/physiology , Replication Origin/drug effects , Swine , Virus Replication/drug effects
11.
Biochemistry ; 60(48): 3707-3713, 2021 12 07.
Article En | MEDLINE | ID: mdl-34757721

G-quadruplex (G4) ligand-induced DNA damage has been involved in many physiological functions of cells. Herein, cationic porphyrin (TMPyP4)-mediated DNA oxidation damage was investigated aiming at mitochondrial G4 DNA (mt9438) and its structural analogue of the thrombin-binding aptamer (TBA). TMPyP4 is found to stabilize TBA G4 but destabilize mt9438. For two resulting DNA-TMPyP4 assemblies, the distinct light-induced singlet oxygen (1O2) generation and the subsequent DNA damage were found. For mt9438-TMPyP4, a slower 1O2-induced DNA damage takes place and results in the formation of DNA aggregation. In contrast, 1O2 tends to promote DNA unfolding in a relatively faster rate for TBA-TMPyP4. Despite of such distinct DNA damage behavior, UV resonance Raman spectra reveal that for both mt9438-TMPyP4 and TBA-TMPyP4 the DNA damage commonly stems from the guanine-specific oxidation. Our results clearly indicate that the ligand-mediated DNA damage is strongly dependent on the initial interplay between DNA and the ligand.


Aptamers, Nucleotide/chemistry , G-Quadruplexes/drug effects , Oxidative Stress/drug effects , Porphyrins/chemistry , Aptamers, Nucleotide/genetics , Cations/chemistry , Cations/pharmacology , DNA Damage/drug effects , Ligands , Porphyrins/genetics , Porphyrins/pharmacology
12.
Biomolecules ; 11(10)2021 09 25.
Article En | MEDLINE | ID: mdl-34680037

The evidence that telomerase is overexpressed in almost 90% of human cancers justifies the proposal of this enzyme as a potential target for anticancer drug design. The inhibition of telomerase by quadruplex stabilizing ligands is being considered a useful approach in anticancer drug design proposals. Several aromatic ligands, including porphyrins, were exploited for telomerase inhibition by adduct formation with G-Quadruplex (GQ). 5,10,15,20-Tetrakis(N-methyl-4-pyridinium)porphyrin (H2TMPyP) is one of the most studied porphyrins in this field, and although reported as presenting high affinity to GQ, its poor selectivity for GQ over duplex structures is recognized. To increase the desired selectivity, porphyrin modifications either at the peripheral positions or at the inner core through the coordination with different metals have been handled. Herein, studies involving the interactions of TMPyP and analogs with different DNA sequences able to form GQ and duplex structures using different experimental conditions and approaches are reviewed. Some considerations concerning the structural diversity and recognition modes of G-quadruplexes will be presented first to facilitate the comprehension of the studies reviewed. Additionally, considering the diversity of experimental conditions reported, we decided to complement this review with a screening where the behavior of H2TMPyP and of some of the reviewed metal complexes were evaluated under the same experimental conditions and using the same DNA sequences. In this comparison under unified conditions, we also evaluated, for the first time, the behavior of the AgII complex of H2TMPyP. In general, all derivatives showed good affinity for GQ DNA structures with binding constants in the range of 106-107 M-1 and ligand-GQ stoichiometric ratios of 3:1 and 4:1. A promising pattern of selectivity was also identified for the new AgII derivative.


Acenaphthenes/therapeutic use , Neoplasms/drug therapy , Porphyrins/therapeutic use , Telomerase/antagonists & inhibitors , Acenaphthenes/chemistry , Antineoplastic Agents/therapeutic use , Binding Sites/drug effects , G-Quadruplexes/drug effects , Humans , Ligands , Porphyrins/chemistry , Telomerase/genetics
13.
Int J Mol Sci ; 22(19)2021 Sep 24.
Article En | MEDLINE | ID: mdl-34638655

DNA G-quadruplex (G4) structures, either within gene promoter sequences or at telomeres, have been extensively investigated as potential small-molecule therapeutic targets. However, although G4s forming at the telomeric DNA have been extensively investigated as anticancer targets, few studies focus on the telomeric repeat-containing RNA (TERRA), transcribed from telomeres, as potential pharmacological targets. Here, a virtual screening approach to identify a library of drug-like putative TERRA G4 binders, in tandem with circular dichroism melting assay to study their TERRA G4-stabilizing properties, led to the identification of a new hit compound. The affinity of this compound for TERRA RNA and some DNA G4s was analyzed through several biophysical techniques and its biological activity investigated in terms of antiproliferative effect, DNA damage response (DDR) activation, and TERRA RNA expression in high vs. low TERRA-expressing human cancer cells. The selected hit showed good affinity for TERRA G4 and no binding to double-stranded DNA. In addition, biological assays showed that this compound is endowed with a preferential cytotoxic effect on high TERRA-expressing cells, where it induces a DDR at telomeres, probably by displacing TERRA from telomeres. Our studies demonstrate that the identification of TERRA G4-targeting drugs with potential pharmacological effects is achievable, shedding light on new perspectives aimed at discovering new anticancer agents targeting these G4 structures.


RNA/genetics , Telomere/genetics , Antineoplastic Agents/pharmacology , Binding Sites/drug effects , Binding Sites/genetics , DNA/genetics , DNA Damage/drug effects , DNA Damage/genetics , G-Quadruplexes/drug effects , Humans , Ligands , Neoplasms/drug therapy , Neoplasms/genetics , Structure-Activity Relationship , Telomere/drug effects
14.
Life Sci ; 287: 120095, 2021 Dec 15.
Article En | MEDLINE | ID: mdl-34715135

AIMS: This study aimed to evaluate the ability of compound 13d to induce autophagy and to promote apoptosis of tumor cells and its interaction mechanism. MATERIALS AND METHODS: Using CCK-8 assay, transwell assay, fluorescence resonance energy transfer melting analysis (FRET), transmission electron microscopy, flow cytometry assay, immunofluorescence assay, Western blot analysis, and wound healing assay. KEY FINDINGS: The results indicated that compound 13d could induce autophagy and apoptosis of gastric cancer cells. Moreover, the findings of CCK-8 assay, colony formation, migration and invasion assay, and wound healing assay revealed that compound 13d would effectively inhibit cell proliferation, migration, and invasion. Its IC50 value is about 2.4 µM against gastric cancer cells, which is similar to positive drug­platinum. 13d specific induction of telomere G-quadruplex formation was proved in extracellular FRET melting assay, and indirectly affected telomerase activity. G-quadruplex formation promoted cell apoptosis and autophagy. Upon incorporating the autophagy inhibitors 3-MA and HCQ, the expression of the autophagy marker protein LC3 was then checked, suggesting that the compound 13d influences the autophagy flux. Furthermore, knocking down the autophagy-related gene Atg5 to reduce the level of autophagy enhances the anti-tumor activity and increases apoptotic cells' proportion. Mechanistic experiments have shown that blocking the Akt/m-TOR signal pathway plays a crucial role in autophagy and G-quadruplex induced telomere dysfunction. DNA damage is the leading cause of autophagy. Compound 13d combined with autophagy inhibitor can inhibit tumor cells more effectively. SIGNIFICANCE: Our findings demonstrate that compound 13d as a telomeric G-quadruplex ligand induces Telomere dysfunction, DNA damage response, autophagy, and apoptosis in gastric cancer cells by blocking the Akt/m-TOR signaling pathway.


Autophagy/drug effects , Cytoprotection/drug effects , G-Quadruplexes/drug effects , Phenanthrolines/administration & dosage , Stomach Neoplasms , Telomere/drug effects , Apoptosis/drug effects , Apoptosis/physiology , Autophagy/physiology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/physiology , Chelating Agents/administration & dosage , Cytoprotection/physiology , Dose-Response Relationship, Drug , Drug Delivery Systems/methods , Humans , Stomach Neoplasms/drug therapy , Stomach Neoplasms/metabolism , Telomere/metabolism
15.
Eur J Pharmacol ; 912: 174586, 2021 Dec 05.
Article En | MEDLINE | ID: mdl-34710368

Herein, a derivate from tanshinone IIA, 1,6,6-trimethyl-11-phenyl-7,8,9,10-tetrahydro-6H-furo[2',3':1,2]phenanthro[3,4-d]imidazole (TA25), has been synthesized and investigated as potential inhibitor against the proliferation, migration and invasion of lung cancer cells. MTT assay and cell colony formation assay results showed that TA25 exhibits acceptable inhibitory effect against the proliferation of lung cancer A549 cells, and the value of IC50 was about 17.9 µM. This result was further confirmed by the inhibition of TA25 against the growth of xenograft lung cancer cells on zebrafish bearing tumor (A549 lung cancer cells). The results of wound-healing assay and FITC-gelatin invasion assay displayed that TA25 could inhibit the migration and invasion of lung cancer A549 cells. Moreover, the studies on the binding properties of TA25 interact with c-myc G-quadruplex DNA suggested that TA25 can bind in the G-quarter plane formed from G7, G11, G16 and G20 with c-myc G-quadruplex DNA through π-π stacking. Further study of the potential anti-cancer mechanism indicated that TA25 can induce S-phase arrest in lung cancer A549 cells, and this phenomenon resulted from the promotion of the production of reactive oxygen species and DNA damage in A549 cells under the action of TA25. Further research revealed that TA25 could inhibit the PI3K/Akt/mTOR signal pathway and increase the expression of p53 protein. Overall, TA25 can be developed into a promising inhibitor against the proliferation, migration and invasion of lung cancer cells and has potential clinical application in the near future.


Abietanes/pharmacology , Antineoplastic Agents/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-myc/genetics , S Phase/drug effects , TOR Serine-Threonine Kinases/metabolism , Abietanes/chemistry , Abietanes/therapeutic use , Abietanes/toxicity , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/toxicity , Binding Sites/drug effects , Cell Line , Cell Movement/drug effects , Cell Proliferation/drug effects , DNA Damage/drug effects , Disease Models, Animal , G-Quadruplexes/drug effects , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Models, Molecular , Proto-Oncogene Proteins c-myc/chemistry , Proto-Oncogene Proteins c-myc/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Zebrafish
16.
Molecules ; 26(20)2021 Oct 13.
Article En | MEDLINE | ID: mdl-34684745

The non-coding RNAs (ncRNA) are RNA transcripts with different sizes, structures and biological functions that do not encode functional proteins. RNA G-quadruplexes (rG4s) have been found in small and long ncRNAs. The existence of an equilibrium between rG4 and stem-loop structures in ncRNAs and its effect on biological processes remains unexplored. For example, deviation from the stem-loop leads to deregulated mature miRNA levels, demonstrating that miRNA biogenesis can be modulated by ions or small molecules. In light of this, we report several examples of rG4s in certain types of ncRNAs, and the implications of G4 stabilization using small molecules, also known as G4 ligands, in the regulation of gene expression, miRNA biogenesis, and miRNA-mRNA interactions. Until now, different G4 ligands scaffolds were synthesized for these targets. The regulatory role of the above-mentioned rG4s in ncRNAs can be used as novel therapeutic approaches for adjusting miRNA levels.


G-Quadruplexes/drug effects , RNA, Untranslated/chemistry , Humans , Inverted Repeat Sequences/genetics , Inverted Repeat Sequences/physiology , Ligands , MicroRNAs/genetics , RNA, Messenger/genetics , RNA, Untranslated/metabolism
17.
Nucleic Acids Res ; 49(18): 10275-10288, 2021 10 11.
Article En | MEDLINE | ID: mdl-34551430

DNA is intrinsically dynamic and folds transiently into alternative higher-order structures such as G-quadruplexes (G4s) and three-way DNA junctions (TWJs). G4s and TWJs can be stabilised by small molecules (ligands) that have high chemotherapeutic potential, either as standalone DNA damaging agents or combined in synthetic lethality strategies. While previous approaches have claimed to use ligands that specifically target either G4s or TWJs, we report here on a new approach in which ligands targeting both TWJs and G4s in vitro demonstrate cellular effects distinct from that of G4 ligands, and attributable to TWJ targeting. The DNA binding modes of these new, dual TWJ-/G4-ligands were studied by a panel of in vitro methods and theoretical simulations, and their cellular properties by extensive cell-based assays. We show here that cytotoxic activity of TWJ-/G4-ligands is mitigated by the DNA damage response (DDR) and DNA topoisomerase 2 (TOP2), making them different from typical G4-ligands, and implying a pivotal role of TWJs in cells. We designed and used a clickable ligand, TrisNP-α, to provide unique insights into the TWJ landscape in cells and its modulation upon co-treatments. This wealth of data was exploited to design an efficient synthetic lethality strategy combining dual ligands with clinically relevant DDR inhibitors.


Antineoplastic Agents/pharmacology , Azabicyclo Compounds/pharmacology , DNA Damage/drug effects , DNA , G-Quadruplexes/drug effects , Neoplasms/genetics , DNA/chemistry , DNA/metabolism , Humans , MCF-7 Cells , Structure-Activity Relationship
18.
Bioorg Med Chem ; 48: 116416, 2021 10 15.
Article En | MEDLINE | ID: mdl-34560615

The development of ligands to stabilize G-quadruplexes (G4s) or induce G4s to transition from metastable topology to stable topology is a potential strategy for inhibiting cancer cell proliferation. In this study, a novel G-quadruplex (G4) ligand based on a naphthyridine scaffold with two indole pendants, L5-DA, is reported to convert hybrid to the parallel topology. Circular dichroism (CD) and fluorescence spectroscopies were used to investigate the interactions between L5-DA and G4s. The CD spectra revealed that the L5-DA induced the conformational conversion from hybrid topologies to parallel topologies with a melting temperature increase of more than 30 °C. According to Förster resonance energy transfer assays, the presence of excess duplex competitor had no effect on the ligand-induced stabilization of the hybrid topology, confirming the L5-DA's selectivity for G4s over ds26. With IC50 values of 4.3 µM, the ligand showed significant cytotoxicity against HeLa cells and effectively induced growth inhibition and apoptosis in HeLa cells. Immunofluorescence microscopy revealed an increase in BG4 foci in the presence of the L5-DA, confirming ligand-induced G4s stabilization in HeLa cells. According to these results, the combination of naphthyridine and indole scaffold was an effective design strategy for G4s stabilization and conformational conversion of metastable G4 topology for inhibiting cancer cell growth.


Antineoplastic Agents/pharmacology , Indoles/pharmacology , Naphthyridines/pharmacology , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , G-Quadruplexes/drug effects , HeLa Cells , Humans , Indoles/chemistry , Ligands , Molecular Structure , Naphthyridines/chemistry , Structure-Activity Relationship
19.
Int J Mol Sci ; 22(11)2021 Jun 03.
Article En | MEDLINE | ID: mdl-34205000

Recently, the 1H-detected in-cell NMR spectroscopy has emerged as a unique tool allowing the characterization of interactions between nucleic acid-based targets and drug-like molecules in living human cells. Here, we assess the application potential of 1H and 19F-detected in-cell NMR spectroscopy to profile drugs/ligands targeting DNA G-quadruplexes, arguably the most studied class of anti-cancer drugs targeting nucleic acids. We show that the extension of the original in-cell NMR approach is not straightforward. The severe signal broadening and overlap of 1H in-cell NMR spectra of polymorphic G-quadruplexes and their complexes complicate their quantitative interpretation. Nevertheless, the 1H in-cell NMR can be used to identify drugs that, despite strong interaction in vitro, lose their ability to bind G-quadruplexes in the native environment. The in-cell NMR approach is adjusted to a recently developed 3,5-bis(trifluoromethyl)phenyl probe to monitor the intracellular interaction with ligands using 19F-detected in-cell NMR. The probe allows dissecting polymorphic mixture in terms of number and relative populations of individual G-quadruplex species, including ligand-bound and unbound forms in vitro and in cellulo. Despite the probe's discussed limitations, the 19F-detected in-cell NMR appears to be a promising strategy to profile G-quadruplex-ligand interactions in the complex environment of living cells.


DNA/drug effects , G-Quadruplexes/drug effects , Nucleic Acid Conformation/drug effects , Pharmaceutical Preparations/chemistry , Binding Sites/drug effects , DNA/chemistry , Humans , Ligands , Magnetic Resonance Spectroscopy , Models, Molecular , Protons
20.
Int J Mol Sci ; 22(11)2021 Jun 02.
Article En | MEDLINE | ID: mdl-34199659

Herein we describe a combined experimental and in silico study of the interaction of a series of pyrazolo[1,2-a]benzo[1,2,3,4]tetrazin-3-one derivatives (PBTs) with parallel G-quadruplex (GQ) DNA aimed at correlating their previously reported anticancer activities and the stabilizing effects observed by us on c-myc oncogene promoter GQ structure. Circular dichroism (CD) melting experiments were performed to characterize the effect of the studied PBTs on the GQ thermal stability. CD measurements indicate that two out of the eight compounds under investigation induced a slight stabilizing effect (2-4 °C) on GQ depending on the nature and position of the substituents. Molecular docking results allowed us to verify the modes of interaction of the ligands with the GQ and estimate the binding affinities. The highest binding affinity was observed for ligands with the experimental melting temperatures (Tms). However, both stabilizing and destabilizing ligands showed similar scores, whilst Molecular Dynamics (MD) simulations, performed across a wide range of temperatures on the GQ in water solution, either unliganded or complexed with two model PBT ligands with the opposite effect on the Tms, consistently confirmed their stabilizing or destabilizing ability ascertained by CD. Clues about a relation between the reported anticancer activity of some PBTs and their ability to stabilize the GQ structure of c-myc emerged from our study. Furthermore, Molecular Dynamics simulations at high temperatures are herein proposed for the first time as a means to verify the stabilizing or destabilizing effect of ligands on the GQ, also disclosing predictive potential in GQ-targeting drug discovery.


DNA/drug effects , G-Quadruplexes/drug effects , Proto-Oncogene Proteins c-myc/chemistry , Telomere/chemistry , Binding Sites/drug effects , Circular Dichroism , Computer Simulation , DNA/chemistry , DNA/ultrastructure , Humans , Ligands , Molecular Dynamics Simulation , Promoter Regions, Genetic/genetics , Proto-Oncogene Proteins c-myc/ultrastructure , Telomere/drug effects , Telomere/genetics
...